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ABSTRACT

Water resources and aquatic ecosystems are facing increas-
ing threats from climate change, improper waste disposal,
and oil spill incidents. It is of great interest to deploy mo-
bile sensors to detect and monitor certain diffusion processes
(e.g., chemical pollutants) that are harmful to aquatic en-
vironments. In this paper, we propose an accuracy-aware
diffusion process profiling approach using smart aquatic mo-
bile sensors such as robotic fish. In our approach, the robot-
ic sensors collaboratively profile the characteristics of a d-
iffusion process including source location, discharged sub-
stance amount, and its evolution over time. In particular,
the robotic sensors reposition themselves to progressively
improve the profiling accuracy. We formulate a novel move-
ment scheduling problem that aims to maximize the profil-
ing accuracy subject to limited sensor mobility and energy
budget. We develop an efficient greedy algorithm and a more
complex near-optimal radial algorithm to solve the problem.
We conduct extensive simulations based on real data traces
of robotic fish movement and wireless communication. The
results show that our approach can accurately profile dy-
namic diffusion processes under tight energy budgets. More-
over, a preliminary evaluation based on the implementation
on TelosB motes validates the feasibility of deploying our
movement scheduling algorithms on mote-class robotic sen-
sor platforms.

Categories and Subject Descriptors

C.3 [Special-purpose and Application-based System-
s]: Signal processing systems; C.4 [Performance of Sys-
tems]: Measurement techniques, modeling techniques; G.1.6
[Numerical Analysis]: Optimization—Constrained opti-
mization, gradient methods
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Figure 1: Prototypes of autonomous robotic fish de-
veloped by the Smart Microsystems Laboratory at
Michigan State University [26].

1. INTRODUCTION
Water resources and aquatic ecosystems have been facing

various physical, chemical, and biological threats from cli-
mate change, industrial pollution, and improper waste dis-
posal. For instance, the last four decades witnessed more
than a dozen major oil spills with each releasing more than
30 million gallons of oil [1]. Other harmful diffusion process-
es like chemical or radiation leaks could also have disastrous
impact on public health and ecosystem sustainability. When
such a crisis arises, an immediate requirement is to profile
the characteristics of the diffusion process, including the lo-
cation of source, the amount of discharged substance, and
how rapidly it spreads in space and evolves over time.

Manual sampling, via boat/ship or with handhold devices,
is still a common practice in the monitoring of aquatic diffu-
sion processes. This approach is labor-intensive and difficult
to adapt to the dynamic evolution of diffusion. An alterna-
tive is in situ sensing with fixed or buoyed/moored sensors
[20]. However, since buoyed sensors cannot move around, it
could take a prohibitively large number of them to capture
spatially inhomogeneous information. The past couple of
decades have seen significant progress in developing robotic
technologies for aquatic sensing. Autonomous underwater
vehicles (AUVs) [10] and sea gliders [9] are notable exam-
ples of such technologies. However, because of their high
cost (over 50,000 U.S. dollars per unit [21]), weight (over
100 pounds), and size (1-2meters long), it is difficult to de-
ploy many AUVs or sea gliders for temporally and spatially
resolved measurement of diffusion processes.

Recent advances in computing, communication, sensing,
and actuation technologies have made it possible to create
untethered robotic fish with onboard power, control, naviga-
tion, wireless communication, and sensing modules, which
turn these robots into mobile sensing platforms in aquat-



ic environments. Fig. 1(a) shows a prototype of robotic fish
swimming in an inland lake. Fig. 1(b) shows the close-up of a
robotic fish prototype, equipped with GPS, Zigbee antenna,
and a dissolved oxygen (DO) sensor. Due to the low man-
ufacturing cost, these platforms can be massively deployed
to form a mobile sensor network that monitors harmful d-
iffusion processes, providing significantly higher spatial and
temporal sensing resolution than existing monitoring meth-
ods. Moreover, a school of robotic fish can coordinate their
sensing and movements through wireless communication en-
abled by the onboard Zigbee radio, to adapt to the dynamics
of evolving diffusion processes.
Despite the aforementioned advantages, low-cost mobile

sensing platforms like robotic fish introduce several chal-
lenges for aquatic sensing. First, due to the constraints on
size and energy, they are typically equipped with low-end
sensors whose measurements are subject to significant biases
and noises. They must efficiently collaborate in data pro-
cessing to achieve satisfactory accuracy in diffusion profiling.
Second, practical aquatic mobile platforms are only capable
of relatively low-speed movements. Hence the movements
of sensors must be efficiently scheduled to achieve real-time
profiling of the diffusion processes that may evolve rapidly
over time. Third, given the high power consumption of loco-
motion, the distance that mobile sensors move in a profiling
process should be minimized to extend the network lifetime.
We make the following major contributions in this paper:

• We propose a novel accuracy-aware approach for aquat-
ic diffusion profiling based on robotic sensor networks.
Our approach leverages the mobility of robotic sensors
to iteratively profile the spatiotemporally evolving d-
iffusion process.

• We derive the analytical profiling accuracy of our ap-
proach based on the Cramér-Rao bound (CRB). Then
we formulate a movement scheduling problem for aquat-
ic diffusion profiling, in which the profiling accuracy
is maximized under the constraints on sensor mobility
and energy budgets. We develop gradient-ascent-based
greedy and dynamic-programming-based radial move-
ment scheduling algorithms to solve the problem.

• We implement the profiling and movement scheduling
algorithms on TelosB motes and evaluate the system
overhead. Moreover, we conduct extensive simulation-
s based on real data traces of robotic fish movement
and wireless communication for evaluation. The re-
sults show that our approach can accurately profile the
dynamic diffusion process and adapt to its evolution.

The rest of this paper is organized as follows. Section 2
reviews related work. Section 3 introduces the preliminaries
and Section 4 provides an overview of our approach. Sec-
tion 5 derives the analytical profiling accuracy metric and
Section 6 formulates the movement scheduling problem. Sec-
tion 7 presents the two movement scheduling algorithms.
Section 8 discusses several extensions. Section 9 presents
evaluation results and Section 10 concludes this paper.

2. RELATED WORK
Most previous work on diffusion process monitoring is

based on stationary sensor networks. Several different es-
timation techniques are adopted by these studies, which in-
clude state-space filtering, statistical signal processing, and

geometric trilateration. The state space approach [19, 31] us-
es discrete state-space equations to approximate the partial
differential equations that govern the diffusion process, and
then applies filtering algorithms such as Kalman filters [19,
31] to profile the diffusion process based on noisy measure-
ments. In the statistical signal processing approach, several
estimation techniques such as MLE [17, 29] and Bayesian pa-
rameter estimation [33] are applied to deal with noisy mea-
surements. For instance, in [29], an MLE-based diffusion
characterization algorithm is designed based on binary sen-
sor measurements to reduce the communication cost. In [33],
the parametric probability distribution of the diffusion pro-
file parameters is passed among sensors and updated with
sensor measurements by a Bayesian estimation algorithm.
The passing route is determined according to various esti-
mation performance metrics including CRB. In geometric
trilateration approach [14, 4], the measurement of a sensor
is mapped to the distance from the sensor to the diffusion
source. The source location can then be estimated by tri-
lateration among multiple sensors. Such an approach incurs
low computational complexities, but suffers lower estimation
accuracy compared with more advanced approaches such as
MLE [4].

Recently, sensor mobility has been exploited to enhance
the adaptability and sensing capability of sensor networks.
For instance, heuristic movement scheduling algorithms are
proposed in [24] to estimate the contours of a physical field.
In [22], more complex path planning schemes are proposed
for mobile sensors to reconstruct a spatial map of environ-
mental phenomena that do not follow a particular physical
model. Our previous works exploit reactive sensor mobility
to improve the detection performance of a sensor network
[25, 32]. Several studies are focused on using robots to im-
prove the accuracy in profiling diffusion processes. As an
extension to [17], the gradient of CRB is used to schedule
the movement of a single sensor in [29]. Similarly, a robot
motion control algorithm is proposed in [23] to maximize
the determinant of the Fisher information matrix. Howev-
er, as these diffusion profiling approaches [17, 23, 29] adopt
complicated numerical optimization, they are only applica-
ble to a small number (e.g., 3 in [23]) of powerful robots. In
contrast, we focus on developing movement scheduling algo-
rithms for moderate- or large-scale mobile networks that are
composed of inexpensive robotic sensors.

3. PRELIMINARIES
In this section, we describe the preliminaries including the

diffusion process and sensor models.

3.1 Diffusion Process Model
A diffusion process in a static aquatic environment, by

which molecules spread from areas of higher concentration
to areas of lower concentration, follows Fick’s law [13]. In
addition to the diffusion, the spread of the discharged sub-
stance is also affected by the advection of solvent, e.g., the
movement of water caused by the wind. By denoting t as
the time elapsed since the discharge of substance and c as
the substance concentration, the diffusion-advection model
can be described as

∂c

∂t
= Dx ·

∂2c

∂x2
+Dy ·

∂2c

∂y2
+Dz ·

∂2c

∂z2
−ux ·

∂c

∂x
−uy ·

∂c

∂y
, (1)

where D is the diffusion coefficient, u is the advection speed,



and the subscripts of D and u denote the directions (i.e.,
x-, y-, and z-axis). The diffusion coefficients characterize
the speed of diffusion and depend on the species of solvent
and discharge substance as well as other environment factors
such as temperature. The advection speeds characterize the
horizontal solvent movement caused by external forces such
as wind and flow. The above Fickian diffusion-advection
model has been widely adopted to study the spreading of
gaseous substances [29] and buoyant fluid pollutants such
as oil slick on the sea [16]. For many buoyant fluid pollu-
tants, the two horizontal diffusion coefficients, i.e., Dx and
Dy, are identical, while the vertical diffusion coefficient, i.e.,
Dz, is insignificant. For instance, in a field experiment [8],
where diesel oil was discharged into the sea, the estimated
Dx is 2,000 cm2/s while Dz is only 10 cm2/s. Therefore, the
vertical diffusion coefficient can be safely ignored and the
diffusion can be well characterized by a 2-dimensional pro-
cess. In this paper, our study is focused on buoyant fluid
pollutants with the diffusion coefficients Dx = Dy = D.
Suppose a total of A cm3 of substance is discharged at

location (xs, ys) and t = 0. At time t > 0, the origi-
nal diffusion source is drifted to (x0, y0) due to advection,
where x0 = xs + uxt and y0 = ys + uyt. Hereafter, by
source location we refer to the source location that has drift-
ed from the original position due to advection, unless oth-
erwise specified. Denote d(x, y) (abbreviated to d) as the
distance from any location (x, y) to the source location, i.e.,

d =
√

(x− x0)2 + (y − y0)2. In the presence of advection,
the diffusion is isotropic with respect to the drifted source
location [6]. Therefore, the concentration at (x, y) can be
denoted as c(d, t). The initial condition for Eq. (1) is an
impulse source, which can be represented by the Dirac delta
function, i.e., c(d, 0) = A · δ(d). Under this initial condition,
the closed-form solution to Eq. (1) is given by [29]:

c(d, t) = α · exp
(
−β · d2

)
, d ≥ 0, t > 0, (2)

where α = A
4πDt

and β = 1
4Dt

. From Eq. (2), for a given
time instant t, the concentration distribution is described
by the Gaussian function that centers at the source loca-
tion. As time elapses, the concentration distribution be-
comes flatter. In this paper, the diffusion profile is defined
as Θ = {x0, y0, α, β}.

3.2 Sensor Model
Our approach leverages mobile nodes (e.g., robotic fish

[26]) to collaboratively profile an aquatic diffusion process.
The nodes form a cluster and a cluster head is selected to
process the measurements from cluster members. The s-
election of cluster head will be discussed in Section 7.2.
Moreover, we will extend our approach to address multi-
ple clusters in Section 8.2. Many aquatic mobile platforms
are battery-powered and hence have limited mobility and
energy budget. For instance, the movement speed of the
robotic fish designed in [26] was about 1.8 to 6m/min. We
assume that the mobile nodes are equipped with pollutant
concentration sensors (e.g., the Cyclops-7 [28] series) that
can measure the concentrations of crude oil, harmful algae,
etc. Lastly, we assume that the sensors are equipped with
low-power wireless interfaces (e.g., 802.15.14 ZigBee radios)
and hence can communicate with each other when on water
surface.
The measurements of most sensors are subject to biases

and additive random noises from the sensor circuitry and

Table 1: Summary of Notation
Symbol Definition

D diffusion coefficient

A total amount of discharged substance in cm3

t time from the discharge of substance

α, β α = A(4πDt)−1, β = (4Dt)−1

(xs, ys) coordinates of the original diffusion source

(x0, y0) coordinates of the drifted diffusion source

(xi+x0, yi+y0) coordinates of sensor i

di distance from the drifted diffusion source

c(di, t) concentration at sensor i and time t

Θ diffusion process profile Θ = {x0, y0, α, β}

bi, σ
2 sensor bias and noise variance

ni Gaussian noise, ni ∼ N (0, σ2)

zi sensor measurement, zi ∼ N (c(di, t) + b, σ2)

K number of samples for computing a measurement

N total number of sensors

z normalized observation, z=[
z1−b1

σ
, . . . ,

zN−bN
σ

]T

ω diffusion process profiling accuracy metric

v sensor movement speed
∗ The symbols with subscript i refer to the notation of sensor i.

the environment. Specifically, the reading of sensor i, de-
noted by zi, is given by zi = c(di, t) + bi + ni, where di is
the distance from sensor i to the diffusion source, bi and ni

are the bias and random noise for sensor i, respectively. In
the presence of constant-speed advection, the source and the
sensors will drift with the same speed and therefore they are
in the same inertial system. As a result, the concentration
at the position of sensor i is given by c(di, t). We assume
that the noise experienced by sensor i follows the zero-mean
normal distribution with variance ς2, i.e., ni ∼ N (0, ς2). We
assume that the noises, i.e., {ni|∀i}, are independent across
sensors. The bias and noise variance for calm water envi-
ronment are often given in the sensor specification provided
by the manufacturer. They may also be measured in offline
lab experiments. For instance, by placing a sensor in the
pollutant-free fluid media, the bias and noise variance can be
estimated by the sample mean and variance over a number
of readings. When the water environment is wavy, the noise
variance will increase. Therefore, to address wavy environ-
ment, the noise variance should be measured in offline lab
experiments with various wavy levels. The above measure-
ment model has been widely adopted for various chemical
sensors [17, 29, 33].

In this paper, we adopt a temporal sampling scheme to
mitigate the impact of noise. Specifically, when sensor i
measures the concentration, it continuously takes K samples
in a short time, and computes the average as its measure-
ment. Therefore, the measurement zi follows the normal
distribution, i.e., zi ∼ N (c(di, t)+bi, σ

2), where σ2 = ς2/K.
Table 1 summarizes the notation used in this paper.

4. OVERVIEW OF APPROACH
In this section, we provide an overview of our approach.

Our objective is to profile (i.e., estimate Θ) of an aquatic
diffusion-advection process using a robotic sensor network.
Our approach is designed to meet two key objectives. First,
the noisy measurements of sensors are jointly processed to
improve the accuracy in profiling the diffusion. Second, sen-
sors can actively move based on current measurements to
maximize the profiling accuracy subject to the energy con-

sumption budget. With the estimated profile Θ̃, we can
learn several important characteristics of the diffusion pro-
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Figure 2: The iterative diffusion profiling process.

cess of interest.1 First, we can compute the current concen-
tration contour maps with Eq. (2). Second, we can estimate
the elapsed time since the start of the diffusion and the to-

tal amount of discharged substance, with t̃ = (4Dβ̃)−1 and

Ã = πα̃β̃−1. Third, we can estimate the original source lo-
cation by x̃s = x̃0−ux t̃ and ỹs = ỹ0−uy t̃. Moreover, we can
predict the evolution of the diffusion in the future, which is
often important for emergency management in the cases of
harmful substance discharge.
We assume that the robotic sensors are initially distribut-

ed at randomly chosen positions in the deployment region
that covers the diffusion source. For instance, the sensors
can be dropped off from an unmanned aerial vehicle or placed
by an aquatic vessel randomly. Note that random and some-
times uniform deployment of sensors around the source loca-
tion is a good strategy when the characteristics of diffusion
process have yet to be determined. This also avoids the
massive locomotion energy required to spread sensors for a
satisfactory profiling accuracy when the diffusion process e-
volves. We assume that all sensors know their positions (e.g.,
through GPS or an in-network localization service) and are
time-synchronized. In Section 9.3.6, we will evaluate the im-
pact of initial sensor deployment on the profiling accuracy
and locomotion energy consumption of our approach.
After the initial deployment, sensors begin a diffusion pro-

filing process consisting of multiple profiling iterations. The
iterative profiling process is illustrated in Fig. 2. In a profil-
ing iteration, sensors first simultaneously take concentration
measurements and send them to the cluster head, using a
possibly multi-hop wireless communication protocol. The
cluster head then adopts the maximum likelihood estima-
tion (MLE) to estimate Θ from the noisy measurements of
all sensors. With the estimated diffusion profile, the cluster
head schedules sensor movements such that the expected
profiling accuracy in the next profiling iteration is maxi-
mized, subject to limited sensor mobility and energy bud-
get. Finally, the movement schedule including moving ori-
entations and distances is sent to sensors for directing their
movements.
Our accuracy-aware diffusion profiling approach features

the following novelties. First, it starts with little prior knowl-
edge about the diffusion and progressively learns the profile
of the diffusion with improved accuracy along the profiling
iterations. As sensors resample the concentration in each
iteration, such an iterative profiling strategy allows the net-
work to adapt to the dynamics of the diffusion process while
reducing energy consumption of robotic sensors. Moreover,
although the profiling accuracy in each iteration is affect-
ed by errors in sensor localization and movement control,
our approach only schedules short-distance movements for

1For the clarity of presentation, we denote x̃ as the estimate
of x.

sensors in each iteration and updates their positions in the
next iteration, which avoids the accumulation of errors in
sensor localization and movement control. Second, we ana-
lyze the CRB of the MLE-based diffusion profiling algorithm
and propose a novel CRB-based profiling accuracy metric,
which is used to direct the movement scheduling of robotic
sensors. Third, we propose two novel movement scheduling
algorithms, which include a gradient-ascent-based greedy al-
gorithm and a dynamic-programming-based radial algorith-
m. The greedy algorithm only incurs linear complexity, while
the radial algorithm can find the near-optimal movement
schedule with a higher but still polynomial complexity.

5. PROFILING ALGORITHM AND ACCU-

RACY ANALYSIS
In this section, we first present our MLE-based diffusion

profiling algorithm, which estimates the diffusion profile Θ
in each profiling iteration. We then analyze the theoretical
profiling accuracy based on Cramér-Rao bound (CRB). The
closed-form relationship between the profiling accuracy and
the sensors’ positions will guide the design of our accuracy-
aware sensor movement scheduling algorithms.

5.1 MLE-based Diffusion Profiling Algorithm
MLE and Bayesian parameter estimation are two typi-

cal parameter estimation approaches [7]. The Bayesian es-
timation relies on prior probability distribution of the pa-
rameters, which is often unknown and difficult to model in
practice. In this paper, we adopt MLE to estimate the pro-
file of the diffusion process. Specifically, we assume that N
aquatic sensors are deployed in the region of interest. In
each profiling iteration, we first remove sensor biases and
normalize the measurements to construct the observation
vector z, which is given by z = [ z1−b1

σ
, . . . , zN−bN

σ
]T. By

denoting H = [σ−1e−βd2
1 , . . . , σ−1e−βd2N ]T, z follows the

N -dimensional normal distribution, i.e., z ∼ N (αH, I), where
I is the N ×N identity matrix. The log-likelihood of an ob-
servation z given Θ is given by [7]:

L(z|Θ) = −(z− αH)T(z− αH). (3)

MLE aims to maximize the log-likelihood given by Eq. (3).

Formally, Θ̃(z) = argmaxΘ L(z|Θ). This unconstrained op-
timization problem can be solved by various numerical meth-
ods, e.g., Nelder-Mead’s algorithm [18].

5.2 Cramér-Rao Bound for Diffusion Profil-
ing

CRB provides a theoretical lower bound on the variance
of parameter estimators [7], and has been widely adopted
to guide the design of estimation algorithms [17, 33]. This
section derives the CRB of profile Θ estimation. CRB is
given by the inverse of the Fisher information matrix (FIM)
[7]. For the diffusion profiling, the FIM is defined by J =

−E
[

∂
∂Θ

(
∂
∂Θ

L(z|Θ)
)]

= α2 ∂HT

∂Θ
∂H
∂Θ

, where the expectation

E[·] is taken over all possible z. The kth diagonal element of
the inverse of J (denoted by J−1

k,k) provides the lower bound

on the variance of the kth element of Θ̃ (denoted by Θ̃k)

[7]. Formally, Var(Θ̃k) ≥ J−1
k,k. The number J−1

k,k is the

CRB corresponding to Θk, which is denoted as CRB(Θk)
in this paper. Although the CRB can be easily computed



via numerical methods, in order to guide the movements of
sensors, we will derive the closed-form CRB.
Even though J is just a 4×4 matrix, deriving J−1 is chal-

lenging, because the N -dimensional joint distribution func-
tion in Eq. (3) leads to high inter-node dependence. To sim-
plify the discussion, we set up a Cartesian coordinate system
with the origin at the source location and let (xi, yi) denote
the coordinates of sensor i. Note that the coordinates of the
diffusion source and sensor i in the global coordinate system
are (x0, y0) and (x0 + xi, y0 + yi), respectively. We apply
matrix calculus to derive the closed-form J and then derive
J−1 by block matrix manipulations. Due to space limita-
tion, the details of the derivations are omitted here and can
be found in [30]. To facilitate the representation of CRB,
we first define several notations, i.e., x̂i, ŷi, LX1

, LX2
, LY1

,
and LY2

. First, x̂i is given by

x̂i =

N∑
j=1

xj(d
2
j − d2i )e

−2βd2j

√
N∑

m=1

N∑
n=1

(d2m − d2n)2e
−2β(d2m+d2n)

. (4)

By replacing xj in Eq. (4) with yj , we can define ŷi in a
similar manner. Moreover, LX1

, LY1
are 1×N vectors, and

LX2
, LY2

are N × 1 vectors. The ith elements of them are

LX1
(i) = σ−1e−βd2i (xi + x̂i), LY1

(i) = σ−1e−βd2i (yi + ŷi),

LX2
(i) = σ−1e−βd2i (xi − x̂i), LY2

(i) = σ−1e−βd2i (yi − ŷi).

Based on the above notation, the CRBs for the estimates of
x0 and y0 are given by

CRB(x0) = J−1
1,1 =

(4α2β2)−1

LX1
LX2

−
(LX1

LY2
+LX2

LY1
)2

4LY1
LY2

, (5)

CRB(y0) = J−1
2,2 =

(4α2β2)−1

LY1
LY2

−
(LX1

LY2
+LX2

LY1
)2

4LX1
LX2

. (6)

5.3 Profiling Accuracy Metric
In this section, we propose a novel diffusion profiling accu-

racy metric based on the CRBs derived in Section 5.2, which
will be used to guide the movements of sensors in Section 6.
Several previous works [23] adopt the determinant of the
FIM as the accuracy metric, which jointly considers all the
parameters. Such a metric requires the parameters to be
properly normalized to avoid biases. However, normalizing
the parameters with different physical meanings is highly
problem-dependent. Moreover, as the closed-form determi-
nant of the FIM is extremely complicated, the resulted sen-
sor movement scheduling has to rely on the numerical meth-
ods with high computational complexities [23], which is not
suitable for robotic sensors with limited resources. In this
paper, we propose a new profiling accuracy metric, denoted
by ω, which is defined according to the sum of reciprocals of
CRB(x0) and CRB(y0). Formally,

ω =

1
CRB(x0)

+ 1
CRB(y0)

4α2β2
= (1−ǫ) (LX1

LX2
+ LY1

LY2
) , (7)

where ǫ =
(LX1

LY2
+LX2

LY1
)2

4LX1
LX2

LY1
LY2

. By adopting reciprocals, the

accuracy analysis can be greatly simplified. Note that as α
and β are unknown but fixed in a particular profiling itera-
tion, 4α2β2 in the denominator of Eq. (7) is a scaling factor.

Therefore, optimizing 1
CRB(x0)

+ 1
CRB(y0)

is equivalent to op-

timizing ω. As discussed in Section 5.1, we adopt the MLE
to estimate Θ. The variance of the MLE result converges to
CRB and hence a larger ω indicates more accurate estima-
tion of x0 and y0. With the metric ω, the movements of sen-
sors will be directed according to the accuracy of localizing
the diffusion source. In the rest of this paper, the term pro-
filing accuracy refers to the metric ω defined in Eq. (7). Note
that our approach can also be applied to focus on the profil-
ing accuracy of the elapsed time t and discharged substance
amount A, by applying the same matrix manipulations to
obtain CRB(α) and CRB(β).

According to the derivations in Section 5.2, LX1
, LY1

, LX2

and LY2
depend on x0, y0, xi and yi. Therefore, ω is a func-

tion of the positions of the sensors and the diffusion source.
As the location of the diffusion source, i.e., (x0, y0), is un-
known to the network, it is impossible to compute the true
profiling accuracy. In our approach, we compute ω based on
the estimated location of the diffusion source, i.e., (x̃0, ỹ0),
given by the MLE. As sensors are repositioned in each pro-
filing iteration, the discrepancy between the true and esti-
mated profiles is expected to be reduced along with the iter-
ations. The profiling accuracy ω in Eq. (7) is still too com-
plex for us to find efficient movement scheduling algorithms.
Hence, we derive the approximation to Eq. (7). If sensors are
randomly distributed around the diffusion source, ǫ is close
to zero. By assuming a random sensor distribution and set-
ting ǫ = 0, the profiling accuracy can be approximated as:

ω ≈
N∑

i=1

ωi, ωi = σ−2e−2βd2i

(
d2i − min

j∈[1,N ],j 6=i
d2j

)
, (8)

where ωi can be regarded as the contribution of sensor i
to the overall profiling accuracy. As ωi depends on di and
the minimum distance to the source from other sensors, E-
q. (8) highly reduces the inter-node dependence compared
with Eq. (7). The accuracy of this approximation is validat-
ed by extensive numerical results, which are omitted here
and available in [30]. In Section 9.3.5, we will evaluate the
impact of sensor deployment on the profiling accuracy when
the sensor deployment deviates from random distribution
around the diffusion source.

6. DIFFUSION PROCESS PROFILING US-

ING ROBOTIC SENSORS
In this section, we formally formulate the movement schedul-

ing problem. Because of the limited mobility and ener-
gy budget of aquatic mobile sensors, the sensor movements
must be efficiently scheduled in order to achieve the maxi-
mum profiling accuracy. As the power consumption of sens-
ing, computation and radio transmission is significantly less
than that of locomotion [26], in this paper we only consider
the locomotion energy. Moreover, as the locomotion energy
is approximately proportional to the moving distance [3], we
will use moving distance to quantify the locomotion energy
consumption. To simplify the motion control of sensors, we
assume that a sensor moves straight in each profiling itera-
tion and the moving distance is always multiple of l meters,
where l is referred to as step. We note that this model is mo-
tivated by the locomotion and computation limitation typ-
ically seen for aquatic sensor platforms. First, the locomo-
tion of robotic fish is typically driven by closed-loop motion
control algorithms, resulting in constant course-correction



during movement. Second, each profiling iteration has short
time duration. As a result, the assumption of sensor’s s-
traight movement in an iteration does not introduce signifi-
cant errors in the movement scheduling. As the estimation
and movement are performed in an iterative manner, we
will focus on the movement scheduling in one profiling it-
eration. Denote mi ∈ Z

+ and φi ∈ [0, 2π) as the number
of steps and movement orientation of sensor i in a profiling
iteration, respectively. Our objective is to maximize the ex-
pected profiling accuracy after sensor movements, subject to
the constraints on total energy budget and sensor’s individ-
ual energy budget. The movement scheduling problem for
diffusion profiling is formally formulated as follows:

Movement Scheduling Problem. Suppose that a total of
M steps can be allocated to sensors and sensor i can move
at most Li meters in a profiling iteration. Find the alloca-
tion of steps and movement orientations for all N sensors,
i.e., {mi, φi|i ∈ [1, N ]}, such that the profiling accuracy ω
(defined by Eq. (7)) after sensor movements is maximized,
subject to:

N∑

i=1

mi ≤ M, (9)

mi · l ≤ Li, ∀i. (10)

Eq. (9) upper-bounds the total locomotion energy in a pro-
filing iteration. Eq. (10) can be used to constrain the en-
ergy consumption of individual sensors. For instance, Li

can be specified according to the sensor’s residual energy.
Moreover, Li can also be specified to ensure the delay of a
profiling iteration. If sensors move at a constant speed of
vm/s and a profiling iteration is required to be completed
within τ seconds to achieve the desired temporal resolution
of profiling, Li can be set to Li = v · τ . As discussed in Sec-
tion 4, the cluster head adopts MLE to estimate Θ, and then
schedules the movements of sensors such that the expected
ω in the next profiling iteration is maximized, subject to
the constraints in Eqs. (9) and (10). An exhaustive search
to the above problem would yield an exponential complexity
with respect to N , which is O(( 2π

φ0
· Li

l
)N ) where φ0 is the

granularity in searching for the movement orientation. Such
a complexity is prohibitively high as the problem needs to
be solved in each profiling iteration by the cluster head. In
the next section, we will propose an efficient greedy algorith-
m and a near-optimal radial algorithm that are feasible to
mote-class robotic sensor platform.

7. SENSOR MOVEMENT SCHEDULING AL-

GORITHMS
In this section, we propose an efficient greedy movement

scheduling algorithm based on gradient ascent and a near-
optimal radial algorithm based on dynamic programming to
solve the problem formulated in Section 6.

7.1 Greedy Movement Scheduling
Gradient ascent is a widely adopted approach to find a

local maximum of a utility function. In this paper, we pro-
pose a greedy movement scheduling algorithm based on the
gradient ascent approach. We first discuss how to determine
the movement orientations for the sensors. Since the profil-
ing accuracy ω given by Eq. (7) is a function of all sensors’
positions, we can compute the gradient of ω with respect to

the position of sensor i (denoted by ∇iω), which is formally

given by ∇iω =
[

∂ω
∂xi

, ∂ω
∂yi

]T
. When all sensors except sensor

i remain stationary, the metric ω will increase the fastest
if sensor i moves in the orientation given by ∇iω. There-
fore, in the greedy movement scheduling algorithm, we let
φi = ∠(∇iω). Note that sensors will move simultaneously
when the movement schedule is executed. We now discuss
how to allocate the movement steps. The magnitude of ∇iω,
denoted by ‖∇iω‖, quantifies the steepness of the metric ω
when sensor i moves in the orientation ∠(∇iω) while other
sensors remain stationary. Therefore, in the greedy algo-
rithm, we propose to proportionally allocate the movement
steps according to sensor’s gradient magnitude. Specifically,

mi is given by mi = min

{⌊

‖∇iω‖∑
N
i=1

‖∇iω‖
·M

⌋

,
⌊

Li

l

⌋

}

. Note

that the
⌊
Li

l

⌋
in the min operator satisfies the constraint

Eq. (10). This greedy algorithm has linear complexity, i.e.,
O(N), which is preferable for the cluster head with limited
computational resource.

7.2 Radial Movement Scheduling
In this section, we propose a new movement scheduling

algorithm based on the approximations discussed in Sec-
tion 5.3. In this algorithm, each sensor moves toward or
away from the estimated source location along the straight
line connecting the estimated source location and the sen-
sor’s current position. Hence, it is referred to as the radial
algorithm. We first discuss how to determine sensors’ move-
ment orientations and then present a dynamic-programming-
based algorithm for allocating movement steps.

From Eq. (8), the contribution of sensor i, ωi, depend-
s on the minimum distance between the cluster head and
other sensors. Because of such inter-node dependence, it is
difficult to derive the optimal distance for each sensor that
maximizes the overall profiling accuracy ω. It can be shown
that the problem involves non-linear and non-convex con-
strained optimization. Several stochastic search algorithms,
such as simulated annealing, can find near-optimal solution-
s. However, these algorithms often have prohibitively high
complexities. In our algorithm, we fix the sensor closest to
the estimated source location and only schedule the move-
ments of other sensors in each profiling iteration. As the
sensor closest to the source receives the highest SNR, mov-
ing other sensors will likely yield more performance gain.
Moreover, this sensor can serve as the cluster head that re-
ceives measurements from other sensors and computes the
movement schedule. It is hence desirable to keep it station-
ary due to its higher energy consumption in computation
and communication. We note that the sensor closest to the
source may be different in each iteration after sensor move-
ments, resulting in rotation of cluster head among sensors.
By fixing the sensor closest to the source, the distance di
that maximizes the expected ωi, denoted by d∗i , can be di-
rectly calculated by

d∗i =

√
1

2β
+ min

j∈[1,N ]
d2j , ∀i 6= argmin

j∈[1,N ]

dj . (11)

Note that as β is a time-dependent variable, d∗i also changes
with time and hence should be updated in each profiling
iteration. Eq. (11) allows us to easily determine the move-
ment orientation of sensor i. Specifically, if di > d∗i , sensor i
will move toward the estimated source location; Otherwise,



sensor i will move in the opposite direction. Formally, by
defining δ = sgn(d∗i − di), we can express the movement
orientation of sensor i as φi = ∠([δ · xi, δ · yi]

T).
We now discuss how to allocate the movement steps. In

the rest of this section, when we refer to sensor i, we assume
sensor i is not the closest to the estimated source location.
After sensor i moves mi steps in the orientation of φi, its
contribution to the overall profiling accuracy is given by

ωi(mi) =
(di + δ ·mi · l)

2 −minj∈[1,N ] d
2
j

σ2 · e2β(di+δ·mi·l)2
, (12)

where minj∈[1,N ] d
2
j in Eq. (12) is a constant for sensor i,

and β can be predicted based on its current estimate to
capture the temporal evolution of the diffusion, i.e., β =

(1/β̃ + 4 ·D · τ)−1. Given the radial movement orientations
described earlier, the formulated problem is equivalent to
maximizing

∑
i ωi(mi) subject to the constraints Eqs. (9)

and (10), which can be solved by a dynamic programming
algorithm as follows.
We number the sensors by 1, 2, . . . , N − 1, excluding the

sensor closest to the estimated source location. Let Ω(i,m)
be the maximum ω when the first i sensors are allocated with
m steps. Therefore, the dynamic programming recursion
that computes Ω(i,m) can be expressed as:

Ω(i,m) = max
0≤mi≤⌊Li/l⌋

{Ω(i− 1,m−mi) + ωi(mi)} .

The initial condition of the above recursion is Ω(0,m) = 0
for m ∈ [0,M ]. According to the above equation, at the
ith iteration of the recursion, the optimal value of Ω(i,m)
is computed as the maximum value of ⌊Li/l⌋ cases which
have been computed in previous iterations of the recursion.
Specifically, for the case where sensor i moves mi steps, the
maximum profiling accuracy ω of the first i sensors allocated
with m steps can be computed as Ω(i−1,m−mi)+ωi(mi),
where Ω(i− 1,m−mi) is the maximum ω of the first i− 1
sensors allocated with m−mi steps. The maximum overall
profiling accuracy is given by ω∗ = maxm∈[1,M ] Ω(N−1,m).
We now describe how to construct the movement sched-

ule using the above dynamic programming recursion. The
movement schedule of sensor i is represented by a pair (i,mi).
For each Ω(i,m), we define a movement schedule S(i,m)
initialized to be an empty set. The set S(i,m) is filled incre-
mentally in each iteration when Ω(i,m) is computed. Specif-
ically, in the ith iteration of the recursion, if Ω(i − 1,m −
mx) + ωi(mx) gives the maximum value among all cases,
we add a movement schedule (i,mx) to S(i,m). Formally,
S(i,m) = S(i− 1,m−mx) ∪ {(i,mx)}, where

mx = argmax
0≤mi≤⌊vτ/l⌋

{Ω(i− 1,m−mi) + ωi(mi)} .

The complexity of the dynamic programming is O
(

(N − 1)M2
)

,
where N is the number of sensors and M is the number of
allocatable movement steps in a profiling iteration.

8. DISCUSSIONS

8.1 Impact of Localization and Control Errors
The diffusion profiling process discussed in this paper suf-

fers from localization and control errors introduced by GPS
module and robotic fish movement. However, our iterative
profiling algorithm can largely avoid the accumulation of
such errors. First, to achieve desired temporal resolution of

profiling, as discussed in Section 6, we upper bound sensors’
moving distances in a profiling iteration. Therefore, the clus-
ter head only schedules short-distance movements for sensors
in each iteration, hence avoiding the accumulated error in
movement control. Moreover, the profiling algorithm avoid-
s the accumulation of localization errors by having sensors
update their positions in each profiling iteration. Therefore,
the cluster head always leverages the latest sensors’ positions
that are corrupted only by the errors of current localization.
As a result, our profiling algorithm is robust to the localiza-
tion and control errors. In Section 9.3, we will evaluate the
impact of such errors on profiling accuracy using real data
traces of GPS and robotic fish movement.

8.2 Scalability of the Radial Algorithm
The complexity of the dynamic programming algorithm p-

resented in Section 7.2 is O
(
(N − 1)M2

)
. When the number

of sensors increases, it is desirable to increase the number
of allocatable movement steps. As the maximum moving
distance of a sensor is limited by its energy budget, M is
often a linear function of N , i.e., M ∼ O(N). As a result,
the complexity will be O(N3). Such a complexity may lead
to long computation delay at the cluster head, which jeop-
ardizes the timeliness of the periodical profiling process. A
basic idea to reduce the computation delay is to bound the
number of sensors in each cluster. Although many clustering
algorithms can achieve this objective [11], we adopt a sim-
ple clustering method, in which each node randomly assigns
itself a cluster ID ranging from 1 to p, where p is the total
number of clusters. When a diffusion process is profiled by
multiple clusters, the dynamic programming procedures are
executed separately in different clusters. To account for the
interdependence among clusters, the overall estimated pro-
file can be calculated as the average of results from all clus-
ters. In Section 9.2, we will evaluate the trade-off between
execution time and profiling accuracy of this algorithm.

9. PERFORMANCE EVALUATION

9.1 Evaluation Methodology
We evaluate our approach through a combination of real

testbed experiments and trace-driven simulations. First, we
implement the MLE, greedy and radial algorithms on TelosB
motes and evaluate their overhead. The results provide in-
sights into the feasibility of adopting advanced estimation
and movement scheduling algorithms on mote-class robotic
sensor platforms. Second, we validate the diffusion process
model in Eq. (2) with real lab experiments of Rhodamine-B
diffusion. Third, we evaluate the proposed profiling algo-
rithm in extensive simulations based on real data traces.
We collect three sets of traces, including GPS localization,
robotic fish movement control, and on-water Zigbee wireless
communication. We analyze the impact of several importan-
t factors on the profiling accuracy, including the temporal
sampling scheme, the source location bias, the sensor den-
sity, and the network communication overhead. Our results
show that our approach can accurately profile dynamic dif-
fusion process with low communication overhead.

9.2 Overhead on Sensor Hardware
We have implemented the MLE and the two movement

scheduling algorithms in TinyOS 2.1.1 on TelosB platform
[15] equipped with an 8MHz processor. We ported the C
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implementation of the Nelder-Mead algorithm [18] in GNU
Scientific Library (GSL) [2] to TinyOS to solve the opti-
mization problem in MLE (see Section 5.1). The porting is
non-trivial because dynamic memory allocation and function
pointer are extensively used in GSL while these features are
not available in TinyOS. Our implementation of MLE re-
quires 19KB ROM and 1KB RAM. When 10 sensors are
to be scheduled, the two movement scheduling algorithms
require 1 and 8.8KB RAM, respectively. Fig. 3 plots the
average execution time of the MLE, greedy and radial al-
gorithms versus the number of sensors. We note that the
complexity of MLE is O(N). For both movement schedul-
ing algorithms, the execution time linearly increases with
N , which is consistent with our complexity analysis. The
radial algorithm takes about 100 seconds to compute the
movement schedule in a profiling iteration when N = 20.
This overhead is reasonable compared with the movemen-
t delay of low-speed mobile sensors. The greedy algorithm
is significantly faster, and hence provides an efficient solu-
tion when the timeliness is more important than profiling
accuracy. For the radial algorithm, 30% execution time is
spent on computing a look-up table consisting of each sensor
i’s contribution, i.e., ωi(mi) in Eq. (12), given all possible
values of mi. There are several ways to further reduce the
computational overhead. First, our current implementation
employs extensive floating-point computation. Our previous
experience shows that fixed-point arithmetic is significantly
more efficient on TelosB motes. Moreover, we can also adopt
more powerful sensor platforms as cluster head in the net-
work. For instance, the projected execution time on Imote2
[15] equipped with a 416MHz processor is within 2 seconds
for computing the movement schedule for 20 sensors.
Fig. 4 plots the execution time and the profiling accuracy

of the scalable variant of radial approach, which is discussed
in Section 8.2, versus the number of clusters, respectively.
The left Y-axis is the ratio of execution time for p clusters
with respect to the case of a single cluster. We can see that
both the execution time and profiling accuracy decrease with
the number of clusters. As discussed in Section 8.2, this is
due to the fact that simply averaging results from all clusters
does not fully account for the inter-cluster dependence in
the accuracy of dynamic programming. Nevertheless, the
radial algorithm of 2 and 3 clusters still outperforms the
greedy algorithm of a single cluster in terms of the profiling
accuracy.

9.3 Trace-Driven Simulations

9.3.1 Model Validation and Trace Collection

We collected four sets of data traces, which include chemi-
cal diffusion, GPS localization errors, robotic fish movement
control, and on-water Zigbee wireless communication. First,
we use the chemical diffusion traces to validate the diffusion
process model in Eq. (2). To collect the traces, we discharge
Rhodamine-B solution in saline water, and periodically cap-
ture diffusion process using a digital camera. We assume
that the grayscale of a pixel in the captured image linearly
increases with the concentration at the corresponding phys-
ical location [27]. Therefore, the evolution of diffusion pro-
cess can be characterized by the expansion of a contour giv-
en a certain threshold of grayscale in the captured images.
With the contour areas along the recorded shooting times,
we can estimate D by linear regression. The detailed deriva-
tions are available in [30]. Fig. 6 plots the captured images
with contours marked in white. Fig. 7 plots the contour ar-
eas observed in images and predicted by Eq. (2) versus t.
We can see that the model in Eq. (2) well characterizes the
diffusion of Rhodamine-B.

To evaluate the proposed profiling algorithms, we also col-
lect traces of GPS localization errors, robotic fish movement
control and on-water Zigbee wireless communication. First,
the data traces of GPS error are collected using two Linx
GPS modules [12] in outdoor open space. We extract the
GPS error by comparing the distance measured by GPS
modules with the groundtruth distance. The average GPS
error is 2.29meters. Second, the data traces of movement
control are collected with a robotic fish developed in our lab
[26] (see Fig. 1). The movement of robotic fish is driven by
a servo motor that is controlled by continuous pulse-width
modulation waves. By setting the fish tail beating ampli-
tude and frequency to 23◦ and 0.9Hz, the movement speed
is 2.5m/min. We then have the fish swim along a fixed direc-
tion in an experimental water tank, and derive the real speed
by dividing the moving distance by elapsed time. Third, the
data traces of Zigbee communication are collected with two
IRIS motes2 by measuring the packet reception rate (PRR)
on the wavy water surface of Lake Lansing on a windy day.
We note that the PRR in such wavy water environment is
more dynamic than that in calm water environment, due

2The next generation of our robotic fish platform adopts the
same RF230 radio chip equipped on IRIS.



(a) Elapsed time t=3.5 s (b) Elapsed time t=18.1 s

Figure 6: Observations of the diffusion process of
Rhodamine-B solution in saline water.
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to multipathing [5]. Specifically, we place the two motes
about 12 centimeters above the water surface, and measure
the PRR versus the distance between sensors. The result-
s are plotted in Fig. 5. We note that the two IRIS motes
achieve an average PRR of 0.8, when they are 37meters a-
part. According to our experience, the communication range
of IRIS on water surface decreases by about 50% compared
to that on land.

9.3.2 Simulation Settings

We conduct extensive simulations based on collected da-
ta traces to evaluate the effectiveness of our approach. The
simulation programs are written in Matlab. As discussed
in Section 3.2, the effect of constant-speed advection is can-
celed because the sensors and source location are in the same
inertial system. Therefore, we only simulate the diffusion
process without advection. The diffusion source is at the o-
rigin of the coordinate system, i.e., x0 = y0 = 0. The sensors
are randomly deployed in the square region of 200× 200m2

centered at the origin. The reading of a sensor is set to
be the sum of the concentration calculated from Eq. (2),
the bias bi, and a random number sampled from the normal
distribution N (0, ς2). As discussed in Section 3.2, in each
profiling iteration, a sensor samples K readings and outputs
the average of them as the measurement. The amount of
discharged substance is set to be A = 0.7 × 106 cm3 (i.e.,
0.7m3) unless otherwise specified. The diffusion coefficient
is set to be D = 5,000 cm2/s. Note that the settings of A
and D are comparable to the real field experiments report-
ed in [8] where 2 to 5m3 of diesel oil were discharged into
the sea and the estimated diffusion coefficient ranged from
2,000 cm2/s to 7,000 cm2/s. The noise standard deviation is
set to be ς = 1 cm3/m2, i.e., 1 cm3 discharged substance per
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Figure 8: Movement trajectories of 20 sensors in the
first 15 profiling iterations.

unit area.3 To easily compare various movement scheduling
algorithms, we let the first profiling iteration always start
at t = 1800 s, i.e., half an hour after the discharge. At
t = 1800 s, the average received SNR is around 10/1. The
rationale of this setting is that moving sensors too early
(i.e., at low SNRs) leads to little improvement on profiling
accuracy, resulting in waste of energy. In practice, various
approaches can be applied to initiate the profiling process,
e.g., by comparing the average measurement to a threshold
that ensures good SNRs. Other settings include l = 0.5m,
τ = 60 s, v = 2.5m/min and K = 2, unless otherwise speci-
fied.

We compare our approach with two additional baseline
algorithms in the evaluation. The first baseline (referred to
as SNR-based) schedules the movements based on the SNRs
received by sensors. The SNR received by sensor i (denot-
ed by SNRi) is defined as c(di, t)/σ, where di and t can be

computed from the estimated profile Θ̃. In the SNR-based
scheduling algorithm, the sensors always move toward the
estimated source location to increase the received SNRs.
The movement steps are proportionally allocated accord-
ing to sensors’ SNRs. The rationale behind this heuristic is
that the accuracy of MLE increases with SNR. The second
baseline (referred to as annealing) is based on the simulat-
ed annealing algorithm. Specifically, for given movement
orientations {φi|∀i}, it uses the brutal-force search to find
the optimal step allocation under the constraints in Eqs. (9)
and (10). It then employs a simulated annealing algorithm
to search for the optimal movement orientations. However,
it has exponential complexity with respect to the number of
sensors.

9.3.3 Sensor Movement Trajectories

We first visually compare the sensor movement trajecto-
ries computed by the greedy and radial movement scheduling
algorithms. A total of 20 sensors are deployed. Fig. 8 shows
the movement trajectories of sensors in the first 15 profil-
ing iterations. For a particular sensor, the circle denotes its
initial position, the segments represent its movement trajec-
tory of 15 profiling iterations, and the arrow indicates its

3As we adopt a 2-dimensional model to characterize the dif-
fusion process, the physical unit of concentration is cm3/m2.
As observed in the field experiments [8], diesel oil can pen-
etrate down to several meters from the water surface. As a
result, the equivalent ς that accounts for the depth dimen-
sion ranges from 0.1 cm3/m3 to 1 cm3/m3. Our setting is
consistent with the noise standard derivation of the crude
oil sensor Cyclops-7 [28], which is 0.1 cm3/m3.
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Var(ỹ0) versus the number of sam-
plings K.

movement orientation in the 15th iteration. The sensor with
no segments remains stationary during all 15 profiling iter-
ations. We can see that, with the greedy algorithm, several
sensors (e.g., sensor 15, 16, and 17) have bent trajectories.
This is because the movement orientation of each sensor is
to maximize the gradient ascent of ω, hence not necessarily
to be aligned along the iterations. In the radial algorithm,
sensors’ trajectories are more straight. This is because the
movement orientation is along the direction determined by
the current sensor position and the estimated source location
that is close to the true source location. Moreover, we find
that the radial algorithm outperforms the greedy algorithm
in terms of profiling accuracy after the first 15 iterations. In
the greedy algorithm, the orientation assignment and move-
ment step allocation are based on the gradient derived from
the current positions of sensors. Besides, the greedy algo-
rithm does not account for the interdependence of sensors
in providing the overall profiling accuracy. As a result, its
solution may not lead to the maximum ω after the sensor
movements and the temporal evolution of diffusion.

9.3.4 Profiling Accuracy

In the second set of simulations, we evaluate the accuracy
in estimating the diffusion profile Θ. Total 10 sensors are
deployed and our evaluation lasts for 15 profiling iterations.
Fig. 9 plots the profiling accuracy ω (defined in Eq. (7))

based on the estimated diffusion profile Θ̃. The curve la-
beled with “stationary” is the result if all sensors always
remain stationary. Nevertheless, we can see that the pro-
filing accuracy improves over time because of the temporal
evolution of the diffusion. In Fig. 9, the curves labeled with
a prefix “trace-driven” are the simulation results based on
the data traces of localization errors and robotic fish move-
ment. Specifically, the position reading of a robotic sensor is
corrupted by a localization error randomly selected from the
GPS error traces. When a robotic sensor moves, its speed
is set to be a real speed that is randomly selected from the
data traces. We can see that, for both greedy and radial, the
curves with and without simulated movement control and
localization errors almost overlap with each other. As our
iterative approach has no accumulated error, small move-
ment control and localization errors have little impact on
our approach. The radial algorithm outperforms the greedy
and SNR-based algorithms by 16% and 50% in terms of ω
at the 15th profiling iteration, respectively. And the accura-
cy performance of the radial algorithm is very close to the

annealing algorithm that can find the near-optimal solution.
However, we note that in each iteration of the annealing al-
gorithm, a new look-up table needs to be computed due to
changed movement orientations. Hence its execution time
highly depends on the number of iterations that can be very
large. Therefore, the annealing algorithm is infeasible on
mote-class platforms.

Fig. 10 plots the average of Var(x̃0) and Var(ỹ0) in each
profiling iteration under various settings of the discharged
substance amount A. In order to evaluate the variances in
each profiling iteration, the sensors perform many rounds
of MLE, where each round yields a pair of (x̃0, ỹ0). The
Var(x̃0) and Var(ỹ0) are calculated from all rounds. From
Fig. 10, we find that the variances may increase (for the
SNR-based scheduling algorithm) or fluctuate (for other ap-
proaches) after several iterations. This is because the vari-
ances are time-dependent due to the involving of α and β
in CRB(x0) and CRB(y0). Moreover, we can see that the
variances decrease with A. As sensors receive higher SNRs
in the case of higher A, our result consists with the intuition
that the estimation error decreases with SNR. Compared
with the SNR-based algorithm, the radial algorithm reduces
the variance in estimating diffusion source location by 36%
for A = 0.7 × 106 cm3. Compared with the greedy algorith-
m, the reductions are 12% and 18% for A = 0.7 × 106 and
1.4 × 106 cm3, respectively. We also evaluate the accuracy
in estimating the substance amount A and elapsed time t.
Both the greedy and radial algorithms can achieve a high ac-
curacy. For instance, the relative error in estimating A for
radial algorithm is within 1.4%. Due to space limitation, de-
tailed evaluation results are omitted here and can be found
in [30].

9.3.5 Impact of Sampling, Source Bias and Network
Density

We characterize the profiling error after 15 iterations by
the average of Var(x̃0) and Var(ỹ0). Except for the evalua-
tions on network density, a total of 10 sensors are deployed.
In the temporal sampling scheme presented in Section 3.2,
a sensor yields the average of K continuous samples as the
measurement to reduce noise variance. Fig. 11 plots the
profiling error versus K. We can see that the profiling er-
ror decreases with K. The relative reductions of profiling
error by the radial algorithm with respect to the greedy and
SNR-based algorithms are about 18% and 30%, respectively,
when K ranges from 2 to 20.
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Figure 14: Impact of initial de-
ployment on the profiling accura-
cy.

The approximations discussed in Section 5.3 assume that
the sensors are randomly deployed around the diffusion source.
In this set of simulations, we evaluate the impact of source
location bias on profiling accuracy. Specifically, the diffu-
sion source appears at (δ, 0), where δ is referred to as the
source location bias. Fig. 12 plots the profiling error ver-
sus δ. To jointly account for the impact of random sensor
deployment, for each setting of δ, we deploy a number of
networks and show the error bars. We find that the radial
algorithm is robust to the source location bias. Moreover,
we note that the radial algorithm is consistently better than
other algorithms.
Fig. 13 plots the profiling error versus the number of sen-

sors. When more sensors are deployed, the profiling error
can be reduced. The radial algorithm is consistently better
than the other algorithms. For all algorithms, the profiling
error is reduced by about 40% when the number of sensors
increases from 10 to 15. Moreover, the relative reduction of
profiling error decreases with the number of sensors.

9.3.6 Impact of Sensor Deployment

In this section, we evaluate the impact of initial sensor
deployment on the profiling accuracy and energy consump-
tion in locomotion. We fix each di and randomly deploy
sensors in one, two adjacent, three and four quadrants of
the plane originated at the source location, resulting in four
sensor deployments. We compute the upper bound of ω,
in which sensors’ angles with respect to the source location
are exhaustively searched to maximize the profiling accura-
cy. Note that the sensor deployment with maximized profil-
ing accuracy is still an open issue. Fig. 14 plots the upper
bound of ω as well as the profiling accuracy of four sensor
deployments. We can see that the profiling accuracy of the
four-quadrant deployment is the closest to the upper bound.
Fig. 14 also plots the minimum total distance that the sen-
sors in a deployment have to move to achieve the upper
bound ω. We can observe that if sensors are not deployed
around the source location, spreading sensors first can signif-
icantly improve the profiling accuracy. However, if sensors
have limited energy for locomotion, it is more beneficial to
deploy sensors around the source to avoid energy-consuming
spreading movements.

9.3.7 Communication Overhead

We conduct a set of trace-driven simulations to evalu-
ate the communication overhead of our approach. Specif-

ically, we choose the shortest distance path as the routing
path from a sensor to the cluster head, where the distance
metric of each hop is PRR−1, i.e., the expected number of
(re-)transmissions on the hop. When a node transmits pack-
et to the next hop, the packet is delivered with a success
probability equal to the PRR retrieved from the commu-
nication traces with the same distance between the sender
and receiver. The node re-transmits the packet for 10 times
before it is dropped until success. In the simulations, 30
sensors are randomly deployed. The packet to the cluster
head includes sensor ID, current position and measuremen-
t, and the packet to the sensor includes moving orientation
and distance. Our simulation results show that the num-
ber of packet (re-)transmissions in a profiling iteration has a
mean of 158 and a standard deviation of 28. Even if all these
transmissions happen sequentially, the delay will be within
seconds, because transmitting a TinyOS packet only takes
about 10milliseconds. This result shows that our approach
has low communication overhead under realistic settings.

10. CONCLUSION AND FUTURE WORK
In this paper we propose an accuracy-aware profiling ap-

proach for aquatic diffusion processes using robotic sensor
networks. Our approach features an iterative profiling pro-
cess where the sensors reposition themselves to progressively
improve the profiling accuracy along the iterations. We de-
velop two movement scheduling algorithms, including an ef-
ficient greedy algorithm and a near-optimal radial algorithm.
We implement our algorithms on TelosB motes and evalu-
ate their overhead. We also conduct extensive simulations
based on real traces of chemical diffusion, GPS localization
errors, robotic fish movement, and wireless communication.
Our results show that our approach can accurately profile
dynamic diffusion processes with low overhead.

The movement scheduling approach described in this pa-
per is targeted at robotic sensors with limited sensing and
motion capabilities in relatively calm water environment.
We are developing the next generation of our robotic fish
platforms that are capable of more complex sensing and
motion control. In our future work, we will investigate dis-
tributed control algorithms that allow such robotic sensors
to autonomously plan their motion paths, which reduce the
overhead of cross-sensor coordination in collaborative sens-
ing tasks. In addition, we will extend our approach to ad-
dress wavy water environment by quantifying the impact of
waves on sensor measurement and wireless link quality.
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