
A

Spatiotemporal Aquatic Field Reconstruction Using Cyber-Physical
Robotic Sensor Systems

YU WANG, RUI TAN, GUOLIANG XING, XIAOBO TAN, JIANXUN WANG, and
RUOGU ZHOU, Michigan State University

Monitoring important aquatic processes like harmful algal blooms is of increasing interest to public health,
ecosystem sustainability, marine biology, and aquaculture industry. This paper presents a novel approach to
spatiotemporal aquatic field reconstruction using inexpensive, low-power, mobile sensing platforms called
robotic fish. Robotic fish networks are a typical example of Cyber-Physical Systems where the design of
cyber components (sensing, communication, and information processing) must account for inherent physical
dynamics of the robots and the aquatic environment. Our approach features a rendezvous-based mobility
control scheme where robotic fish collaborate in the form of a swarm to sense the aquatic environment in a
series of carefully chosen rendezvous regions. We design a novel feedback control algorithm that maintains
the desirable level of wireless connectivity for a sensor swarm in the presence of significant environment and
system dynamics. Information-theoretic analysis is used to guide the selection of rendezvous regions so that
the spatiotemporal field reconstruction accuracy is maximized subject to the limited sensor mobility. The
effectiveness of our approach is validated via implementation on sensor hardware and extensive simulations
based on real data traces of water surface temperature field and on-water ZigBee wireless communication.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network Architec-
ture and Design; C.3 [Special-purpose and Application-based Systems]: Real-time and embedded
systems; C.4 [Performance of Systems]: Measurement techniques, modeling techniques

General Terms: Measurement, Performance

Additional Key Words and Phrases: Robotic sensor swarm, field reconstruction, connectivity control, move-
ment scheduling

1. INTRODUCTION

Monitoring aquatic environment is of great interest to public health, ecosystem sustain-
ability, marine biology, and aquaculture industry. In this paper, we explore an important
problem in aquatic monitoring – reconstruction of spatiotemporal aquatic process. Many
physical and biological phenomena in aquatic environment, including harmful algal blooms
(HABs) [Dolan et al. 2007], lake surface temperature [Xu et al. 2011], and plume concen-
tration of chemical substance [Detweiler et al. 2010], can be modeled as spatiotemporal
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Fig. 1. (a) HABs in Lake Mendota (top left) and Lake Monona (right bottom) in Wisconsin, 1999 [HABs
and Lake Mendota, 2012] (Photo Credit: Space Science and Engineering Center at University of Wisconsin-
Madison and WisconsinView); (b) A prototype of autonomous robotic fish developed by the Smart Mi-
crosystems Laboratory at Michigan State University [Tan 2011].

aquatic fields that usually follow certain distributions such as the spatiotemporal Gaussian
process. For instance, Fig. 1(a) shows the HABs on two inland lakes in Wisconsin, 1999.
The reconstructed aquatic field allows one to study fine-grained spatial distribution and
temporal evolution of physical and biological phenomena of interest. For instance, the re-
constructed HAB field is helpful for understanding the development of emerging HABs and
guiding authorities to take future preventive actions.
Manual sampling, via boat/ship or with handheld devices, is still a common practice

in monitoring aquatic environment. This approach is labor-intensive and has difficulty in
capturing large-scale spatially distributed phenomena of interest. An alternative approach
is in-situ sensing with fixed or buoyed/moored sensors [Ruberg et al. 2007]. However, since
buoyed sensors cannot move around, they have limited adaptability in monitoring dynamic
aquatic processes like HABs. With advances in underwater robotics and wireless networking,
there is a growing interest in using underwater sensor platforms like autonomous underwater
vehicles (AUVs) [Science Daily 2004] and sea gliders [Rudnick et al. 2004] to monitor the
environment. However, it is difficult to deploy many AUVs or sea gliders due to their high
manufacturing and operational costs.
In this paper, we propose to use inexpensive, low-power robotic sensor platforms to sample

and reconstruct spatiotemporal aquatic processes of interest. Fig. 1(b) shows a prototype
of such platforms called robotic fish. Each robotic fish is equipped with onboard batteries,
ZigBee wireless interface, control, localization and navigation modules [Tan 2011], and can
be interfaced with various aquatic sensors. Robotic fish can form an autonomous network
and sense aquatic environment at fine spatial and temporal granularities.
Aquatic sensor networks composed of robotic fish are a typical Cyber-Physical System

(CPS) whose efficient operation depends on the tight coupling and coordination between
cyber (sensing, communication, and information processing) and physical components (mo-
bility control and environment). Compared with terrestrial sensor networks, there are several
unique challenges associated with aquatic sensor networks, including uncontrollable distur-
bances from the underlying fluid medium (e.g., waves and flows), inherently dynamic profiles
of aquatic processes, and significant errors in motion control. Therefore, both sensing and
mobility control of robotic fish must account for the spatial variability and temporal evolu-
tion of aquatic processes. Moreover, our measurements show that aquatic sensors equipped
with ZigBee radio have highly variable link quality and only about half of the communica-
tion range of the terrestrial radio. Such characteristics must be explicitly considered in the
design of the network. Finally, the operation of these sensors has to be very energy-efficient
due to the limited power supply.
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We make the following key contributions to address the above challenges:

1) We propose a new approach to the sampling and reconstruction of spatiotemporal aquatic
field using a sensor swarm composed of inexpensive, low-power, and collaborative robotic
sensors. Our approach features a rendezvous-basedmobility control scheme, where sensors
in a swarm gather and sense the environment in a series of carefully chosen rendezvous
regions, reducing the overhead of inter-sensor coordination during movement.

2) We design a novel feedback control algorithm that maintains the desirable level of wireless
connectivity of a sensor swarm in the presence of significant physical dynamics. Based on
a wireless signal propagation model, the control-theoretic algorithm adjusts the radius
of rendezvous region adaptively to ensure a bound on the packet reception ratio (PRR)
between sensors.

3) We present a new analysis of spatiotemporal field reconstruction accuracy based on
mutual information and posterior entropy. Our analytical results are used to guide the
selection of rendezvous regions so that the reconstruction accuracy can be maximized
subject to the limited sensor mobility.

4) We evaluate our approach through extensive simulations based on real data traces of wa-
ter surface temperature field and on-water ZigBee wireless communication. The results
show that a sensor swarm can robustly maintain network connectivity and accurately
reconstruct large, dynamic aquatic fields. Moreover, our implementation on sensor hard-
ware provides important insights into the feasibility of adopting advanced information-
theoretic movement scheduling algorithms on low-power robotic sensor platforms.

The rest of this paper is organized as follows. Section 2 reviews related work. Section 3
introduces the background and provides an overview of our approach. Section 4 presents the
control-theoretic connectivity maintenance algorithm. Section 5 presents the information-
theoretic swarm movement scheduling algorithms. Section 6 discusses several issues and the
possible extensions to this work. Section 7 presents the results of extensive trace-driven
simulations and implementation on sensor platform. Section 8 concludes this paper.

2. RELATED WORK

Sampling and reconstruction of physical field using networked sensor systems has recently
received increasing interest. Early work focuses on stationary sensor deployment. In [Krause
et al. 2006], positions of sensors are selected before real deployment to reduce the uncertain-
ty in reconstructing a spatial physical field that follows the Gaussian process. However, the
proposed algorithms are computationally intensive and hence can only be executed offline.
A fast sensor placement approach for fusion-based field surveillance is proposed in [Chang
et al. 2011] to minimize the number of sensors while maintaining the signal-to-noise ratio.
Recently, mobility has been exploited to enhance the adaptability and sensing capability of
sensor systems. In [Zhang and Sukhatme 2007], a robotic boat supplements a static sensor
network to reduce the error of field reconstruction, where the boat’s movement is guided by
the measurements of the sensor network. Another study [Singh et al. 2006] develops active
learning schemes for mobile sensor networks, which plan the movements of mobile sensors
based on the feedback of previous measurements. In our previous work [Wang et al. 2012],
we develop movement scheduling algorithms for a school of robotic fish to profile aquatic
diffusion processes. Several recent studies focus on leveraging sensors’ mobility to recon-
struct physical fields that follow the Gaussian process. In [Xu et al. 2011], the movement
of mobile sensors is directed to reduce the uncertainties in estimating the field variables at
a set of pre-specified locations. The algorithms developed for placing stationary sensors in
[Krause et al. 2006] are extended to schedule the movement of a mobile sensor network in
reconstructing a Gaussian process [Singh et al. 2009]. However, the aforementioned studies
do not account for the constraints of low-power robotic sensor systems, such as the limited
motion, computation, and communication capabilities. Moreover, they generally focus on
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the open-loop solutions that often fail to adapt to the highly complex and dynamic aquatic
environment.
The Gaussian process field reconstruction using mobile sensor networks has also been

extensively studied in [Cortés 2009; Low et al. 2008; 2009; 2011; Chen et al. 2012; Low
et al. 2012]. In [Cortés 2009], the movements of mobile sensors are controlled to follow the
gradient ascent directions of the Gaussian process field to increase the information reward.
In [Low et al. 2009], an adaptive path planning approach is presented for mobile sensors
in exploring and mapping the hotspot fields. However, this centralized approach can incur
heavy computation overhead if the number of observations or sensors is large. To improve the
computation efficiency, a decentralized approach is designed in [Chen et al. 2012], with the
consideration of the limited communication capability of mobile sensors. For more studies
on Gaussian process field reconstruction using mobile sensors, we refer the interested reader
to [Low et al. 2008; 2011; Chen et al. 2012; Low et al. 2012] and the references therein.
Different from these existing studies that typically focus on improving certain aspects of the
reconstruction problem, in this work we aim to develop a practical and integrated approach
based on a swarm scheme, which jointly addresses limited mobility and processing capability
of robotic sensor, as well as the dynamic on-water wireless link quality. In our approach,
the computation of swarm movement scheduling and field reconstruction is executed at the
swarm head. The computation efficiency of our approach can be improved by integrating the
decentralized/distributed field reconstruction and sensor movement scheduling algorithms
in [Cortés 2009; Low et al. 2012; Chen et al. 2012].
Most previous works on maintaining sensor network connectivity adopt the graph theory

[Xu et al. 2011] and the potential field theory [De Gennaro and Jadbabaie 2006], and assume
fixed communication range and reliable communication quality. However, several studies
have revealed significant stochasticity and irregularity in link quality of low-power wireless
sensors [Zuniga and Krishnamachari 2004; Qiu et al. 2007; Maheshwari et al. 2008; Chen
and Terzis 2011]. Feedback control has been widely adopted to improve the adaptability of
computing systems [He et al. 2003; Lin et al. 2006; Adbelzaher et al. 2008; Liu et al. 2010].
Different from these existing solutions, our control-theoretic connectivity maintenance al-
gorithm specifically deals with the dynamics caused by movement of robotic sensor swarm
and disturbances from the aquatic environment. Mobility has been used to improve link
quality and preserve network connectivity for robotic sensor systems. In [Twigg et al. 2012],
each robotic sensor moves in the gradient ascent direction of its received signal strength
(RSS). However, the movement scheduling algorithm developed in [Twigg et al. 2012] con-
siders only a single link. Moreover, to obtain an estimate of RSS gradient, the robotic sensor
has to explore the local area, which increases energy consumption in movements. In this
paper, we propose a feedback-control-based approach that aims to adaptively maintain the
network connectivity of a robotic sensor swarm in the presence of various environment and
system dynamics. Our control-theoretic algorithm does not require the energy-consuming
exploration in local area.
Recently, several swarm-based CPSs have been proposed for various sensing applications.

Representative examples include RoboBee [Dantu et al. 2011] and SensorFly [Purohit et al.
2011]. These studies mainly focus on hardware design and system issues. In contrast, this
paper addresses the field reconstruction problem using a robotic sensor swarm. Based on
key observations from real data traces of robotic sensors’ wireless communication and field
measurements, we formulate the swarm connectivity control and movement scheduling prob-
lems, and solve them using control- and information-theoretic algorithms.
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Fig. 2. Rendezvous-based swarm scheme. Dashed
circles represent the rendezvous circles.
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Fig. 3. The iterative sampling process of a robotic
sensor swarm.

3. OVERVIEW OF APPROACH

3.1. Background and Challenges

Our objective is to reconstruct an aquatic scalar field that follows the spatiotemporal Gaus-
sian process using a group of robotic sensors. Different from existing solutions, our approach
is based on inexpensive robotic sensor platforms exemplified by the robotic fish developed in
our previous work [Tan 2011], as shown in Fig. 1(b). These robotic sensor platforms are typ-
ically equipped with computation, communication, movement control, GPS components as
well as various sensors [Tan 2011]. However, due to the resource constraints, they have lim-
ited capabilities of computation, communication, and movement. For instance, the TelosB
mote integrated with the robotic fish platform shown in Fig. 1(b) only has an 8MHz MCU
and a low-power 802.15.4 radio with short communication range. In this paper, we aim
to develop a practical approach for aquatic field reconstruction, which addresses the com-
plex uncertainties/dynamics of the monitored physical field and the constraints of realistic
robotic sensor platforms.
The design of our approach is motivated by the following major challenges in reconstruct-

ing a spatiotemporal field. First, the physical and biological phenomena of interest often
affect large spatial areas. For instance, HABs can spread over the water area of a dozen
to tens of square kilometers (e.g., Lake Monona and Lake Mendota, Wisconsin, shown
in Fig. 1(a) [HABs and Lake Mendota, 2012]). However, the number of robotic sensors
available in practice is often small (e.g., a few dozens). In addition, as the robotic sensors
in aquatic environment often have short communication ranges, the area that networked
robotic sensor system can sample at any given time is limited. Second, because of the com-
plex environment dynamics (e.g., wave and wind) and the limited motion capabilities of the
robotic sensors, accurate movement control of an aquatic sensor system is often challenging.
Third, the link quality and network connectivity of robotic sensors are highly dynamic due
to physical uncertainties. The resulted data loss can significantly affect the accuracy of field
reconstruction.

3.2. Approach Overview

A simple approach to reconstructing the field using robotic sensors is to send sensors to re-
gions that evenly divide the whole aquatic field and each sensor only samples its own region.
Because the aquatic process typically covers a large area as discussed in Section 3.1, under
this simple approach, the sensors would not be able to communicate with each other. There-
fore, this non-collaborative approach has the following two drawbacks. First, each sensor
can only reconstruct the field based on its own measurements, and the field reconstruction
based on all sensor measurements cannot be performed until sensors complete their sam-
pling and gather at some location. Second, the accuracy of the whole field reconstruction
would be significantly undermined if some sensors experience failures.
To address the challenges discussed in Section 3.1, we adopt a novel rendezvous-based

swarm scheme as illustrated in Fig. 2. We assume that all sensors know their positions
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and are time-synchronized, e.g., through GPS or in-network localization/synchronization
services. The robotic sensor system iteratively samples the aquatic field. As shown in Fig. 3,
in each sampling iteration, robotic sensors move into a rendezvous circle, form a swarm and
sample the environment. In the swarm, a sensor serves as the swarm head, which collects
the measurements of other sensors via wireless communications as well as schedules the
movements of sensors in the next sampling iteration. To simplify the data collection process
and reduce communication overhead, the swarm adopts a single-hop star network topology
centered at the swarm head. In our approach, the movement scheduling at the swarm head
is executed as follows:

1) The swarm head first assesses the quality of network connectivity based on the received
data and then determines the radius of the rendezvous circle (referred to as swarm
radius) in the next sampling iteration, such that the network connectivity in the next
sampling iteration can achieve a desirable level.

2) Given the projected swarm radius, the swarm head conducts information-theoretic anal-
ysis to select the location of the next rendezvous circle, in order to maximize the im-
provement of the field reconstruction accuracy.

3) The swarm head generates random target positions within the next rendezvous circle and
assigns the positions to each sensor to minimize the total movement distance. The target
positions are finally sent to the sensors. Under this random target position approach,
small motion control errors can be tolerated as long as the final positions of sensors fall
within the rendezvous circle. Moreover, as proved in Section 5.5, under this approach,
there is no crossing between sensors’ moving paths and hence the robotic sensors would
not collide.

After receiving target position in the next sampling iteration, each sensor straightly moves
toward its destination to minimize the energy consumption of locomotion. To initiate the
above process, the swarm is initially dropped at a venue within the region affected by
the physical/biological process of interest. Note that to balance the energy consumption of
sensors, the swarm head role can rotate among all sensors. The communication overhead of
our approach is low because sensors coordinate with each other only when they gather in
a rendezvous circle. In summary, our swarm scheme allows the robotic sensors to efficiently
collaborate in sensing a large dynamic aquatic field and avoid heavy coordination overhead.
Therefore, it is practical and energy-efficient for low-power aquatic robotic platforms [Tan
2011; Zhang and Sukhatme 2007].

Our approach has the following two key novelties:

Control-theoretic connectivity maintenance: Data loss of wireless communication can
significantly affect the quality of sensing. A key goal of our system is to ensure that the
swarm head reliably receives the measurements from all sensors. However, this is challeng-
ing because the on-water wireless links have highly dynamic quality due to the impact of
fluid medium and changing positions of sensors during movement. We develop a control-
theoretic algorithm to maintain desirable connectivity of a sensor swarm in the presence of
these dynamics by adaptively adjusting the swarm radius. Specifically, the swarm head first
estimates the quality of network connectivity based on the average of PRRs of all links. As
the swarm average PRR generally decreases with the swarm radius, the swarm head cal-
culates a new swarm radius based on a wireless signal propagation model and the current
swarm average PRR, such that the expected connectivity in the next sampling iteration
can be maintained at a desirable level. A control problem is formulated to address this
procedure and its solution gives an adaptive algorithm for tuning the swarm radius.

Information-theoretic movement scheduling: Due to limited power supply and high
power consumption in locomotion, the sensor swarm must efficiently schedule the movement
of sensors to sample the field. Specifically, the swarm head must find the location of the
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next rendezvous circle subject to energy budget, such that the improvement of the field
reconstruction accuracy can be maximized with the newly obtained sensor measurements.
In this paper, we employ information-theoretic analysis to guide the selection of rendezvous
circle locations. Moreover, two information metrics (i.e., mutual information and posterior
entropy) with different computational complexities can be integrated with our analysis,
which hence allow the system designer to choose desirable trade-offs between the system
overhead and reconstruction accuracy.

4. SWARM CONNECTIVITY MAINTENANCE

The wireless connectivity between a robotic sensor and the swarm head is affected by various
environment and system dynamics, which include the stochastic fluctuation of the on-water
wireless links, the errors of localization and motion control, and the uncertain distance
between moving sensors. In this section, we first study the on-water wireless link dynamics
based on real data traces collected on a lake. We then analyze the swarm connectivity.
Finally, we formulate the connectivity maintenance as a feedback control problem, which
aims to maintain the swarm connectivity at a desired level by adjusting the swarm radius
based on the quality of all links measured at run time.

4.1. On-Water Wireless Link Dynamics

We first motivate our approach using PRR traces of on-water 802.15.4 wireless link. Fig. 4
plots the PRR measured by two IRIS motes versus distance in an experiment conducted on
the wavy water surface of Lake Lansing, Michigan, on a windy day. Specifically, we placed
the two IRIS motes about 12 cm above the water surface and measured the PRR versus the
distance between the two motes. Each PRR measurement was calculated from 50 packets
transmitted within one second. From Fig. 4, we have the following two important obser-
vations. First, the on-water wireless communication has a limited reliable communication
range, which is about 35m for a typical 802.15.4 radio. According to our experience, the
communication range of IRIS mote on water surface decreases by about 50% compared to
that on land. Second, the PRR shows significant variance, especially in the transition range
from 25m to 40m. It is mostly caused by the radio and environment dynamics [Zuniga
and Krishnamachari 2004]. The wireless link in wavy water environment is more dynamic
than that in calm water environment, due to the multipath effect and fading. Such high-
ly dynamic communication quality can lead to increased communication cost in the field
sampling and even loss of sensors due to disconnected network. Therefore, it is critical to
maintain satisfactory connectivity under radio and environment dynamics.
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4.2. Modeling Swarm Connectivity

As discussed in Section 3.2, the sensor swarm forms a network with single-hop star topol-
ogy in a rendezvous circle. Compared with multi-hop topology, the single-hop topology
of sensor swarm incurs significantly lower overhead in communication and network forma-
tion/maintenance. Suppose the reliable on-water communication range of a typical 802.15.4
radio is 35m. Under the single-hop star topology centered at the swarm head, a sensor
swarm can spread over an area of up to 3,800m2. We adopt the average PRR of the links
between the swarm head and all sensors as the metric of swarm connectivity. This metric
quantifies not only the average connectivity of the swarm but also the communication cost
in collecting sensor measurements in a sampling iteration. In this section, we first derive
the expression for the average PRR given swarm radius, which allows us to adaptively con-
trol the swarm connectivity by adjusting the swarm radius. We then verify the closed-form
expression using real data traces.

4.2.1. Model Derivation. Let Pt (in dBm) denote the power of the wireless signal transmitted
by a sensor, and PL(d0) (in dBm) denote the path loss at reference distance d0. The signal
power at the receiver that is d meters from the transmitter is Pr(d) = Pt − PL(d0) −
10α log10(d/d0) [Rappaport 1996], where α is the path loss exponent that typically ranges
from 2.0 to 4.0. We assume that the noise power (denoted by Pn) in dBm follows the
zero-mean normal distribution with variance ξ2 [Rappaport 1996]. The signal-to-noise ratio
(SNR) at distance d is given by SNR = Pr(d) − Pn. We assume that a packet can be
successfully received if the SNR is greater than a threshold denoted by η [Judd et al. 2008].
Hence, the PRR of a single link can be derived as

PRR(d) =
1

2
+

1

2
· erf(a1 log10 d+ a2), (1)

where a1 = −5
√
2, a2 = Pt−PL(d0)−η√

2ξ
+ 5

√
2 log10 d0, and erf(·) is the error function.

Based on the single-link PRR model given in Eq. (1), we now derive the average PRR
over all sensors that are randomly distributed within the rendezvous circle. Our analysis
shows that it is difficult to derive the closed-form formula for the average PRR. We propose
an approximate formula as follows. The expectation of the distance between any sensor and
the swarm head (denoted by E [d]), which are two random points in the rendezvous circle, is
a linear function of the swarm radius (denoted by R), specifically, E [d] = 128R/45π. Based
on this observation and Eq. (1), we approximate the average PRR over all sensors (denoted
by PRR(R)) by

PRR(R) � (1 − c) + c · erf(c1 log10 R+ c2), (2)

where c1 (c1 < 0), c2 (c2 > 0), and c (0 < c < 0.5) are three coefficients. Although Eq. (2) is
an approximate model, the feedback-based connectivity maintenance algorithm can tolerate
minor inaccuracy in system modeling.

4.2.2. Model Validation. We now use the collected PRR traces of on-water wireless communi-
cation (see Section 4.1) to verify the above models. We start from the link PRR model given
in Eq. (1). The least square fitting of the average of the PRR measurements versus distance
is 1/2+1/2 ·erf(−7.096 log10 d+26.14), which is plotted in Fig. 4. We can see that the fitted

value for a1 (i.e., −7.096) is very close to its theoretical value (i.e., −5
√
2 = −7.0711). More-

over, the fitted curve well matches the average of the PRR measurements. Therefore, the
model in Eq. (1) can characterize the average performance of on-water link PRR. Although
Eq. (1) only captures the expected PRR, the control-theoretic connectivity maintenance
algorithm presented in Section 4.3 accounts for the variance of PRR measurements.
We then conduct Monte Carlo simulations to verify the accuracy of swarm average PRR

model given in Eq. (2), and determine the values of the three coefficients. Specifically, for
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Fig. 6. The closed loop for connectivity control.

a given R, we generate a large number (20,000) of random placements of 10 sensors in
the rendezvous circle. In the simulations, the PRR of each link is set to be the distance-
based interpolation of real PRR measurements obtained in the aforementioned on-water
experiment. Fig. 5 shows the error bar of the swarm average PRR, where the variances are
caused by the random sensor placements and estimation inaccuracy as well as the inherent
stochasticity of wireless link. We then fit the curve defined by Eq. (2) with the simulation
results, as shown in Fig. 5. From the figure, we can see that the approximate model for the
swarm average PRR is fairly accurate. The fitted value for the coefficient c1, c2, and c are
−1.201, 4.879, and 0.4783, respectively. These values are also adopted in the performance
evaluation in Section 7.

4.3. Swarm Connectivity Control

Our objective is to maintain the swarm average PRR at a desired level (denoted by δ) in
the presence of various environment and system dynamics. From Fig. 5, the swarm average
PRR decreases with the swarm radius. However, the amount of information sampled by
the sensors often increases with the swarm radius. Therefore, there is a trade-off between
the amount of information obtained by the swarm and its connectivity. To avoid the loss of
sensors that can have catastrophic consequence to the swarm, we ensure that the swarm is
a well connected network in each rendezvous circle by setting a relatively high δ, e.g., 0.8
to 0.9. In this section, we first analyze the control laws based on the connectivity model in
Eq. (2) and then develop the connectivity maintenance algorithm.
The block diagram of the feedback control loop is shown in Fig. 6. We denote Gc(z),

Gp(z) and H(z) as the transfer functions of the connectivity maintenance algorithm, the
sensor swarm system and the feedback, which are expressed in z-transform representation.
The z-transform provides a compact representation for time varying functions, where z
represents a time shift operation. We refer interested reader to [Ogata 1995] for the details
of z-transform and [Adbelzaher et al. 2008] for a few representative applications of discrete-
time control theory to networking and computing systems. As shown in Fig. 6, the desired
PRR level δ is the reference, and the PRR(R) is the controlled variable. As PRR(R) is a
nonlinear function of R (cf. Eq. (2)), we define γ = erf(c1 log10 R+ c2) as the control input
to simplify the controller design. As a result, we have the swarm average PRR expressed as
PRR(γ) � (1 − c) + c · γ. As this time-domain expression does not contain time shift, its
z-transform is simply Gp(z) = c [Ogata 1995]. In each sampling iteration, to ensure that the
swarm head receives the measurements from all sensors, a sensor retransmits the lost packet
until it receives an acknowledgement from the swarm head. At the end of each sampling

iteration, the swarm head estimates the PRR(R) as 1
N

∑N
i=1

1
CTXi

, where N is the number

of sensors in the sensor swarm, and CTXi is the number of (re-)transmissions of sensor i in
the current sampling iteration. Such a passive estimation approach avoids transmitting a
large number of measurement packets for estimating PRRs. Then, the swarm head updates
γ based on the estimated PRR(R), and sets R in the next sampling iteration accordingly. As
the feedback will take effect in the next iteration, H(z) = z−1, which represents a delay of
one iteration. Since the system is of zero order, a first-order controller is sufficient to achieve
the stability and convergence [Ogata 1995]. Hence, we let Gc(z) = α

1−β·z−1 , where α > 0

and β > 0. The settings of α and β need to ensure the system stability, convergence and
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robustness. Following the standard method for analyzing stability and convergence [Ogata
1995], the stability and convergence condition can be obtained as β = 1 and 0 < α < 2/c.
The detailed analysis can be found in Appendix A.1.
In this paper, we model three uncertainties that substantially affect the PRR(R) as

the disturbances in the control loop shown in Fig. 6. First, as shown in Fig. 4, the PRR
measurements exhibit variance especially in the transition range from 25m to 40m. Second,
the swarm topology changes with the random sensor positions, hence also causes variance
to the PRR(R). Third, although the estimated PRR from the number of (re-)transmissions
is unbiased, it has variance because of the limited number of samples. The error bars in
Fig. 5 show the overall standard deviation versus the swarm radius. From the figure, we
find that in order to keep a satisfactory swarm average PRR around 0.8, the standard
deviation is 0.12. We now discuss how to design Gc(z) to reduce the impact of such random
disturbances. From control theory [Ogata 1995], to minimize the effects of disturbance on
the controlled variable PRR(R), the gain of Gc(z)Gp(z)H(z) should be made as large as
possible. By jointly considering the stability and convergence condition, we set α = 2b/c
where b is a relatively large value within [0, 1]. In the experiments conducted in this paper,
b is set to be 0.9.
Implementing Gc(z) in the time domain gives the connectivity maintenance algorithm.

According to Fig. 6, we have Gc(z) = γ(z)/(δ − H(z)PRR). From H(z) and Gc(z), the
control input can be expressed as γ(z) = z−1γ(z)+2bc−1(δ−z−1PRR), and its time-domain
implementation is γk = γk−1+2bc−1(δ−PRRk−1), where k is the index of sampling iteration.

The swarm radius to be set in the kth sampling iteration is given by Rk = 10(erf
−1(γk)−c2)/c1 .

5. INFORMATION-THEORETIC MOVEMENT SCHEDULING

In this section, we first briefly introduce the Gaussian process model that characterizes
many physical/biological phenomena, and present the field reconstruction algorithm. We
then present the information-theoretic analysis for selecting the location of rendezvous circle
in the next sampling iteration, which aims to maximize the accuracy of field reconstruction.

5.1. Physical Field

5.1.1. Spatiotemporal Gaussian Process Model. We assume that the monitored physical phe-
nomenon follows the spatiotemporal Gaussian process [Rasmussen 2006]. Let Z(p, t) denote
the field variable at point p ∈ R

2 and time t ∈ [0,+∞]. For instance, the surface phyto-
plankton population density is an important field variable of HABs. A Gaussian process can
be fully characterized by the mean function, denoted by M(p, t), and the covariance func-
tion, denoted by K((p, t), (p′, t′)), where (p, t) and (p′, t′) are two time-space coordinates. In
this paper, we adopt the following covariance function that has been widely adopted [Dolan
et al. 2007; Xu et al. 2011; Krause et al. 2006]:

K(d,Δt) = σ2 · exp
(
− d2

2ς2s

)
· exp

(
−Δt2

2ς2t

)
, (3)

where d =‖ p − p′ ‖�2 , Δt = |t − t′|, σ2 is the prior variance of any field variable, ςs and
ςt are the spatial and temporal kernel bandwidths, respectively. Therefore, the covariance
function can be rewritten as K(d,Δt). The vector composed of the field variables at N
time-space coordinates {(pi, ti) | i ∈ [1, N ]}, denoted by Z, follows the multivariate Gaussian
distribution, i.e., Z ∼ N (m,Σ), where m and Σ are the mean vector and covariance matrix.
Specifically, m = [M(p1, t1), . . . ,M(pN , tN )] and the (i, j)th entry of Σ is given by K(‖
pi − pj ‖�2 , |ti − tj |). Sensor measurements can be corrupted by noises from the sensor
circuitry and environment [Xu et al. 2011]. The reading at time-space coordinates (p, t),
denoted by R(p, t), is given by R(p, t) = Z(p, t) + W , where W is a zero-mean Gaussian
noise with variance of σ2

w.
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Fig. 7. ln(K/σ2) versus d2 and Δt2.

5.1.2. Model Verification. We now verify the Gaussian process model using real tempera-
ture traces collected on Lake Fulmor, California [NAMOS Project, 2006]. The temperature
readings on the lake surface were collected by 8 robotic boats over several hours. Applying
logarithm to the covariance function K(d,Δt) yields −2 · lnK(d,Δt)/σ2 = d2/ς2s +Δt2/ς2t .
Therefore, the quantities ln(K/σ2), d2, and Δt2 are expected to exhibit linear relationships.
Fig. 7 plots ln(K/σ2) versus d2 and Δt2, respectively. We can observe from the figure that
the quantities exhibit linear relationships with small variations caused by the random noise
W . The hyperparameters are estimated as ςs = 6.42 and ςt = 7.15. Therefore, the adopted
K(d,Δt) well characterizes the spatiotemporal covariance of the water surface temperatures.

5.2. Field Reconstruction using a Robotic Sensor Swarm

In this section, we present how to reconstruct the field using measurements collected by
the sensor swarm. To facilitate the expression, we define H as a row vector composed of
all measurements, i.e., H = [R(p1, t1), . . . , R(pN , tN )], m as a row vector composed of the
corresponding prior mean values, and T as the time duration of each sampling iteration.
Therefore, each ti (i ∈ [1, N ]) is always multiple of T . The Hc is a 3 × N matrix, where
each column is the time-space coordinates of the corresponding measurement in H. The
objective of reconstructing a Gaussian process field is to estimate the posterior mean and
variance at any time-space coordinates (p, t) given H, which are denoted by E [Z|H] and
Var[Z|H]. The estimates are given by [Rasmussen 2006; Ramachandran and Tsokos 2009]:

E [Z|H] = M(p, t) + Σ̃[(p, t),Hc] · Σ̃−1[Hc] · (H−m)T, (4)

Var[Z|H] = σ2 − Σ̃[(p, t),Hc] · Σ̃−1[Hc] · Σ̃T[(p, t),Hc], (5)

where Σ̃ is a matrix calculated from the covariance matrix Σ of the field variables at Hc.

Specifically, the (i, j)th entry of Σ̃ is given by Σ̃ij = Σij + θij
σ2
w

σ , where θij = 1 if i = j, and
otherwise θij = 0. There are three interesting observations from Eq. (4) and Eq. (5). First,
because of the spatiotemporal correlation, the posterior variance (i.e., the uncertainty) is
reduced given the measurements H. Second, from Eq. (5), the posterior variance does not
depend on the prior and posterior means. As our movement scheduling algorithm aims to

reduce the variance, it does not need the knowledge of means. Third, the dimension of Σ̃
increases along the accumulation of sensor measurement. As a result, the high dimensional
Σ poses substantial computation overhead to calculate its inversion in Eq. (4) and Eq. (5)
on resource-constrained robotic sensors.

From the above three observations, an important design of our approach is to separate
the following two tasks:

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12 Y. Wang et al.

Sensor movement scheduling: This task is executed on the swarm head in each sampling
iteration, which aims to reduce the variance given in Eq. (5). Section 5.3 to Section 5.5 will
present the details of our sensor movement scheduling algorithms. In particular, as the

sensor movement scheduling involves calculating the inversion of Σ̃ in Eq. (5) on the swarm
head, in Section 5.4, we propose two measurement truncation schemes that can significantly
reduce the computation overhead.

Field reconstruction: This task computes Eq. (4) and Eq. (5) based on collected mea-
surements. It can be executed on either on the swarm head if it has sufficient computation
capability, or a remote data processing center after measurements are fetched back.

5.3. Information-Theoretic Swarm Center Selection

We now discuss the selection of the center of the next rendezvous circle (referred to as
swarm center), which aims to improve the accuracy of the field reconstruction algorithm
(i.e., Eq. (4) and Eq. (5)).

5.3.1. Problem Formulation. Suppose that the swarm has N robotic sensors and will schedule
the sensor movements for the next (i.e., the kth) sampling iteration. Let V denote the region
to be reconstructed and the time of reconstruction, and S denote the set of target time-space
coordinates for all sensors.1 Hence, S can be represented as ({p1, p2, . . . , pN}, kT ), where pi
is the target position of sensor i. Let p′c and pc denote the swarm center in the (k − 1)th

and kth sampling iteration, and Rk is the scheduled swarm radius for the kth iteration by
the connectivity maintenance algorithm. The optimal solution of S maximizes the following
information-theoretic metric:

Ω (S) = H [V \ S |Hc]−H [V \ S |Hc ∪ S], (6)

subject to

‖ p′c − pc ‖�2 ≤ L;

‖ pi − pc ‖�2 ≤ Rk, ∀i ∈ [1, N ];
(7)

where the H [·] denotes entropy and quantifies the uncertainty. In Eq. (6), the term V \ S
represents the set of ungauged sites in the current iteration, and the term Hc∪S represents
the set of visited time-space coordinates after the current iteration. Therefore, H [V\S |Hc]
represents the uncertainty at the ungauged sites (i.e., V \ S) given the historically visited
positions, and H [V \ S |Hc ∪ S] represents the uncertainty at the ungauged sites after
additionally sampling the field at S. As a result, the above problem aims to maximize
the drop of entropy at the ungauged sites after the current iteration by sampling the field
variables at S given the historical measurements at Hc. The above problem formulation
adopts the drop of entropy as the performance metric, which is defined by Eq. (6). The
constraint in the first part of Eq. (7) specifies the reachable area of the swarm due to limited
sensor movement speed. For instance, we can set L = v · T , where v is the maximum speed
of the robotic sensors. The constraint in the second part of Eq. (7) ensures the scheduled
swarm radius. These constraints are also illustrated in Fig. 2.
Note that the posterior entropy for the ungauged sites [Wang et al. 2004] is another

widely adopted performance metric in field reconstruction studies. We now identify the
relationship between posterior entropy and our metric defined in Eq. (6). Suppose the
current iteration is the kth iteration of the sampling process. By cumulating Eq. (6) of each

iteration, we can approximate the accumulative entropy reduction (denoted as
∑k

i=1 Ω (Si))

as:
∑k

i=1 Ω (Si) ≈ H [V \S1]−H [V \Sk |Hc∪Sk], where Si is the set of sampling positions

1To simplify the presentation, V refers to both the set of field variables and the corresponding time-space
coordinates. So do S and Hc.
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in the ith iteration and Hc = S1 ∪ S2 . . . ∪ Sk−1 represents all the gauged sites till the kth

iteration. In particular, the term H [V \ Sk |Hc ∪ Sk] denotes the posterior entropy after
the kth iteration. Note that H [V \ S1] is a constant. Therefore, there is a simple linear
relationship between the posterior entropy and the accumulated entropy reduction. From
this relationship, the minimum posterior entropy is achieved when the entropy reduction in
each iteration is maximized.

5.3.2. Swarm Center Selection Algorithm. A similar problem without the condition Hc and
the constraints in Eq. (7) has been proven to be NP-hard [Krause et al. 2008]. Hence, the
above problem has prohibitively high complexity that is not practical for robotic sensor
platforms. In this paper, we propose a heuristic approach that approximates the whole
swarm by its center, which is selected from a set of discrete candidate points. By such an
approximation, we avoid the complex inter-point dependence given by Eq. (3), hence largely
reduce the computation overhead. We will evaluate the performance of this approximation
in Section 7.1.8. Under the proposed heuristic approach, we adopt mutual information (MI)
and posterior entropy (PE) to quantify the information reward. As these two metrics differ
in computation overhead and the resulted reconstruction accuracy, they allow the system
designer to choose desirable trade-off between the overhead and accuracy subject to the
budgets of computation resources of robotic sensors.
We first discuss the MI-based metric. The MI of a random variable X given a set of

random variables Y can be expressed as I [X ;Y] = H [X ] − H [X |Y], where H [X |Y] =
1
2 log (2πe ·Var[X |Y]) and

Var[X |Y] = Var[X ]− Σ[X,Y] · Σ−1[Y] · ΣT[X,Y]. (8)

The Σ[X,Y] is a row vector composed of the covariances of X with each variable in Y,
and Σ−1[Y] is the inverse of the covariance matrix of Y. Given available measurements at
Hc, the MI-based information reward for the swarm centered at position pc, denoted by
ΩMI(pc, kT ), is defined as

ΩMI(pc, kT )

= I [V \ (pc, kT ); (pc, kT ) |Hc]

= H [(pc, kT ) |Hc]−H [(pc, kT ) |V ∪Hc \ (pc, kT )].
The above information reward metric characterizes the drop of uncertainty about the region
other than pc given all historical measurements if the swarm is centered at pc in the next
iteration. The swarm center selection is hence to maximize ΩMI, subject to the constraints
in Eq. (7).
The complexity for computing ΩMI for a certain pc is O (|V|3). However, as the aquatic

phenomenon of interest (e.g., HABs) often affects a large spatial area, computing ΩMI can
incur high overhead. To reduce the computation overhead, we propose another information
reward metric based on PE:

ΩPE(pc, kT ) = H [(pc, kT ) |Hc].

Different from ΩMI, ΩPE characterizes the uncertainty drop at the swarm center pc in the
next iteration given the historical measurements. For each certain pc, the complexity of
computing ΩPE is O (|Hc|3), which is much smaller than that of ΩMI. Although such a
metric does not necessarily lead to the maximum uncertainty drop for the ungauged sites,
it can reduce the computation overhead by only considering the most uncertain positions.

5.4. Truncating Historical Measurements

Both the metrics ΩMI and ΩPE involve storing and inverting the covariance matrix Σ[Hc]
when computing Eq. (8). This imposes substantial challenges to the robotic sensor platforms
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with limited computation resources. For instance, a TelosB mote equipped with 10KB RAM
can store at most a 50×50 covariance matrix. Moreover, matrix inversion is a computation-
intensive operation with at least cubic complexity with respect to the number of historical
measurements. To develop practical information-theoretic movement scheduling algorithms
for robotic sensors, we propose two schemes for truncating the historical measurements.
Both schemes select K measurements to compose the covariance matrix.
The first scheme selects K historical measurements with the largest covariances regarding

a candidate swarm center. This scheme is referred to as cov-trunc. The rationale of cov-trunc
is as follows. As we only use a subset of historical measurements, the conditional variance
in Eq. (8) will increase. The cov-trunc scheme maximizes each element in Σ[X,Y], and
hence can efficiently suppress the undesired increase of the conditional variance caused by
the truncation. The drawback of cov-trunc is that it needs to truncate the historical mea-
surements for each candidate swarm center when maximizing ΩMI and ΩPE. As a result,
a matrix inversion operation is needed for each candidate swarm center, which results in
high computation overhead for the swarm head. To address this issue, we propose another
truncating scheme, referred to as time-trunc. The time-trunc selects the most recent K his-
torical measurements. As the most recent sampling positions are generally in the proximity
of the swarm in the next iteration, time-trunc can well approximate cov-trunc even though
it ignores the spatial correlation. The time-trunc scheme has the following two advantages.
First, it only needs a matrix inversion operation for each sampling iteration. Second, the
swarm head only needs to maintain a first-in-first-out historical measurement buffer with
size of K. This buffer can be easily migrated in the swarm head rotation process for the
purpose of balancing energy consumption. However, we note that the performance of these
truncation schemes depends on the properties of the underlining aquatic processes, such as
the kernel bandwidths (i.e., ςs and ςt) and the affected region (i.e., V). In Section 7.1.6, we
will evaluate the impact of historical measurements truncation on reconstruction accuracy.

5.5. Sensor Movement Scheduling

As discussed in Section 3, once the swarm center and radius are determined, the swarm head
randomly selects N positions (denoted by p′) in the rendezvous circle. We let p denote the
current positions of robotic sensors. To prolong the lifetime of the robotic sensor swarm, we
find the element mapping from p to p′, such that the sum of sensors’ movement distances is
minimized. Under this movement scheduling scheme, there is no crossing between sensors’
moving paths. The proof can be found in Appendix A.2. Therefore, our movement scheduling
scheme is collision-free. This element mapping problem can be solved by existing algorithms
such as Munkres assignment algorithm [Burkard et al. 2009] with a complexity of O(N3).
Once the mapping is found, the swarm head sends the target position to each robotic sensor,
which then moves toward the target position. While moving toward the target position, the
robotic sensor can adopt a feedback-based motion control algorithm that adaptively corrects
the motion errors based on the localization result, using a potential function approach [Baras
et al. 2003]. The motion control of robotic fish is beyond the scope of this paper and the
details can be found in [Baras et al. 2003].

6. DISCUSSIONS

6.1. Swarm Connectivity based on Minimum PRR

In Section 4, we employ the swarm average PRR as the metric to characterize the swarm
connectivity. We note that it is possible that some individual links may have low PRRs
while others being high. To this end, we conduct the following Monte Carlo simulations
to analyze the worst case of link connectivity. For a given swarm radius R, we generate a
large number of random sensor placements within the rendezvous circle, and select the the
minimum PRR among all links in the swarm. The simulation results are shown in Fig. 8. In
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Fig. 8. The swarm average and minimum PRR versus the swarm radius. The error bar represents the
standard deviation.

Fig. 8, we also include the results shown in Fig. 5 such that we can compare the minimum
PRR and average PRR. We can see that, when the expected swarm average PRR is 0.9,
the expected minimum PRR is 0.6, which means 1/0.6 = 1.67 re-transmissions on average.
Such an overhead is acceptable. Therefore, by specifying a high setpoint for the average
PRR, the minimum PRR can be efficiently lower-bounded.
We further extend our approach to using swarm minimum PRR as the metric to set

the radius. In other words, the setpoint of the control-theoretic connectivity maintenance
algorithm is the desired minimum single-link PRR in the swarm. Deriving the closed-form
formula for the expected minimum PRR is challenging. However, numerical analysis shows
that the model given by Eq. (2) can well approximate the swarmminimum PRR. Specifically,
Fig. 8 shows the result of fitting Eq. (2) with the Monte Carlo simulation results. From the
figure, we can see that Eq. (2) accurately characterizes the swarmminimum PRR. Therefore,
our control-theoretic connectivity maintenance algorithm can still be applied to maintain
swarm minimum PRR at a specified level.

6.2. Impact of Connectivity Degradation and Outage

Our approach can tolerate connectivity degradation caused by sensor position errors. In the
swarm, sensor positions are randomly selected within the rendezvous circle. As long as the
final positions of sensors fall within the target rendezvous circle, the swarm connectivity
can be maintained by our control-theoretic algorithm. In case a few sensors are outside the
rendezvous circle for a few meters, the overall swarm connectivity will not be substantially
jeopardized. According to our experimental results presented in Fig. 4, the link PRR in the
swarm drops at most 15% when the distance is increased by 2 meters. Note that based on
the measurements in our previous work [Wang et al. 2012], the closed-loop motion control
algorithms usually introduce small position errors (in the order of 10 centimeters) and the
GPS localization errors are generally around 2 meters in outdoor environment.
As we typically set a sufficiently high setpoint for the swarm connectivity (i.e., δ), the

swarm is expected to maintain a satisfactory connectivity. However, the control-theoretic
algorithm may not be able to cope with sudden drastic drops of link quality due to un-
expected wireless communication outages. We now describe two recovery mechanisms to
prevent loss of sensors in these wireless communication outages. First, packet acknowledg-
ment should be adopted, and the number of re-transmissions in case of packet loss can be
set to a relatively large value. This simple approach can largely reduce the possibility of
sensor loss caused by suddenly reduced link quality that the control-theoretic connectivi-
ty maintenance algorithm cannot deal with. Second, if the first mechanism fails, the sensor
swarm can gather at a pre-defined meeting point. When disconnection with the swarm head
is detected, a lost node will move to the nearest meeting point. Note that the meeting points
can be carefully chosen before system deployment and stored in each sensor.
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7. PERFORMANCE EVALUATION

We evaluate the performance of the proposed algorithms by trace-driven simulations and
implementation on hardware. First, we evaluate the connectivity maintenance and the swar-
m movement scheduling algorithms using extensive simulations based on real data traces
of water surface temperature field [NAMOS Project, 2006] and on-water ZigBee wireless
communication. Second, we implement one of the proposed swarm movement scheduling
algorithms on TelosB sensor platform and evaluate its overhead. The results provide in-
sights into the feasibility of adopting advanced information-theoretic movement scheduling
algorithms on mote-class robotic sensor platforms.

7.1. Trace-Driven Simulations

7.1.1. Simulation Methodology and Settings. In the simulations, 10 robotic sensors are used to
reconstruct a scalar field in a square region. The hyperparameters of the Gaussian process
are set to be [σ2, ςs, ςt] = [9, 6, 8], unless otherwise specified. Note that these settings are
consistent with [Zhang and Sukhatme 2007; Singh et al. 2009] and obtained from real on-
water temperature traces [NAMOS Project, 2006]. Initially, the robotic sensors are randomly
deployed in a small region with radius of 10 meters. In each sampling iteration, the PRR of
each link is set to be the distance-based interpolation of real on-water PRR traces measured
by two IRIS motes on Lake Lansing, Michigan (cf. Section 4.2). Other settings include:
desired swarm connectivity level δ = 0.9, sampling iteration duration T = 5min, sensor
movement speed v = 0.2m/s, and L = v × T = 60m.

7.1.2. Swarm Connectivity Maintenance and Communication Overhead. We first compare our con-
nectivity maintenance algorithm with a heuristic baseline algorithm. The heuristic algorithm
adopts the Kalman filter to update the coefficient c in Eq. (2) based on the recently esti-
mated PRR(R). The next swarm radius is then obtained by solving Eq. (2). Recall that our
approach assigns a fixed value to c and tunes the swarm radius directly. Fig. 9 plots the
PRR(R) in the first 10 sampling iterations. The range of swarm radius after 10 iterations
is [24, 36]. The error bars, calculated from 20 runs, are caused by the various disturbances
discussed in Section 4.3. We can see that the swarm average PRR controlled by our algorith-
m quickly converges to the desired connectivity level. In contrast, the heuristic algorithm
diverges from the reference. This is because the Kalman filter does not tune the swarm
radius directly, and incorrectly updates the coefficient c in the control cycle. To evaluate
the response of our algorithm to the sudden changes of the wireless link quality, we artifi-
cially reduce the PRR measurements by 20% only in the 7th iteration (i.e., the left arrow
in Fig. 10) and continuously reduce the PRR measurements by 10% after the 14th iteration
(i.e., the right arrow in Fig. 10). For both types of changes, our algorithm can converge
within a few iterations.
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Fig. 11. Trajectories of a robotic sensor swarm with 10 sensors in the first 6 sampling iterations in the
reconstruction of a 300× 300m2 field.

In each sampling iteration, the communication overhead is mainly caused by the packet
loss. Hence, we employ the total number of transmissions in collecting all sensor measure-
ments as the evaluation metric. When a node transmits a packet to the swarm head, the
packet is delivered with a success probability equal to the PRR. The node re-transmits the
packet up to 20 times before it is dropped. The packet to the swarm head includes sensor
ID, spatiotemporal coordinates and measurement. The packet to the sensor contains the
target position in the next rendezvous circle. Consider a typical sampling iteration, e.g., the
4th iteration in Fig. 10 where a swarm radius around 32 meters yields a swarm average PRR
about 0.9. Our simulation results show that for a swarm consists of 10 nodes, the number of
transmitted packets (for two-way communications) has a mean of 38 and a standard devi-
ation of 8. Even if all these packets are transmitted sequentially, the delay will be within a
second, because transmitting a TinyOS packet only takes about 10 milliseconds on typical
mote-class sensor platforms. Therefore, our approach has low communication overhead.

7.1.3. Effectiveness of Swarm Center Selection. We now compare the two swarm center selec-
tion approaches presented in Section 5.3.2 (referred to as MI and PE) with three other
baseline approaches. The first baseline (referred to as MI-MC) finds the next swarm center
according to the metric Ω (S) in Eq. (6), where S is a set of random sensor placements within
the rendezvous circle. For each candidate pc, 100 random sensor placements are generated
(i.e., Monte Carlo trials) and the average Ω is used as the information reward relating to
pc. The second baseline (referred to as PE-MC) is similar to the MI-MC, except that the
metric is given by H (S |Hc). These two Monte Carlo baselines give the near-optimal swarm
centers regarding the MI and PE metrics, respectively. However, due to the high computa-
tion overhead of Monte Carlo method, these two baselines are not suitable for mote-class
sensor platforms. A random walk approach is employed as the third baseline (referred to as
RW). Specifically, the swarm head selects a random position as pc subject to the constraints
in Eq. (7).
We first show the swarm trajectories scheduled by various approaches. Fig. 11 plots

the trajectories of a sensor swarm in the first 6 sampling iterations. Note that the swarm
radius is controlled by the connectivity maintenance algorithm. We can see that, for all
approaches, two consecutive rendezvous circles can overlap. This is because the correlation
of the Gaussian process exists in both spatial and temporal domains, moving to a farther
location does not necessarily increase the overall information reward. Note that, if only
spatial correlation is considered, the swarm will move to the farthest unexplored areas.
From Fig. 11(a), PE and PE-MC output different trajectories. As the next swarm location
is affected by historical sensor positions which were randomly generated, the trajectories
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Fig. 12. Information reward versus sampling itera-
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Fig. 13. Impact of sensing failure on information re-
ward (FR shorts for failure rate).

can be different under different approaches, and even different under the same approach in
different simulation runs. However, they basically follow the similar trend of spreading out
in the field.
We then compare the effectiveness of various approaches based on the criterion Ω given

in Eq. (6), which quantifies the drop of uncertainty at the ungauged sites at current time.
Note that in each sampling iteration, the position of the rendezvous circle is determined by
the specified information reward metric, and the radius is chosen to maintain the swarm
connectivity. Fig. 12 plots Ω versus the index of sampling iteration. The error bar represents
the standard deviation over multiple simulation runs. We can see that Ω increases over
time as more measurements are taken. From the figure, we find that the MI and MI-MC
outperforms the PE by 10% and 19%, respectively, in the 5th sampling iteration. However,
they have much higher computation overhead than PE. Specifically, MI and MI-MC take
about 20 and 8000 times of the execution time of PE, respectively. The RW approach
yields the worst accuracy. Moreover, the gap between our approach and the corresponding
Monte-Carlo-based baseline (e.g., PE and PE-MC) gives the performance loss caused by
approximating the rendezvous circle with the swarm head. Due to the large number of Monte
Carlo trials, the baseline approaches achieve the better performance with substantially
heavier computation overhead that is infeasible on mote-class platforms.

7.1.4. Impact of Sensing Failure. We now evaluate the impact of sensing failure on reconstruc-
tion performance. Sensing failure means that the robotic sensor platform cannot sample the
field temporarily. In this set of simulations, we take the PE approach as an example and
introduce random sensing failures. Specifically, each sensor has a sensing failure rate (10%,
20%, and 30%) in a sampling iteration. For sensors that experience sensing failure, their
sampling positions will not be used in computing the drop of uncertainty Ω and schedul-
ing the swarm movement in the next iteration. We adopt the PE-MC and PE approaches
with zero failure rate as baselines, in which the PE-MC approach gives the near-optimal
swarm center regarding the PE metric. For each failure rate, we conduct 6 runs of simu-
lations. The average information rewards are plotted in Fig. 13. We can observe that our
approach can achieve comparable reconstruction performance in the presence of relatively
low sensing failure rate (e.g., 10%). As the sensing failure rate increases, the reconstruction
performance drops. This is because the decreased sampling diversity leads to inaccuracy
in swarm position selection. Note that, in addition to sensing failure, sensors are also sub-
ject to hardware failure, motion and control failure. In particular, hardware failure means
that the robotic sensor platform completely fails and the swarm will lose the failed node.
Since a swarm consists of a limited number of nodes, the robotic sensor platform should
be designed to have a low hardware failure rate to ensure long-term monitoring. Motion
and control failure is caused by errors in swarm size control and sensor motion control such
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that the node cannot communicate with the swarm head. We have specifically presented
two recovery mechanisms in Section 6.2 to address such failures.

7.1.5. Effectiveness of Random Position Selection. In this section, we analyze the effectiveness
of random sensor position selection regarding information reward. In our approach, the po-
sition of each sensor in the next sampling iteration is randomly selected by the swarm head
within the rendezvous circle. We note that the proposed MI/PE-based metrics can also be
used to guide the sensor position selection. Specifically, the swarm head sequentially selects
each sensor’s position based on the MI/PE-based metrics, such that each added sensor max-
imizes the information reward metric. We refer to the PE-based sequential sensor position
selection approach as PE-Seq. This set of simulations only evaluate the PE-based approach-
es, which help us understand the impact of random sensor position selection scheme. To
make a fair comparison, we set the swarm radius of PE-Seq identical to that of PE in each
iteration. Fig. 14 plots Ω versus the index of sampling iteration for PE-MC, PE-Seq, and
PE, respectively. From the figure, we can see that the random sensor position selection (i.e.,
PE) gives comparable performance with the metric-guided sensor position selection (i.e.,
PE-Seq). The slightly better performance of PE-Seq is achieved at the cost of intensive
computation overhead in determining each sensor’s position. Due to the sequential execu-
tion process, this scheme cannot be executed on low-power sensing platforms at run time.
Therefore, within a rendezvous circle, the random placement of sensors does not significant-
ly affect the information reward. Hence, our approach that combines metric-based swarm
center position selection and in-swarm random sensor position selection, not only is an ef-
fective solution in terms of information reward, but also simplifies the motion control of the
sensor swarm as well as reduces the computation overhead of swarm head.

7.1.6. Impact of Historical Measurements Truncation. In this set of simulations, we compare the
performance of various combinations of the MI/PE-based metrics and the two truncation
schemes presented in Section 5.4. The number of used historical measurements, i.e., K, is
set to be 20 or 40. The robotic sensor swarm is deployed in a 1000× 1000m2 square region.
Fig. 15 plots the performance criterion Ω at the 15th sampling iteration under various
settings. Without the truncation scheme, all historical measurements are used and hence
a greater Ω is achieved. Moreover, we can see that Ω increases with K. An interesting
observation is that the truncation schemes with K = 40 yield almost the same performance
obtained by using all historical measurements. In addition, the time-trunc and cov-trunc
schemes have comparable performance. Therefore, the time-trunc scheme with a small K
can achieve satisfactory performance.

7.1.7. Impact of Kernel Bandwidth. The kernel bandwidths are important hyperparameters
of the Gaussian process. We focus on the impact of the spatial kernel bandwidth ςs while
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keeping the temporal kernel bandwidth ςt fixed. Fig. 16 plots performance criterion Ω versus
K, under various settings of ςs. We can observe that Ω increases with ςs. This is because the
stronger spatial correlation introduced by the larger ςs can lead to a greater posterior entropy
drop at the ungauged sites. Moreover, we can see from the figure that the performance
becomes saturated after K is greater than 20 for various settings of ςs.

7.1.8. Approximation Performance. In this section, by taking the PE approach as an example,
we evaluate the performance of our heuristic that approximates the whole swarm by its
center. As discussed in Section 7.1.3, the PE-MC approach gives the near-optimal swarm
center regarding the PE metric. We assess the approximation performance in terms of
the relative loss in Ω, which is calculated as (ΩPE-MC − ΩPE)/ΩPE-MC. In the first set of
simulations, we consider the impact of kernel bandwidth. Specifically, we vary the spatial
kernel bandwidth ςs while keeping the temporal kernel bandwidth ςt and the swarm radius
R fixed. The results are plotted in Fig. 17. We can observe that the relative loss decreases
with the kernel bandwidth. This result is consistent with the intuition that, when nearby
positions are more correlated (i.e., a larger kernel bandwidth), the swarm center is a better
representation of nearby positions. In the second set of simulations, we consider the impact
of swarm radius. Specifically, we vary the swarm radius while keeping the kernel bandwidths
fixed. Fig. 18 shows the impact of swarm radius on the relative loss. From the figure, we
can see that the relative loss increases with the swarm radius. This result is consistent with
the intuition that, the swarm center can better represent the whole swarm when the swarm
size is smaller.

7.1.9. Information Reward versus Swarm Connectivity. As discussed in Section 4.3, there is a
trade-off between the amount of information obtained by the sensor swarm and its connec-
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Fig. 20. Temperature field reconstruction using a robotic sensor swarm. The numbers in the circles represent
the sequence of the rendezvous circles.

tivity level. In this set of simulations, we quantitatively evaluate the trade-off. Specifically,
we vary the desired swarm connectivity level, i.e., δ, and compare the resulted information
rewards. Other settings are consistent with those presented in Section 7.1.1. For each δ, the
control-theoretic algorithm adaptively tunes the radius of rendezvous circle to maintain the
swarm connectivity. According to Eq. (2), a larger δ generally requires a smaller rendezvous
circle, which will result in less information reward. Fig. 19 plots the achieved information
reward after 5 sampling iterations versus the desired swarm connectivity level. The decreas-
ing relationship between drop of uncertainty and desired swarm connectivity level shown in
Fig. 19 verifies the trade-off.

7.1.10. Accuracy of Field Reconstruction. In this set of simulations, we reconstruct a field using
10 robotic sensors. We first generate a temperature field based on the temperature data
[NAMOS Project, 2006] collected at 8 locations on the surface of Lake Fulmor, California,
which has an area of about 3 acres. We have verified that temperature data follows the
spatiotemporal Gaussian process in Section 5.1. However, the data at 8 locations are not
sufficient to drive the simulations. Therefore, we use an existing tool [Gaussian Surface Fit,
2011] to fit a 200×200m2 (� 10 acres) Gaussian process field based on the traces, as shown
in Fig. 20(a). For the ease of illustration, the field does not change with time, although
our approach can deal with temporal evolution of the field. The movement of the swarm is
scheduled by PE without truncation. Sensor measurements in the simulation are corrupted
by zero-mean Gaussian noise with variance of 0.15 [Xu et al. 2011; Krause et al. 2008].
In the reconstruction, the mean function M(p, t) is set to be a fixed value of the average
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temperature in Fig. 20(a). Fig. 20(b) and Fig. 20(c) show the reconstructed field after the
3rd and 7th sampling iteration, as well as the trajectories of the swarm. Fig. 20(d) plots
the mean squared error (MSE) of the reconstructed temperature filed versus the index of
sampling iteration. For comparison, we also include the MSE under MI approach. Due to
space limitation, the corresponding reconstructed fields and swarm trajectories are omitted
here. From Fig. 20, we can see that the reconstruction accuracy is improved along with the
movement of the swarm.

7.2. Overhead on Sensor Hardware

We have implemented the PE-based time-trunc swarm center selection algorithm and the
sensor movement scheduling algorithm in TinyOS 2.1 on TelosB platform. We ported the
C implementation of Cholesky decomposition algorithm in GNU Scientific Library [GNU
Scientific Library, 2012] to TinyOS to invert matrix in the swarm center selection algorithm.
We also implement the Munkres algorithm in TinyOS to schedule each sensor’s movement.
Fig. 21 and Fig. 22 plot the execution times of the two algorithms in one sampling iteration,
respectively. We can see that the PE-based time-trunc algorithm takes about one minute
when 40 historical measurements are used. The Munkres algorithm for position assignment
only takes 4.5 seconds when 25 robotic sensors are deployed. As our current implementation
employs extensive floating-point computation, the above processing delays can be further
reduced by using fixed-point arithmetic. Nevertheless, a delay of about one minute is ac-
ceptable since the duration of each iteration can be much longer than that. Note that the MI
metric and the cov-trunc scheme result in very long processing delays on TelosB platform
because of large search space and repeated matrix inversion operations. Therefore, they are
only suitable for more powerful sensor platforms such as Imote2 [Imote2 Datasheet, 2012].

8. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel cyber-physical approach to spatiotemporal aquatic field
reconstruction using inexpensive, low-power, mobile sensor swarms. Our approach features
a rendezvous-based mobility control scheme where a sensor swarm collaborates to sense the
environment in a series of carefully chosen rendezvous regions. We design a novel feedback
control algorithm that maintains the desirable level of wireless connectivity of a sensor swar-
m in the presence of significant physical dynamics. We present new information-theoretic
analysis to guide the selection of rendezvous regions such that the field reconstruction ac-
curacy is maximized. We evaluate our approach by extensive trace-driven simulations and
implementation on real sensor hardware. Our results show that the connectivity of robot-
ic sensors can be maintained robustly in the presence of significant physical uncertainties.
Moreover, despite the limited mobility, a sensor swarm can accurately reconstruct large,
dynamic, spatiotemporal aquatic fields, which validates the effectiveness of our information-
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theoretic movement scheduling algorithm. Lastly, our mechanisms incur low overhead on
resource-constrained sensor motes.
In the future, we will implement our control- and information-theoretic algorithms on a

testbed of motes. We will also evaluate the performance of our approach through emula-
tion where the algorithms are executed on the motes, and the physical fields and sensor
movements are simulated using real data traces. We will build fully functional robotic fish,
and conduct real experiments in both a large indoor water tank and inland lakes for tem-
perature field reconstruction. Moreover, we will extend our control-theoretic connectivity
maintenance algorithm to multi-hop network topologies. We will also study how to integrate
decentralized/distributed field reconstruction and sensor movement scheduling algorithms
[Cortés 2009; Low et al. 2012; Chen et al. 2012] with our rendezvous-based swarm scheme.

APPENDIX

A.1. Analysis of Controller’s Stability and Convergence

This section presents the details of stability and convergence analysis in controller design.
We first analyze the system reliability. The closed-loop transfer function (denoted by Tc(z))

is given by Tc(z) =
Gc(z)Gp(z)

1+Gc(z)Gp(z)H(z) = αcz
z−(β−αc) , which has a pole at z = β − αc. The

closed-loop system is stable if this pole is located within the unit circle [Ogata 1995], i.e.,

|β − αc| < 1. Therefore, the sufficient condition for stability is β−1
c < α < β+1

c . We then
analyze the steady-state error of the connectivity control system. The open-loop transfer
function (denoted by To(z)) is given by To(z) = Gc(z)Gp(z)H(z) = αc

z−β . By letting β = 1,

the system is a type 1 system [Ogata 1995] that exhibits no steady-state error in response
to step inputs. Therefore, the condition for both stability and convergence is β = 1 and
0 < α < 2

c .

A.2. Proof of Collision-Free Trajectories

In this section, by contradiction, we prove that there is no crossing among sensors’ moving
paths under the movement scheduling scheme discussed in Section 5.5. We assume that
there are crossings among sensors’ moving paths. Without loss of generality, we consider
any two crossing moving paths, as depicted by segments p1p

′
2 and p2p

′
1 in Fig. 23. We

now prove that if the two sensors move along segments p1p
′
1 and p2p

′
2 without crossing,

the total movement distance can be reduced. Therefore, a movement schedule that contains
any crossing must not be the optimal solution to the element mapping problem.
A necessary condition for the intersecting of segments p1p

′
2 and p2p

′
1 is that points p1 and

p′2 are located at different sides of segment p2p
′
1, and so are points p2 and p′1 with segment

p1p
′
2. Let pa denote a point in the aquatic field such that the quadrilateral p1p

′
2pap

′
1 forms

a parallelogram. So is pb that gives parallelogram p1p2pbp
′
2. Therefore, the sum of sensors’

movement distances with crossing trajectories is given by ‖ p2p
′
1 ‖�2 + ‖ p′

1pa ‖�2 , and that

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.



A:24 Y. Wang et al.

without crossing trajectories is given by ‖ p2p
′
2 ‖�2 + ‖ p′

2pa ‖�2 . Hence, the quadrilateral
p2pbpap

′
1 is a parallelogram as well. Since point p′2 locates inside of parallelogram p2pbpap

′
1,

by geometry, the sum of distances it is to the across corners (i.e., p2 and pa) is smaller than
that of the corner p′1, i.e., ‖ p2p

′
2 ‖�2 + ‖ p′

2pa ‖�2 < ‖ p2p
′
1 ‖�2 + ‖ p′

1pa ‖�2 .
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