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Abstract—Monitoring important aquatic processes like
harmful algal blooms is of increasing interest to public health,
ecosystem sustainability, marine biology, and aquaculture in-
dustry. This paper presents a novel approach to spatiotemporal
aquatic field reconstruction using inexpensive, low-power, mo-
bile sensing platforms called robotic fish. Robotic fish networks
are a typical example of Cyber-Physical Systems where the
design of cyber components (sensing, communication, and
information processing) must account for inherent physical
dynamics of the robots and the aquatic environment. Our
approach features a rendezvous-based mobility control scheme
where robotic fish collaborate in the form of a swarm to sense
the aquatic environment in a series of carefully chosen ren-
dezvous regions. We design a novel feedback control algorithm
that maintains the desirable level of wireless connectivity for
a sensor swarm in the presence of significant environment
and system dynamics. Information-theoretic analysis is used to
guide the selection of rendezvous regions so that the spatiotem-
poral field reconstruction accuracy is maximized subject to the
limited sensor mobility. The effectiveness of our approach is
validated via implementation on sensor hardware and extensive
simulations based on real data traces of water surface temper-
ature field and on-water ZigBee wireless communication.

Keywords-Robotic sensor swarm, field reconstruction, con-
nectivity control, movement scheduling

I. INTRODUCTION

Monitoring aquatic environment is of great interest to

public health, ecosystem sustainability, marine biology, and

aquaculture industry. In this work, we explore an important

problem in aquatic monitoring – reconstruction of spa-

tiotemporal aquatic process. Many physical and biological

phenomena in aquatic environment, including harmful algal

blooms (HABs) [1], lake surface temperature [2], and plume

concentration of chemical substance [3], can be modeled

as spatiotemporal aquatic fields that usually follow certain

distribution such as the spatiotemporal Gaussian process.

For instance, Fig. 1(a) shows the HABs in two inland

lakes in Wisconsin, 1999. The reconstructed aquatic field

allows one to study fine-grained spatial distribution and

temporal evolution of physical and biological phenomena of

interest. For instance, the reconstructed HAB field is helpful

for understanding the development of emerging HABs and

guiding authorities to take future preventive actions.

Manual sampling, via boat/ship or with handheld devices,

is still a common practice in monitoring aquatic environ-

ment. This approach is labor-intensive and has difficulty

(a)

ZigBee antenna 

GPS

algae sensor

(b)

Figure 1. (a) HABs in Lake Mendota (top left) and Lake Monona (right
bottom) in Wisconsin, 1999 [8] (Photo Credit: Space Science and Engineer-
ing Center at University of Wisconsin-Madison and WisconsinView); (b) A
prototype of autonomous robotic fish developed by the Smart Microsystems
Laboratory at Michigan State University [7].

in capturing large-scale spatially distributed phenomena of

interest. An alternative approach is in-situ sensing with

fixed or buoyed/moored sensors [4]. However, since buoyed

sensors cannot move around, they have limited adaptability

in monitoring dynamic aquatic processes like HABs. With

advances in underwater robotics and wireless networking,

there is a growing interest in using underwater sensor

platforms like autonomous underwater vehicles (AUVs) [5]

and sea gliders [6] to monitor the environment. However, it

is difficult to deploy many AUVs or sea gliders due to their

high manufacturing and operational costs.

In this paper, we propose to use inexpensive, low-power

robotic sensor platforms to sample and reconstruct spa-

tiotemporal aquatic processes of interest. Fig. 1(b) shows a

prototype of such platforms called robotic fish. Each robotic

fish is equipped with onboard batteries, ZigBee wireless

interface, control, localization and navigation modules [7],

and can be interfaced with various aquatic sensors. Robotic

fish can form an autonomous network and sense aquatic

environment at fine spatial and temporal granularities.

Aquatic sensor networks composed of robotic fish are a

typical Cyber-Physical System (CPS) whose efficient opera-

tion depends on the tight coupling and coordination between

cyber (sensing, communication, and information processing)

and physical components (mobility control and environ-

ment). Compared with terrestrial sensor networks, there are

several unique challenges associated with aquatic sensor

networks, including uncontrollable disturbances from the

underlying fluid medium (e.g., waves and flows), inherently
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dynamic profiles of aquatic processes, and significant errors

in motion control. Therefore, both sensing and mobility

control of robotic fish must account for the spatial variability

and temporal evolution of aquatic processes. Moreover,

our measurements show that aquatic sensors equipped with

ZigBee radio have highly variable link quality and only

about half of the communication range of the terrestrial

radio. Such characteristics must be explicitly considered in

the design of the network. Finally, the operation of these

sensors has to be very energy-efficient due to the limited

power supply.

We make the following key contributions in this paper:

1) We propose a new approach to the sampling and recon-

struction of spatiotemporal aquatic field using a sen-

sor swarm composed of inexpensive, low-power, and

collaborative robotic sensors. Our approach features

a rendezvous-based mobility control scheme, where

sensors in a swarm gather and sense the environment

in a series of carefully chosen rendezvous regions, re-

ducing the overhead of inter-sensor coordination during

movement.

2) We design a novel feedback control algorithm that

maintains the desirable level of wireless connectivity

of a sensor swarm in the presence of significant phys-

ical dynamics. Based on a wireless signal propagation

model, the control-theoretic algorithm adjusts the radius

of rendezvous region adaptively to ensure a bound on

the packet reception ratio (PRR) between sensors.

3) We present a new analysis of spatiotemporal field

reconstruction accuracy based on mutual information

and posterior entropy. Our analytical results are used

to guide the selection of rendezvous regions so that the

reconstruction accuracy can be maximized subject to

the limited sensor mobility.

4) We evaluate our approach through extensive simulation-

s based on real data traces of water surface temperature

field and on-water ZigBee wireless communication.

The results show that a sensor swarm can maintain

desirable network connectivity level and accurately

reconstruct large, dynamic aquatic fields. Moreover, our

implementation on sensor hardware provides impor-

tant insights into the feasibility of adopting advanced

information-theoretic movement scheduling algorithms

on low-power robotic sensor platforms.

The rest of this paper is organized as follows. Section II

reviews related work. Section III introduces the background

and provides an overview of our approach. Section IV

presents the control-theoretic connectivity maintenance algo-

rithm. Section V presents the information-theoretic swarm

movement scheduling algorithms. Section VI presents the

results of extensive trace-driven simulations and implemen-

tation on sensor platform. Section VII concludes this paper.

II. RELATED WORK

Sampling and reconstruction of physical field using net-

worked sensor systems has recently received increasing in-

terest. Early work focuses on stationary sensor deployment.

In [9], positions of sensors are selected before the real

deployment to reduce the uncertainty in reconstructing a

spatial physical field that follows the Gaussian process.

However, the proposed algorithms are computationally in-

tensive and hence can only be executed offline. Recently,

mobility has been exploited to enhance the adaptability and

sensing capability of sensor systems. In [10], a robotic boat

supplements a static sensor network to reduce the field

reconstruction error, where the boat’s movement is guided

by the measurements of the sensor network. A recent study

[11] develops active learning schemes for mobile sensor

networks, which plan the movements of mobile sensors

based on the feedback of previous measurements. Several

recent studies focus on leveraging sensors’ mobility to

reconstruct physical fields that follow the Gaussian process.

In [2], the movement of mobile sensors is directed to reduce

the uncertainties in estimating the field variables at a set

of pre-specified locations. The algorithms developed for

placing stationary sensors in [9] are extended to schedule the

movement of a sensor network in reconstructing a Gaussian

process [12]. However, these studies do not account for

the constraints of low-power robotic sensor systems, such

as the limited motion, computation and communication

capabilities. Moreover, the existing studies focus on open-

loop solutions that often fail to adapt to highly complex and

dynamic aquatic environment. In contrast, this paper aims

to develop practical and adaptive wireless communication,

sensing, and movement control approaches for mobile CPSs

in aquatic field reconstruction.

Most previous works on maintaining sensor network

connectivity adopt the graph theory [2] and potential field

theory [13], and assume fixed communication range and

reliable communication quality. Recent studies have revealed

significant stochasticity and irregularity in link quality of

low-power wireless sensors [14]. In this paper, we aim to

adaptively maintain the network connectivity defined based

on the average PRR of a robotic sensor swarm in the

presence of environment and system dynamics. Feedback

control has been widely adopted to improve the adaptability

of computing systems [15]. Different from existing solution-

s, our control-theoretic connectivity maintenance algorithm

specifically deals with the dynamics caused by movement

of robotic sensor swarm and disturbances from the aquatic

environment.

III. OVERVIEW OF APPROACH

A. Background and Challenges

Our objective is to reconstruct an aquatic scalar field that

follows the spatiotemporal Gaussian process using a group
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Figure 2. Internal components of
the robotic fish [7].

swarm

radius

Rk-1

Rk

P'c

Pc

  L

iteration k-2

iteration k-1

aquatic field
iteration k

Figure 3. Rendezvous-based swarm scheme.
Dashed circles represent the rendezvous circles.
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Figure 4. The iterative sampling process of a robotic sensor
swarm.

of robotic sensors. Different from existing solutions, our

approach is based on inexpensive robotic sensor platforms

exemplified by the robotic fish developed in our previous

work [7], as shown in Fig. 1(b). Fig. 2 shows the internal

components of the robotic fish, which include a TelosB

mote for communication and data processing, a movement

control board, a GPS module, and various aquatic sensors.

Due to the resource constraints, robotic fish has limited

capabilities of computation, communication, and movement.

For instance, the TelosB mote only has an 8MHz MCU

and a low-power 802.15.4 radio with short communication

range. In this paper, we aim to develop a practical approach

for aquatic field reconstruction, which addresses the complex

uncertainties/dynamics of the monitored physical field and

the constraints of realistic robotic sensor platforms.

The design of our approach is motivated by the following

major challenges in reconstructing a spatiotemporal field.

First, the physical and biological phenomena of interest often

affect large spatial areas. For instance, HABs can spread

over the water area of a dozen to tens of square kilometers

(e.g., Lake Monona and Lake Mendota, Wisconsin, shown in

Fig. 1(a) [8]). However, the number of robotic sensors avail-

able in practice is often small (e.g., a few dozens). Moreover,

as the robotic sensors in aquatic environment often have

short communication ranges, the area that the robotic sensor

system can sample at any given time is limited. Second,

because of the complex environment dynamics (e.g., wave

and wind) and the limited motion capabilities of the robotic

sensors, accurate movement control of an aquatic sensor

system is often challenging. Third, the link quality and

network connectivity of robotic sensors are highly dynamic

due to physical uncertainties. The resulted data loss can

significantly affect the accuracy of field reconstruction.

B. System Model

To address the aforementioned challenges, we adopt a

novel rendezvous-based swarm scheme as illustrated in

Fig. 3. We assume that all sensors know their positions

and are time-synchronized, e.g., through GPS or in-network

localization/synchronization services. The robotic sensor

system iteratively samples the aquatic field. In each sampling

iteration, the sensors move into a rendezvous circle, form a

swarm and sample the environment. In the swarm, a sensor

serves as the swarm head, which collects the measurements

of other sensors via wireless communications and computes

the location of the rendezvous circle for the next iteration.

To simplify the data collection process and reduce communi-

cation overhead, the swarm adopts a single-hop star network

topology centered at the swarm head. Moreover, to balance

the energy consumption of sensors, the swarm head role can

rotate among all sensors. Such a swarm scheme allows the

robotic sensor system to efficiently collaborate in sensing a

large dynamic aquatic field.

To address the challenge of limited mobility, the sensors

are scheduled to move to randomly selected positions in

the next rendezvous circle. Small motion control errors can

be tolerated as long as the final positions of sensors fall

within the rendezvous circle. Moreover, the communication

overhead is low because sensors coordinate with each other

only when they gather in a rendezvous circle. Therefore, this

movement scheme is practical for low-power aquatic robotic

platforms [7] [10].

C. Approach Overview

We now present an overview of our cyber-physical ap-

proach for sampling the aquatic field using robotic sensor

swarm. Initially, the swarm is dropped at a venue within the

region affected by the physical/biological process of interest.

As shown in Fig. 4, in each sampling iteration, all sensors

take measurements and send to the swarm head. The swarm

head assesses the quality of the network connectivity based

on the received data and then determines the radius of the

rendezvous circle (referred to as swarm radius) in the next

sampling iteration. Given the projected swarm radius, the

swarm head then conducts information-theoretic analysis to

select the location of the next rendezvous circle to maximize

the improvement of the field reconstruction accuracy. After

that, the swarm head generates random target positions

within the next rendezvous circle and assigns the positions

to each sensor to minimize the total moving distance. The

target positions are finally sent to the sensors for directing

their movements. Our approach has the following two key

novelties.

Control-theoretic connectivity maintenance: Data loss of
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wireless communication can significantly affect the quality

of sensing. A key goal of our system is to ensure that

the swarm head reliably receives the measurements from

all sensors. However, this is challenging because the on-

water wireless links have highly dynamic quality due to the

impact of fluid medium and changing positions of sensors

during movement. We develop a control-theoretic algorithm

to maintain desirable connectivity of a sensor swarm in

the presence of these dynamics by adaptively adjusting the

swarm radius. Specifically, the swarm head first estimates

the quality of network connectivity based on the average

of PRRs of all links. As the swarm average PRR generally

decreases with the swarm radius, the swarm head calculates

a new swarm radius based on a wireless signal propagation

model and the current swarm average PRR, such that the

expected connectivity in the next sampling iteration can

be maintained at a desirable level. A control problem is

formulated to address this problem and its solution gives

an adaptive algorithm for tuning the swarm radius.

Information-theoretic movement scheduling: Due to lim-

ited power supply and high power consumption in loco-

motion, the sensor swarm must efficiently schedule the

movement of sensors to sample the field. Specifically, the

swarm head must find the location of the next rendezvous

circle subject to energy budget, such that the improvement

of the field reconstruction accuracy can be maximized with

the newly obtained sensor measurements. In this paper, we

employ information-theoretic analysis to guide the selection

of rendezvous circle locations. Moreover, two information

metrics (i.e., mutual information and posterior entropy) with

different computational complexities can be integrated with

our analysis, which hence allow the system designer to

choose desirable trade-offs between the system overhead and

reconstruction accuracy.

IV. SWARM CONNECTIVITY MAINTENANCE

A sensor swarm must form a connected network to be

able to collaborate in the field sampling and coordinate

each other’s movement. However, the wireless connectivity

between a robotic sensor and the swarm head is affected

by environment and system dynamics, which include the

stochastic fluctuation of the on-water wireless links, the

errors of localization and motion control, and the uncertain

distance between moving sensors. Fig. 5 plots the PRR

traces of on-water communication between two IRIS motes

measured in Lake Lansing, Michigan. It can be seen that

the PRR shows significant variance, which is mostly caused

by the radio and environment dynamics [14]. Such high-

ly dynamic communication quality can lead to increased

communication cost in the field sampling and even loss

of sensors due to disconnected network. To adapt to these

dynamics, we formulate the swarm connectivity maintenance

as a feedback control problem, which aims to maintain the
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swarm connectivity at a desired level by adjusting the swarm

radius based on the quality of all links measured at run time.

A. Modeling Swarm Connectivity

As discussed in Section III-B, the sensor swarm forms

a network with single-hop star topology in a rendezvous

circle. Compared with multi-hop topology, the single-hop

topology of sensor swarm incurs significantly lower over-

head in communication and network formation/maintenance.

As shown in Fig. 5, the reliable on-water communication

range of a typical 802.15.4 radio is about 35m. As a result,

a sensor swarm can spread over an area of up to 3,800m2.

We adopt the average PRR of the links between the swarm

head and all sensors as the metric of swarm connectivity.

This metric quantifies not only the average connectivity of

the swarm but also the communication cost in collecting

sensor measurements in a sampling iteration. This section

derives the expression for the average PRR given swarm

radius, which allows us to adaptively control the swarm

connectivity by adjusting the swarm radius.

Let Pt (in dBm) denote the power of the wireless signal

transmitted by a sensor, and PL(d0) (in dBm) denote the

path loss at reference distance d0. The signal power at the

receiver that is d meters from the transmitter is Pr(d) =
Pt−PL(d0)−10α log10(d/d0) [16], where α is the path loss

exponent that typically ranges from 2.0 to 4.0. We assume

that the noise power (denoted by Pn) in dBm follows the

zero-mean normal distribution with variance ξ2 [16]. The

signal-to-noise ratio (SNR) at distance d is given by SNR=
Pr(d)−Pn. We assume that a packet can be successfully

received if the SNR is greater than a threshold denoted by

η [17]. Hence, the PRR of a single link can be derived as

PRR(d) = 1/2 + 1/2 · erf(a1 log10 d+ a2), (1)

where a1 = −5
√
2, a2 = Pt−PL(d0)−η√

2ξ
+5

√
2 log10 d0, and

erf(·) is the error function. We now use the real PRR traces

of on-water 802.15.4 wireless link to verify the above model.

Fig. 5 plots the PRR measured by two IRIS motes versus

distance in an experiment conducted on the wavy water

surface of Lake Lansing, Michigan, on a windy day. Specifi-

cally, we placed the two motes about 12 cm above the water

surface and measured the PRR versus the distance between
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the two motes. Each PRR measurement was calculated from

50 packets transmitted within one second. According to

our experience, the communication range of IRIS mote

on water surface decreases by about 50% compared to

that on land. Moreover, the wireless link in such a wavy

water environment is more dynamic than that in calm water

environment, due to the multipathing effect. The least square

fitting of the average of the PRR measurements versus

distance is 1/2+1/2 · erf(−7.096 log10 d+26.14), which

is also plotted in Fig. 5. We can see that the fitted value for

a1 (i.e., −7.096) is very close to its theoretical value (i.e.,

−5
√
2=−7.0711). Moreover, the fitted curve well matches

the average of the PRR measurements. Therefore, the model

in Eq. (1) can characterize the average performance of on-

water link PRR. From Fig. 5, we also observe that the

PRR measurements exhibit significant variance especially

in the transition range from 25m to 40m. Although Eq. (1)

only captures the expected PRR, the control-theoretic con-

nectivity maintenance algorithm presented in Section IV-B

accounts for the variance of PRR measurements.

Based on the above single-link PRR model, we now

derive the average PRR over all sensors that are randomly

distributed within the rendezvous circle. Our analysis shows

that it is difficult to derive the closed-form formula for

the average PRR. We propose an approximate formula

as follows. The expectation of the distance between any

sensor and the swarm head (denoted by E [d]), which are

two random points in the rendezvous circle, is a linear

function of the swarm radius (denoted by R), specifically,

E [d] = 128R/45π. Based on this observation and Eq. (1),

we approximate the average PRR over all sensors (denoted

by PRR(R)) by

PRR(R) ≃ (1− c) + c · erf(c1 log10 R+ c2), (2)

where c1 (c1 < 0), c2 (c2 > 0), and c (0 < c < 0.5) are

three coefficients. Although Eq. (2) is an approximate model,

the feedback-based connectivity maintenance algorithm can

tolerate minor inaccuracy in system modeling. We conduct

Monte Carlo simulations to verify the accuracy of the above

approximate model, and determine the values of the three

coefficients. Specifically, for a given R, we generate a large

number (20,000) of random placements of 10 sensors in

the rendezvous circle. In the simulations, the PRR of each

link is set to be the distance-based interpolation of real

PRR measurements obtained in the aforementioned on-water

experiment. Fig. 6 shows the error bar of the swarm average

PRR, where the variances are caused by the random sensor

placements and estimation inaccuracy as well as the inherent

stochasticity of wireless link. We then fit the curve defined

by Eq. (2) with the simulation results, as shown in Fig. 6.

From the figure, we can see that the approximate model

for the swarm average PRR is fairly accurate. The fitted

value for the coefficient c1, c2, and c are −1.201, 4.879, and

0.4783, respectively. These values are also adopted in the
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performance evaluation in Section VI.

B. Swarm Connectivity Control

Our objective is to maintain the swarm average PRR at

a desired level (denoted by δ) in the presence of various

environment and system dynamics. From Fig. 6, the swarm

average PRR deceases with the swarm radius. However,

the amount of information sampled by the sensors often

increases with the swarm radius. Therefore, there is a trade-

off between the amount of information obtained by the

swarm and its connectivity. To avoid the loss of sensors

that can have catastrophic consequence to the swarm, we

ensure that the swarm is a well connected network in each

rendezvous circle by setting a relatively high δ, e.g., 0.8 to

0.9. In this section, we first analyze the control laws based

on the connectivity model in Eq. (2) and then develop the

connectivity maintenance algorithm.

The block diagram of the feedback control loop is shown

in Fig. 7, where Gc(z), Gp(z) and H(z) represent the

transfer functions of the connectivity maintenance algorithm,

the sensor swarm system and the feedback. Specifically, the

desired PRR level δ is the reference, and the PRR(R) is the

controlled variable. As PRR(R) is a nonlinear function of

R (c.f. Eq. (2)), we define γ = erf(c1 log10 R+c2) as the

control input to simplify the controller design. As a result,

PRR(γ)≃ (1−c)+c · γ, and its z-transform is Gp(z) = c.
In each sampling iteration, to ensure that the swarm head

receives the measurements from all sensors, a sensor retrans-

mits the lost packet until it receives an acknowledgement

from the swarm head. At the end of each sampling iteration,

the swarm head estimates the PRR(R) as 1
N

∑N
i=1

1
CTXi

,

where N is the number of sensors in the sensor swarm,

and CTXi is the number of (re-)transmissions of sensor i
in the current sampling iteration. Such a passive estimation

approach avoids transmitting a large number of measurement

packets for estimating PRRs. Then, the swarm head updates

γ based on the estimated PRR(R), and sets R in the next

sampling iteration accordingly. As the feedback will take

effect in the next iteration, H(z)=z−1, which represents a

delay of one iteration. Since the system is of zero order, a

first-order controller is sufficient to achieve the stability and

convergence [18]. Hence, we let Gc(z) =
α

1−β·z−1 , where

α > 0 and β > 0. The settings of α and β need to ensure

the system stability, convergence and robustness. Following

the standard method for analyzing stability and convergence

[18], the stability and convergence condition can be obtained

as β=1 and 0 < α < 2/c.
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In this paper, we model three uncertainties that substan-

tially affect the PRR(R) as the disturbances in the control

loop shown in Fig. 7. First, as shown in Fig. 5, the PRR

measurements exhibit variance especially in the transition

range from 25m to 40m. Second, the swarm topology

changes with the random sensor positions, hence also causes

variance to the PRR(R). Third, although the estimated PRR

from the number of (re-)transmissions is unbiased, it has

variance because of the limited number of samples. The error

bars in Fig. 6 show the overall standard deviation versus

the swarm radius. From the figure, we find that in order

to keep a satisfactory swarm average PRR around 0.8, the

standard deviation is 0.12. We now discuss how to design

Gc(z) to reduce the impact of such random disturbances.

From control theory [18], to minimize the effects of dis-

turbance on the controlled variable PRR(R), the gain of

Gc(z)Gp(z)H(z) should be made as large as possible. By

jointly considering the stability and convergence condition,

we set α= 2b/c where b is a relatively large value within

[0, 1]. In the experiments conducted in this paper, b is set to

be 0.9.

Implementing Gc(z) in the time domain gives the con-

nectivity maintenance algorithm. According to Fig. 7, we

have Gc(z)=γ(z)/(δ−H(z)PRR). From H(z) and Gc(z),
the control input can be expressed as γ(z) = z−1γ(z)+
2bc−1(δ−z−1PRR), and its time-domain implementation is

γk = γk−1 +2bc−1(δ− PRRk−1), where k is the index of

sampling iteration. The swarm radius to be set in the kth

sampling iteration is given by Rk=10(erf
−1(γk)−c2)/c1 .

V. INFORMATION-THEORETIC MOVEMENT SCHEDULING

In this section, we first briefly introduce the Gaussian

process model that characterizes many physical/biological

phenomena, and present the field reconstruction algorithm.

We then present the information-theoretic analysis for select-

ing the location of rendezvous circle in the next sampling

iteration, which aims to maximize the accuracy of field

reconstruction.

A. Physical Field Model and Reconstruction Algorithm

We assume that the monitored physical phenomenon

follows the spatiotemporal Gaussian process. Let Z(p, t)
denote the field variable at point p ∈ R

2 and time t ∈
[0,+∞]. For instance, the surface phytoplankton population

density is an important field variable of HABs. A Gaussian

process can be fully characterized by the mean function,

denoted by M(p, t), and the covariance function, denoted

by K((p, t), (p′, t′)), where (p, t) and (p′, t′) are two time-

space coordinates. In this paper, we adopt the following

covariance function that has been widely adopted [1] [2]

[9]: K(d,∆t) = σ2 · exp(−d2/(2ς2s )) · exp(−∆t2/(2ς2t )),
where d =‖ p − p′ ‖ℓ2 , ∆t = |t − t′|, σ2 is the prior

variance of any field variable, ςs and ςt are the spatial

and temporal kernel bandwidths. Therefore, the covariance

function can be rewritten as K(d,∆t). The vector com-

posed of the field variables at N time-space coordinates

{(pi, ti) | i∈ [1, N ]}, denoted by Z, follows the multivariate

Gaussian distribution, i.e., Z ∼ N (m,Σ), where m and

Σ are the mean vector and covariance matrix. Specifically,

m=[M(p1, t1), . . . ,M(pN , tN )] and the (i, j)th entry of Σ
is given by K(‖ pi−pj ‖ℓ2 , |ti−tj |). Sensor measurements

can be corrupted by noises from the sensor circuitry and

environment [2]. The reading at time-space coordinates

(p, t), denoted by R(p, t), is given by R(p, t)=Z(p, t)+W ,

where W is a zero-mean Gaussian noise with variance of

σ2
w.

We now discuss how to reconstruct the field using all

measurements. To facilitate the expression, we define H

as a row vector composed of all measurements, i.e., H =
[R(p1, t1), . . . , R(pN , tN)], m as a row vector composed

of the corresponding prior mean values, and T as the

time duration of each sampling iteration. Therefore, each

ti (i ∈ [1, N ]) is always multiple of T . The Hc is a 3×N
matrix, where each column is the time-space coordinates

of the corresponding measurement in H. The objective of

reconstructing a Gaussian process field is to estimate the

posterior mean and variance at any time-space coordinates

(p, t) given H, which are given by

E [Z|H]=M(p, t)+Σ̃[(p, t),Hc]·Σ̃−1[Hc]·(H−m)T, (3)

Var[Z|H]=σ2−Σ̃[(p, t),Hc]·Σ̃−1[Hc]·Σ̃T[(p, t),Hc], (4)

where E [·] and Var [·] denote expectation and variance, Σ̃
is a matrix calculated from the covariance matrix Σ of the

field variables at Hc. Specifically, the (i, j)th entry of Σ̃ is

given by Σ̃ij = Σij +θij
σ2

w

σ , where θij = 1 if i = j, and

otherwise θij = 0. There are three interesting observations

from Eqs. (3) and (4). First, because of the spatiotemporal

correlation, the posterior variance (i.e., the uncertainty) is

reduced given the measurements H. Second, from Eq. (4),

the posterior variance does not depend on the prior and

posterior means. As our movement scheduling algorithm

aims to reduce the variance, it does not need the knowledge

of means. Third, as Σ̃ often has a high dimension due to a

large number of measurements, it is infeasible to compute its

inversion in Eqs. (3) and (4) on resource-constrained robotic

sensors. Therefore, the reconstruction algorithm needs to be

executed after all historical sensor measurements are fetched

back to a data processing center.

B. Information-Theoretic Swarm Center Selection

We now discuss the selection of the center of the next

rendezvous circle (referred to as swarm center), which aims

to improve the accuracy of the field reconstruction algorithm

(i.e., Eqs. (3) and (4)). Suppose that the swarm has N
robotic sensors and will schedule the sensor movements for

the next (i.e., the kth) sampling iteration. Let V denote

the region to be reconstructed, and S denote the set of



7

target time-space coordinates for all sensors.1 Hence, S can

be represented as ({p1, p2, . . . , pN}, kT ), where pi is the

target position of sensor i. Let p′c and pc denote the swarm

center in the (k−1)th and kth sampling iteration, and Rk

is the scheduled swarm radius for the kth iteration by the

connectivity maintenance algorithm. The optimal solution

of S maximizes the following information-theoretic metric:

Ω(S) = H [V \ S |Hc]−H [V \ S |Hc ∪ S], (5)

subject to

‖ p′c − pc ‖ℓ2≤ L; ‖ pi − pc ‖ℓ2≤ Rk, ∀i ∈ [1, N ], (6)

where the H [·] denotes entropy and quantifies the uncer-

tainty. The above problem aims to maximize the drop of

uncertainty at all the ungauged sites by sampling the field

variables at S given the historical measurements at Hc.

The constraint in the first part of Eq. (6) specifies the

reachable area of the swarm due to limited sensor movement

speed. For instance, we can set L = v ·T , where v is the

maximum speed of the robotic sensors. The constraint in

the second part of Eq. (6) ensures the scheduled swarm

radius. These constraints are also illustrated in Fig. 3. A

similar problem without the condition Hc and the constraints

in Eq. (6) has been proven to be NP-hard [19]. Hence,

the above problem has prohibitively high complexity that

is not practical for robotic sensor platforms. In this paper,

we propose a heuristic approach to approximate the whole

swarm by the swarm center, which can largely reduce the

computation overhead. In this heuristic approach, we adopt

mutual information (MI) and posterior entropy (PE) to

quantify the information reward. As these two metrics differ

in computation overhead and the resulted reconstruction

accuracy, they allow the system designer to choose desirable

trade-off between the overhead and accuracy subject to the

budgets of computation resources of robotic sensors.

We first discuss the MI-based metric. The MI of a

random variable X given a set of random variables Y

can be expressed as I [X ;Y] = H [X ]−H [X |Y], where

H [X |Y]= 1
2 log (2πe·Var[X |Y]) and

Var[X |Y]=Var[X ]−Σ[X,Y]·Σ−1[Y]·ΣT[X,Y]. (7)

The Σ[X,Y] is a row vector composed of the covariances

of X with each variable in Y, and Σ−1[Y] is the inverse of

the covariance matrix of Y. Given available measurements

at Hc, the MI-based information reward for the swarm

centered at position pc, denoted by ΩMI(pc, kT ), is defined

as

ΩMI(pc, kT ) = I [V \(pc, kT ); (pc, kT ) |Hc]

= H [(pc, kT ) |Hc]−H [(pc, kT ) |V∪Hc\(pc, kT )].

1To simplify the presentation, V refers to both the set of field variables
and the corresponding time-space coordinates. So do S and Hc .

The above information reward metric indicates the drop of

uncertainty about the region outside the swarm given all

historical measurements if the swarm is centered at pc in

the next iteration. The swarm center selection is hence to

maximize ΩMI, subject to the constraints in Eq. (6).

The complexity for computing ΩMI for a certain pc is

O (|V|2). However, as the aquatic phenomenon of interest

(e.g., HABs) often affects a large spatial area, computing

ΩMI can incur high overhead. To reduce the computation

overhead, we propose another information reward metric

based on PE:

ΩPE(pc, kT )=H [(pc, kT ) |Hc].

Different from ΩMI, ΩPE indicates the uncertainty about

the rendezvous circle centered at pc in the next iteration

given the historical measurements. For each certain pc, the

complexity of computing ΩPE is O (|Hc|2), which is much

smaller than that of ΩMI. Although such a metric does not

necessarily lead to the maximum uncertainty drop for the

ungauged sites, it can reduce the computation overhead by

only considering the most uncertain positions.

As discussed in Section III, once the swarm center and

radius are determined, the swarm head randomly selects N
positions in the rendezvous circle. We find the one-to-one

mapping from the current positions of sensors to the newly

selected positions, such that the sum of sensors’ movement

distances is minimized. This can be solved by Munkres

assignment algorithm with a complexity of O(N3). The

swarm head finally sends the target position to each robotic

sensor, which then moves toward the target position.

C. Truncating Historical Measurements

Both the metrics ΩMI and ΩPE involve storing and invert-

ing the covariance matrix Σ[Hc] when computing Eq. (7).

This imposes substantial challenges to the robotic sensor

platforms with limited computation resources. For instance,

a TelosB mote equipped with 10KB RAM can store at most

a 50× 50 covariance matrix. Moreover, matrix inversion

is a computation-intensive operation with at least cubic

complexity with respect to the number of historical measure-

ments. To develop practical information-theoretic movement

scheduling algorithms for robotic sensors, we propose two

schemes for truncating the historical measurements. Both

schemes select K measurements to compose the covariance

matrix.

The first scheme selects K historical measurements with

the largest covariances regarding a candidate swarm center.

This scheme is referred to as cov-trunc. The rationale of cov-

trunc is as follows. As we only use a subset of historical

measurements, the conditional variance in Eq. (7) will

increase. The cov-trunc scheme maximizes each element in

Σ[X,Y], and hence can efficiently suppress the undesired

increase of the conditional variance caused by the truncation.

The drawback of cov-trunc is that it needs to truncate the
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historical measurements for each candidate swarm center

when maximizing ΩMI and ΩPE. As a result, a matrix

inversion operation is needed for each candidate swarm

center, which results in high computation overhead for the

swarm head. To address this issue, we propose another

truncating scheme, referred to as time-trunc. The time-

trunc selects the most recent K historical measurements.

As the most recent sampling positions are generally in the

proximity of the swarm in the next iteration, time-trunc can

well approximate cov-trunc even though it ignores the spatial

correlation. The time-trunc scheme has the following two

advantages. First, it only needs a matrix inversion operation

for each sampling iteration. Second, the swarm head only

needs to maintain a first-in-first-out historical measurement

buffer with size of K . This buffer can be easily migrated in

the swarm head rotation process for the purpose of balancing

energy consumption.

VI. PERFORMANCE EVALUATION

We evaluate the performance of the proposed algorithms

by trace-driven simulations and implementation on hard-

ware. First, we evaluate the connectivity maintenance and

the swarm movement scheduling algorithms using extensive

simulations based on real data traces of water surface

temperature field [20] and on-water ZigBee wireless com-

munication. Second, we implement one of the proposed

swarm movement scheduling algorithms on TelosB sensor

platform and evaluate its overhead. The results provide

insight into the feasibility of adopting advanced information-

theoretic movement scheduling algorithms on mote-class

robotic sensor platforms.

A. Trace-Driven Simulations

1) Simulation Methodology and Settings: In the simula-

tions, 10 robotic sensors are used to reconstruct a scalar field

in a square region. The hyperparameters of the Gaussian

process are set to be [σ2, ςs, ςt] = [9, 6, 8], unless otherwise

specified. Note that these settings are consistent with [10]

[12] and obtained from real on-water temperature traces

[20]. Initially, the robotic sensors are randomly deployed

in a small region with radius of 10m. In each sampling

iteration, the PRR of each link is set to be the distance-based

interpolation of real on-water PRR traces measured by two

IRIS motes on Lake Lansing, Michigan (c.f. Section IV-A).

Other settings include: desired swarm connectivity level

δ = 0.9, sampling iteration duration T = 5min, sensor

movement speed v=0.2m/s, and L=v × T =60m.

2) Swarm Connectivity Maintenance: We first compare

our connectivity maintenance algorithm with a heuristic

baseline algorithm. The heuristic algorithm adopts Kalman

filter to update the coefficient c in Eq. (2) based on the

recently estimated PRR(R). The next swarm radius is then

obtained by solving Eq. (2). Fig. 8 plots the PRR(R) in

the first 10 sampling iterations. The error bars, calculated

from 20 runs, are caused by the disturbances discussed in

Section IV-B. We can see that the swarm average PRR

controlled by our algorithm quickly converges to the desired

connectivity level. The range of swarm radius after 10 itera-

tions is [24, 36]. In contrast, as the heuristic algorithm does

not tune the swarm radius directly based on the estimated

swarm average PRR, it does not converge as shown in Fig. 8.

3) Effectiveness of Swarm Center Selection: We now

compare the two swarm center selection approaches pre-

sented in Section V-B (referred to as MI and PE) with

three other baseline approaches. The first baseline (referred

to as MI-MC) finds the next swarm center according to

the metric Ω(S) in Eq. (5), where S is a random sensor

placement in a rendezvous circle. For each candidate pc,
100 random sensor placements are generated (i.e., Monte

Carlo trials) and the average Ω is used as the information

reward relating to pc. The second baseline (referred to as

PE-MC) is similar to the MI-MC, except that the metric is

given by H(S |Hc). These two Monte Carlo baselines give

the near-optimal swarm centers regarding the MI and PE

metrics, respectively. However, due to the high computation

overhead of Monte Carlo method, these two baselines are

not suitable for mote-class sensor platforms. A random walk

approach is employed as the third baseline (referred to as

RW). Specifically, the swarm head selects a random position

as pc subject to the constraints in Eq. (6).

We first visually compare the swarm trajectories sched-

uled by various approaches. Fig. 9 shows the trajectories

of a sensor swarm in the first 6 sampling iterations. Note
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Figure 11. Temperature field reconstruction using a robotic sensor swarm. The numbers in the circles represent the sequence of the rendezvous circles.

that the swarm radius is controlled by the connectivity

maintenance algorithm. We can see that, for all approaches,

two consecutive rendezvous circles can overlap. This is

because the correlation of the Gaussian process exists in both

spatial and temporal domains, moving to a farther location

does not necessarily increase the overall information reward.

Note that, if only spatial correlation is considered, the swarm

will move to the farthest unexplored areas.

We then compare the effectiveness of various approaches

based on the criterion Ω in Eq. (5), which quantifies the

drop of uncertainty at the ungauged sites at current time.

Fig. 10 plots Ω versus the index of sampling iteration. We

can see that Ω increases over time as more measurements

are taken. From the figure, we can see that the MI and MI-

MC outperforms the PE by 10% and 19%, respectively, in

the 5th sampling iteration. However, they have much higher

computation overhead than PE. Specifically, MI and MI-MC

take about 20 and 8000 times of the execution time of PE,

respectively. The RW approach yields the worst accuracy.

We also evaluate the two truncation schemes presented in

Section V-C. Both time-trunc and cov-trunc schemes can

achieve desirable reconstruction accuracy. In particular, we

find that the truncation schemes with K =40 yield almost

the same performance obtained by using all historical mea-

surements. Due to space limitation, the detailed evaluation

results are omitted here and can be found in [21].

4) Accuracy of Field Reconstruction: In this set of simu-

lations, we reconstruct a field using 10 robotic sensors. The

simulations are based on the temperature data [20] collected

at 8 locations on the surface of Lake Fulmor, California,

which has an area of about 3 acres. Our analysis has verified

that the temperature data follow the spatiotemporal Gaussian

process [21]. Therefore, we use an existing tool [22] to fit

a 200 × 200m2 (≃ 10 acres) Gaussian process field based

on the traces, as shown in Fig. 11(a). For the ease of

illustration, the field does not change with time, although

our approach can deal with temporal evolution of the field.

The movement of the swarm is scheduled by PE without

truncation. Sensor measurements in the simulation are cor-

rupted by zero-mean Gaussian noise with variance of 0.15
[2] [19]. In the reconstruction, the mean function M(p, t)
is set to be a fixed value of the average temperature in
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Fig. 11(a). Fig. 11(b) and Fig. 11(c) show the reconstructed

field after the 3rd and 7th sampling iteration, as well as

the trajectories of the swarm. Fig. 11(d) plots the average

reconstruction error versus the index of sampling iteration.

The average reconstruction error is calculated as the average

of the absolute difference between the posterior mean given

by Eq. (3) and the groundtruth. From Fig. 11, we can see

that the accuracy of reconstruction is improved along with

the movement of the swarm.

B. Overhead on Sensor Hardware

We have implemented the PE-based time-trunc swarm

center selection algorithm and the sensor movement schedul-

ing algorithm in TinyOS 2.1 on TelosB platform. We ported

the C implementation of Chelosky decomposition algorithm

in GNU Scientific Library [23] to TinyOS to invert matrix

in the swarm center selection algorithm. We also implement

the Munkres algorithm in TinyOS to schedule each sensor’s

movement. Fig. 12 and Fig. 13 plot the execution times of

the two algorithms in one sampling iteration, respectively.

We can see that the PE-based time-trunc algorithm takes

about one minute when 40 historical measurements are

used. The Munkres algorithm for position assignment only

takes 4.5 seconds when 25 robotic sensors are deployed. As

our current implementation employs extensive floating-point

computation, the above processing delays can be further

reduced by using fixed-point arithmetic. Nevertheless, a

delay of about one minute is acceptable since the duration

of each sampling iteration can be much longer than that.

Note that the MI metric and the cov-trunc scheme result in

very long processing delays on TelosB platform because of
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large search space and repeated matrix inversion operations.

Therefore, they are only suitable for more powerful sensor

network platforms such as Imote2 [24].

VII. CONCLUSION

In this paper, we propose a novel cyber-physical approach

to spatiotemporal aquatic field reconstruction using inex-

pensive, low-power, mobile sensor swarms. Our approach

features a rendezvous-based mobility control scheme where

a sensor swarm collaborates to sense the environment in a

series of carefully chosen rendezvous regions. We design a

novel feedback control algorithm that maintains the desirable

level of wireless connectivity of a sensor swarm in the

presence of significant physical dynamics. We present new

information-theoretic analysis to guide the selection of ren-

dezvous regions such that the field reconstruction accuracy is

maximized. Extensive trace-driven simulations validate the

effectiveness of our approach. The implementation of the

algorithms on TelosB mote shows that our approach incurs

low overhead on resource-constrained sensor platforms.
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