Impact of Data Fusion on Real-Time Detection in Sensor Networks

Rui Tan¹, Guoliang Xing², Benyuan Liu³, Jianping Wang¹

¹ City University of Hong Kong
 ² Michigan State University
 ³ University of Massachusetts Lowell

Outline

1. Motivation

Limitations of current studies on coverage & delay

- 2. Problem Definition α -delay under disc and fusion models
- 3. Scaling laws of Network Density for Instant Detection Disc model *vs.* data fusion model

4. Simulations

Mission-critical Sensing Applications

SensIT @ UW 75 WINS nodes detect AAV [Duarte 2004]

VigilNet @ UV scale to 1000 motes http://www.cs.virginia.edu/wsn/vigilnet/

- Resource-constrained sensor nodes
- Large spatial deployment region
- Stringent performance requirements
 - Short detection delay, e.g., 5 seconds
 - Low false alarm rate, e.g., 1%

Target Detection Delay

- Fundamental metric of real-time surveillance apps
 - Timeliness of the system
 - Instant detection: any target is detected once it appears
- · Network density to achieve instant detection
 - Critical cost metric
 - Reducing deployment cost
 - Extending network lifetime

State of the Art

- · Numerous studies on coverage and detection delay
- Most existing results are based on simplistic models
 - The (in)famous disc model
 - Ignore sensing uncertainties and sensor collaboration
- Collaborative signal processing theories
 - Focus on small-scale networks
 - Make performance analysis difficult
- Our recent work [mobicom09] on sensing coverage
 - Accounts for stochastic nature of sensing
 - Exploits sensor collaboration

Sensing Model

- The (in)famous disc model
 - Any target within r is detected
 - Deterministic and independent sensing

- Real-world target detection
 - Probabilistic, no cookie-cutter like "sensing range"!

Real acoustic vehicle detection experiment [Duarte 2004]

Sensor Measurement Model

- Reading of sensor *i* is $y_i = s_i + n_i$
- Decayed target signal energy

$$s_i = \frac{S}{1+x^2} \tag{1}$$

< □ > < □ > < □ >

- Gaussian noise: $n_i \sim \mathcal{N}(\mu, \sigma^2)$
- Signal-to-noise ratio $SNR = S/\sigma$

Real acoustic vehicle detection experiment [Duarte 2004]

Data Fusion Model

- Sensors within *R* meters from target fuse their readings
 - R: fusion range
- · Detection decision is made by

False alarm rate

$$P_F = \mathsf{Q}\left(rac{\eta - N\cdot \mu}{\sqrt{N}\cdot \sigma}
ight)$$

Detection prob.

$$P_D = \mathsf{Q}\left(\frac{\eta - N \cdot \mu - \sum \mathsf{s}_i}{\sqrt{N} \cdot \sigma}\right)$$

- N: # of sensors in fusion range
- $Q(\cdot)$: the Q-function of $\mathcal{N}(0, 1)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

- s_i: target signal at sensor i

1. Motivation Limitations of current studies on coverage & delay

2. Problem Definition

 $\alpha\text{-delay}$ under disc and fusion models

3. Scaling laws of Network Density for Instant Detection Disc model *vs.* data fusion model

4. Simulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Network Model

- Random network deployment
 - 2-D Poisson process of density ρ
- Target moves freely in the deployment region
- Each sensor detects target every T seconds
 - T: detection period
 - Detection in each period is probabilistic

Temporal view of a sensor's operation

Definition of α **-delay**

• Fundamental trade-off between P_F and P_D

 $P_D = 20\%, P_F = 1\%$ $P_D = 50\%, P_F = 10\%$

Detection delay is closely related to P_D

 $P_D = 20\%$, average delay $= \frac{1}{P_D} = 5$, $P_F = 1\%$ $P_D = 50\%$, average delay $= \frac{1}{P_D} = 2$, $P_F = 10\%$

α-delay is the average # of detection periods before a target is first detected subject to system P_F ≤ α

- Instant detection: α -delay \rightarrow 1

α -delay under Disc Model

- Choose sensing range r such that
 - The sensor's $P_F \leq \alpha$
 - Any target covered by the sensor is detected with $P_D \ge \beta$

$$r = \sqrt{\frac{\mathrm{SNR}}{\mathrm{Q}^{-1}(\alpha) - \mathrm{Q}^{-1}(\beta)} - 1}$$
(2)

- β : constant close to 1, deterministic nature of disc model
- α -delay (based on [Liu 2004])

13 / 20

α -delay under Fusion Model

• α -delay:

$$\tau = \frac{1}{\mathbb{E}[P_D]} \tag{4}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- P_D : the system detection prob. in any detection period

$$P_D = f(\alpha, \text{SNR}, N), \quad N \sim \text{Poi}(\rho \pi R^2)$$

- Numerically computed

Outline

- 1. Motivation Limitations of current studies on coverage & delay
- 2. Problem Definition α -delay under disc and fusion models
- 3. Scaling laws of Network Density for Instant Detection Disc model *vs.* data fusion model

4. Simulations

Disc Model vs. Fusion Model

- ρ_d and ρ_f : network densities under disc and fusion models
- Tight bound

$$\lim_{\alpha \text{-delay} \to 1} \frac{\rho_f}{\rho_d} = \Theta\left(\frac{\text{SNR}}{Q^{-1}(\alpha)}\right)$$
(5)

- ρ_f/ρ_d decreases if α decreases data fusion reduces false alarms
- ρ_f/ρ_d increases with SNR disc model is suitable for high-SNR detections

- $\rho_f < \rho_d$ if SNR < 20 dB
 - SNR ≤ 17 dB for low-cost sensors (MICA2, ExScal, ...)
 - data fusion is suitable

Outline

- 1. Motivation Limitations of current studies on coverage & delay
- 2. Problem Definition α -delay under disc and fusion models
- 3. Scaling laws of Network Density for Instant Detection Disc model *vs.* data fusion model

4. Simulations

Simulations on Synthetic Data

- Target moves straightly in the network
- Fusion range R = 25 m

- $\rho_{\rm f}/\rho_{\rm d}$ increases with α
- $\rho_d = 2\rho_f$ if $\alpha = 5\%$

- $\rho_{\rm f}/\rho_{\rm d}$ increases with SNR
- $\rho_d = 2\rho_f$ if SNR = 13 dB

(日)

Trace-driven Simulations

 Data traces collected from 75 acoustic sensors in vehicle detection experiments [Duarte 2004]

Disc model requires twice sensors

・ロト ・ 戸 ・ ・ ヨ ・ ・ 日 ・

э

Conclusions

- Reveal limitations of current theoretical results
 - Only applicable for high-SNR scenarios
 - Disc model underestimates the achievable detection performance
- Provide insights into the design of fusion-based networks
 - Data fusion significantly reduces detection delay and false alarms
- First step toward bridging the gap between CSP and performance analysis of WSNs

Future Work

- Extensions
 - General signal decay model
 - Regular deployment
 - Decision fusion model
- Deployment algorithms for fusion-based networks