
Aquatic Debris Monitoring Using Smartphone-Based

Robotic Sensors

Yu Wang1, Rui Tan2, Guoliang Xing1, Jianxun Wang3, Xiaobo Tan3, Xiaoming Liu1, and Xiangmao Chang1,4

1Department of Computer Science and Engineering, Michigan State University, USA
2Advanced Digital Sciences Center, Illinois at Singapore

3Department of Electrical and Computer Engineering, Michigan State University, USA
4College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China

Abstract—Monitoring aquatic debris is of great interest to
the ecosystems, marine life, human health, and water transport.
This paper presents the design and implementation of SOAR
– a vision-based surveillance robot system that integrates an
off-the-shelf Android smartphone and a gliding robotic fish for
debris monitoring. SOAR features real-time debris detection
and coverage-based rotation scheduling algorithms. The image
processing algorithms for debris detection are specifically de-
signed to address the unique challenges in aquatic environments.
The rotation scheduling algorithm provides effective coverage of
sporadic debris arrivals despite camera’s limited angular view.
Moreover, SOAR is able to dynamically offload computation-
intensive processing tasks to the cloud for battery power con-
servation. We have implemented a SOAR prototype and con-
ducted extensive experimental evaluation. The results show that
SOAR can accurately detect debris in the presence of various
environment and system dynamics, and the rotation scheduling
algorithm enables SOAR to capture debris arrivals with reduced
energy consumption.

Keywords—Robotic sensor; aquatic debris; smartphone; com-
puter vision; object detection

I. INTRODUCTION

Aquatic debris – human-created waste found in water
environments – has emerged to be a grave environmental issue.
The 2011 Japan tsunami released about one million tons of
debris that heads toward North America [1], and some has
drifted to U.S. West Coast as shown in Figure 1(a). Inland
waters also face severe threats from debris. Over 15 scenic
lakes in New Jersey still suffer debris resulted from Hurricane
Sandy after one year of cleaning [2]. The debris fields pose
numerous potential risks to aquatic ecosystems, marine life,
human health, and water transport. For instance, the debris
has led to a loss of up to 4 to 10 million crabs a year in
Louisiana [3], and caused damages like propeller entanglement
to 58% fishing boats in an Oregon port [4]. It is thus imperative
to monitor the debris arrivals and alarm the authorities to take
preventive actions for the potential risks.

Opportunistic spotting by beach-goers or fishermen is often
the only viable solution for small-scale debris monitoring.
However, this approach is labor-intensive and unreliable. An
alternative approach is in situ visual survey by using patrol
boats [10]. However, it is costly and can only cover a limited
period of time. More advanced methods involve remote sensing
technologies, e.g., balloon-board camera [20] and satellite
imaging [22]. The former is only effective for one-off and
short-term monitoring of highly concentrated debris fields that

(a) (b)

Fig. 1. (a) Debris from the Japan tsunami arriving at U.S. West Coast, 2012
(Photo Credit: Scripps Institution of Oceanography [5]); (b) SOAR prototype
integrating a Samsung Galaxy Nexus smartphone in a water-proof enclosure
with a gliding robotic fish [6].

have been already detected, and the latter often has high
operational cost and falls short of monitoring resolution. Re-
cently, autonomous underwater vehicles (AUVs) [14] [31] have
been used to for various underwater sensing tasks. However,
AUV platforms often have high manufacturing costs (over
$50,000 per unit [25]). The limitations of these remote sensing
and AUV-based approaches make them cost prohibitive for
monitoring spatially and temporally scattered debris fields with
small-sized objects. For instance, the debris from the 2011
Japan tsunami is expected to arrive dispersedly along U.S.
West Coast over two years starting from spring of 2012 to
late 2014 [1].

This paper presents SOAR (SmartphOne-based Aquatic
Robot), a low-cost, vision-based surveillance robot system
that integrates an off-the-shelf smartphone and a robotic fish
platform. Figure 1(b) shows a prototype of SOAR built with
a gliding robotic fish developed in our previous work [6]
and a Samsung Galaxy Nexus smartphone. Various salient
advantages of smartphone and gliding robotic fish make the
integration of them a promising platform for debris monitoring.
First, recent smartphones are powerful enough to execute ad-
vanced computer vision (CV) algorithms to process the images
captured by the camera to detect debris objects. Meanwhile,
the price of smartphones has been dropping drastically in
the last five years. Many low-end Android phones (e.g., LG
Optimus Net with 800MHz CPU and 2GB memory) cost only
about $100 [7]. Second, besides visual sensing, various built-
in sensing modalities such as GPS and accelerometer can be
used to facilitate the navigation and control of the robot and
enable situation awareness to improve the debris detection
performance. Third, the long-range communication capability
(3G/4G) of smartphone makes it possible to leverage the cloud
to increase robot’s intelligence and reduce energy consumption

by offloading intensive computation. Lastly, as a commercial
off-the-shelf platform, smartphone provides an integrated sens-
ing system and diverse system configurations, which can meet
the requirements of a wide spectrum of embedded applications.
Moreover, it offers user-friendly programming environments
and extensive library support, which greatly accelerates the
development process. The gliding robotic fish, which is a low-
cost aquatic mobile platform with high maneuverability in rota-
tion and orientation maintenance, provides SOAR the mobility
to adapt to the dynamics of debris and water environments.
Owing to these features, SOAR represents an unprecedented
vision-based, cloud-enabled, low-cost, yet intelligent aquatic
mobile sensing platform for debris monitoring.

However, the design of SOAR still faces several unique
challenges associated with aquatic debris monitoring. First,
due to the impact of waves, SOAR cannot acquire a stable
camera view, thereby making it highly difficult to reliably
recognize the debris objects. A possible solution is image
registration [19] that aligns multiple images into a common
coordinate system. However, water environments often lack
detectable features such as sharp corners that are commonly
used for image registration. Second, SOAR is powered by
small batteries due to the constraints on the form factor
and cost budget, while both aquatic movement of the robot
and image processing on the smartphone incur high energy
consumption. Lastly, debris arrivals are often sporadic in a
large geographic region [10] [12], making them highly difficult
to be captured using smartphone cameras that typically have
limited field of view. To address these challenges, in this paper
we make the following contributions:

1) We develop several lightweight CV algorithms to address
the inherent dynamics in aquatic debris detection, which
include an image registration algorithm for extracting the
horizon line above water and using it to register the images
to mitigate the impact of camera shaking, and an adaptive
background subtraction algorithm for reliable detection of
debris objects.

2) We propose a novel approach to dynamically offloading
the computation-intensive CV tasks to the cloud. The off-
loading decisions are made to minimize the system energy
consumption based on in situ measurements of wireless link
speed and robot acceleration.

3) We analyze the coverage for sporadic and uncertain debris
arrivals based on geometric models. Using the analytical
debris arriving probability, we design a robot rotation
scheduling algorithm that minimizes the movement energy
consumption while maintaining a desired level of debris
coverage performance.

We implement a prototype of SOAR and evaluate it through
extensive testbed experiments and trace-driven simulations.
The results show that SOAR can accurately detect debris in
the presence of various dynamics and maintain a satisfactory
level of debris arrival coverage while reducing the energy
consumption of robot movement significantly.

The rest of this paper is organized as follows. Section II
reviews related work. Section III overviews SOAR. Section IV
presents the vision-based debris detection algorithm. Section V
presents the coverage-based rotation scheduling algorithm.
Section VI describes the implementation of SOAR. Section VII
presents the evaluation results. Section VIII concludes.

II. RELATED WORK

Several research efforts have explored the integration
of cameras with low-power wireless sensing platforms.
Cyclops [23] integrates a CMOS imager hosted by a MICA2
mote [11]. It can perform object detection using a naive back-
ground subtraction method. In [31], a low-end camera module
is installed on an AUV for navigation. However, these camera-
based platforms can only conduct simple image processing
tasks due to the resource constraints of motes. Recently, mobile
sensing based on smartphones has received increasing research
interest due to their rich computation, communication, and
storage resources. The study in [32] designs a driving safety
alert system that can detect dangerous driving behaviors using
both front- and rear-facing cameras of a smartphone. In [16], a
barcode-based visual communication scheme is implemented
on smartphone. This paper aims to design an aquatic debris
surveillance robot that utilizes the built-in camera, inertial
sensors, and other resources on smartphone. Different from
existing vision-based systems, we need to deal with several
unique challenges in aquatic debris monitoring, such as camera
shaking and sporadic debris arrivals.

Extracting the foreground objects from a sequence of
video frames is a fundamental CV task. Background sub-
traction [19] is a widely adopted approach, which, however,
often incurs significant computation overhead to resource-
constrained devices. In [26], compressive sensing is applied
for background subtraction to reduce computation overhead.
In [33], an adaptive background model is proposed to trade
off the object detection performance and computation overhead
of background subtraction. These approaches assume a static
camera view, and hence cannot be readily applied to the debris
detection in water environments where camera is constantly
shaking due to waves. This paper develops a collection of
vision-based detection algorithms that are specifically designed
for background subtraction in dynamic water environments and
optimized for smartphone platforms.

Several approaches have been proposed to maintain moni-
toring coverage with cameras. In [13], the placement of static
cameras is determined according to a floor plan. A camera
network deployment approach is developed in [17] to minimize
the coverage overlap between neighboring cameras. Different
from these approaches that focus on static cameras, we exploit
the controllable mobility of robot to increase the likelihood
of capturing debris objects. Moreover, unlike previous studies
(e.g., [9]) that use mobile cameras to cover fixed locations of
interest, this paper aims to reduce the miss rate in covering
sporadic debris arrivals.

III. OVERVIEW OF SOAR

SOAR consists of an off-the-shelf Android smartphone
and a gliding robotic fish. The smartphone is loaded with
an app that implements the CV, movement scheduling, and
cloud communication algorithms. The gliding robotic fish is
capable of moving in water by beating its tail that is driven by
a servo motor. The motor is manipulated by a programmable
control board, which can communicate with the smartphone
through either a USB cable or short-range wireless links
such as ZigBee. Various closed-loop motion control algorithms
based on smartphone’s built-in inertial sensor readings can be
implemented on either fish control board or smartphone.

SOAR is designed to operate on water surface and monitor
floating debris in nearshore aquatic environments, such as
public recreational beaches, where wireless (cellular or WiFi)
coverage is available. We focus on monitoring static or slow-
moving on-water objects, and filter out other objects such as
boats and swimmers based on the estimated speed. When a
long shoreline needs to be monitored, multiple SOAR nodes
can be deployed dispersedly to form barrier coverage. In
this case, the number of needed nodes is the ratio of the
length of the monitored shoreline to the coverage range of
the smartphone’s built-in camera. In this paper, we focus
on the design of debris detection and mobility scheduling
algorithms running on a single SOAR node. The sensing results
of multiple nodes can be sent back to a central server via the
long-range communication interface on smartphones for fusion
and human inspection. SOAR has a limited sensing area due to
the angular view of the built-in camera on smartphone1, which
makes it difficult to capture the debris arrivals that are likely
sporadic [10] [12]. Mobility can be exploited to address this
challenge. The gliding robotic fish is capable of both rotating
and moving forward. As a rotation can be achieved by beating
the fish tail once, it consumes much less energy than moving
forward that requires continuous tail beats. Thus, this paper
exploits the rotation mobility of the robotic fish and assumes
that the SOAR remains relatively stationary in water. In still
water or slow water current, feedback motion control can
maintain SOAR’s station. In the presence of fast water current,
an anchor can be used together with motion control to reduce
energy consumption in maintaining a stationary position.

After the initial deployment, SOAR begins a debris surveil-
lance process consisting of multiple monitoring rounds. In each
round, SOAR executes a rotation schedule, which includes the
camera orientation and an associated monitoring time interval.
Specifically, SOAR rotates to the desired orientation at the
beginning of a round and starts to take images at a certain
rate, which is determined by a sleep/wake duty cycle. For
each image, SOAR uses several CV algorithms to detect the
existence of debris objects in real time. Between two image
captures, SOAR sleeps to save energy. At the end of a round,
SOAR computes the rotation schedule for the next round based
on the detection results to ensure a desired level of debris
coverage. SOAR is designed to achieve long-term (up to a few
months) autonomous debris monitoring. In addition to duty
cycling, it adopts a novel offloading approach to leveraging
the cloud for battery power conservation. Specifically, SOAR
comprises the following two major information processing
components.

Real-time debris detection: This component aims to extract
debris objects from the taken images. It consists of three
lightweight image processing modules, i.e., image registration,
background subtraction, and debris identification, which can
effectively deal with various environment and system dynamics
such as shaking and internal noise of the camera. Specifically,
SOAR first registers each frame by exploiting the unique
features in aquatic environments, e.g., the coastline for inland

1Extra optical components like fisheye lens can be used to broaden the
camera view. However, the integration of these components to SOAR will
complicate the system design. In particular, additional complex and energy-
consuming image processing algorithms (e.g., distortion rectification) are often
needed.

waters and the horizon line for marine scenarios. Then, back-
ground subtraction in HSV color space is performed on the
registered frame to identify the foreground pixel candidates.
Finally, the foreground is passed to debris identification for
noise removal and debris recognition. At runtime, SOAR
minimizes the battery power consumption by determining if
the above image processing tasks should be locally executed
or entirely/partially offloaded to the cloud depending on the
current network condition, e.g., the cellular network availabil-
ity and link speed.

Coverage-based rotation scheduling: On the completion of a
monitoring round, SOAR analyzes the debris coverage perfor-
mance based on the estimated debris movement orientation
and the surveillance history. It then adaptively configures
the camera orientation and monitoring time interval for the
next round. Because of the limited energy supply and power-
consuming movement in water environments, SOAR must
efficiently adjust its orientation while maintaining a desired
level of debris coverage performance. To this end, we propose
a scheduling algorithm that minimizes the rotation energy con-
sumption in a round by dynamically configuring the rotation
schedule, subject to a specified upper bound on miss coverage
rate for debris arrivals.

IV. REAL-TIME DEBRIS DETECTION

The image processing pipeline of SOAR is illustrated in
Figure 2. Although it is based on a collection of elementary
CV algorithms, it is non-trivial to optimize these computation-
intensive synergistic algorithms for smartphones given the
limited resources and stringent requirement on system lifetime.
Specifically, SOAR consists of the following image processing
components. The image registration aligns consecutive frames
to mitigate the impact of camera shaking caused by waves. In
this paper, we focus on the marine environment as an example,
although our techniques can adapt to other environments. In a
marine scenario, the horizon line can be used as a reference
to register the frames. To deal with the high computation
overhead of horizon line extraction, SOAR offloads a portion
of computation to the cloud based on the network link speed
and shaking levels indicated by the smartphone’s inertial sensor
readings. The registered frames are then compared with a
background model to extract the foreground. Lastly, the debris
identification removes the salt-and-pepper noises from the
foreground image and then identifies the debris objects.

A. Horizon-based Image Registration

Image registration is the process of aligning images taken
at different time instants into one coordinate system [19]. In
debris detection, image registration is necessary to mitigate
the impact of camera shaking caused by waves, such that
subsequent pixel-wise processing can be executed properly.
Registration is performed by establishing correspondence be-
tween images based on their distinguishable features. However,
a key challenge is that there are few detectable image features
in typical water environments that can guide the image registra-
tion. A novelty of our approach is to leverage the horizon line,
which segments the sky and water areas, for image registration,
as shown in Figure 2(a).

Fig. 2. Real-time debris objects detection.

We employ Hough transform [18] to extract the horizon
line. Hough transform has been widely used to identify the
positions of lines in an image. We assume that the majority
of an image is either sky or water area, which are separated
by the horizon line. As the sky and water areas typically have
distinct colors [12], Hough transform is able to extract the
horizon line accurately. For each frame, we first convert it to a
grayscale image and detect edges using a Sobel operator [19].
The Sobel operator detects an edge point according to the
local intensity of gradient magnitude. Hough transform then
finds the horizon line through a voting process based on
the number of edge points that each candidate line passes
through. The result of Hough transform is a line expressed
as r= x · cosφ+y · sinφ in the Cartesian coordinate system
originated at the bottom-left corner of an image. The horizon
line is parameterized by r and φ, which are the distance
from the horizon line to the origin and the angle between the
horizon line’s orthogonal direction and x-axis, respectively.
An illustration of the extracted horizon line is shown in
Figure 2(a).

Based on the extracted horizon line, we register each video
frame to mitigate the impact of camera shaking. Specifically,
for two consecutive frames, we register the successor frame
according to the registered predecessor by aligning their ex-
tracted horizon lines. Let ∆y denote the vertical shifting at
the midpoint of the horizon lines, and η denote the angle
that the horizon line rotates in these two frames. We assume
that the midpoints of the horizon lines in the two frames
correspond to the same point in the world plane. Such an
assumption is motivated by the observation that the closed-loop
motion control algorithms can maintain the robot’s orientation
and position by adaptive course-correction. Therefore, ∆y and
η define the affine transform between these two consecutive
frames. First, we shift the successor frame to align the midpoint
of its horizon line with that of the registered predecessor frame
by x′ = x and y′ = y+∆y, where (x, y) are the coordinates
of a pixel in the unregistered frame, and (x′, y′) are the
corresponding coordinates of (x, y) after shifting. Then, we
rotate the frame by

[
xr

yr

]
=

[
cos η sin η x0(1−cosη)−y0 sin η
− sin η cos η x0 sin η−y0(1−cosη)

]
·

[
x′

y′

1

]
,

where (xr , yr) denote the coordinates of the underlying pixel
in the reference frame, and (x0, y0) denote the coordinates of
horizon line midpoint in the successor frame after shifting and
serve as the center of rotation. For those pixels without their
correspondents in the original unregistered frame due to the
rotation, we adopt bilinear interpolation to fill the color data
(i.e., RGB) for them.

B. Background Subtraction

To reduce the energy consumption in image processing,
we adopt a lightweight background subtraction approach to
detecting the foreground debris objects. We first convert the
representation of an image to HSV (Hue, Saturation, and
Value) model. In HSV, hue represents the color, saturation is
the dominance of hue, and value indicates the lightness of
the color. The HSV representation is robust to illumination
changes and hence more effective in interpreting color features
in the presence of reflection in water environments.

In our approach, the background of a pixel is represented
by a Gaussian mixture model (GMM) [19]. The GMM com-
prises K three-dimensional Gaussians, where each Gaussian
characterizes the three channels of HSV color space. When
a new frame is available, each pixel is compared with its
background model. If the HSV vector of a pixel in the new
frame does not fall within a certain range from any mean vector
of the K Gaussians, this pixel is considered a foreground pixel
candidate; otherwise, it is classified as background. Therefore,
the color difference between the foreground and background
affects the classification accuracy. In our implementation, the
range is chosen to be 2.5 times of the standard deviation of
the corresponding Gaussian. Under this setting, the image seg-
mentation can tolerate minor inaccuracy introduced by noises
and accommodate certain environmental condition changes.

Any labeled pixel will be used to update the GMM. In
GMM, each Gaussian has a weight that characterizes the
fraction of historical pixels supporting it. If none of the existing
K Gaussians match this pixel (i.e., the pixel has been classified
as foreground), the distribution with the lowest weight is
replaced by a new Gaussian, which is assigned with a large
variance, a small weight, and a mean vector equal to this
newly arrived pixel; otherwise, the weight, mean, and variance
vectors of the matched Gaussian are updated based on the new
pixel value and a user-specified learning rate. The details of
GMM update can be found in [29]. This scheme allows the
GMM to adapt to environmental condition changes, enhancing
the robustness of background subtraction.

We now discuss the impact of the number of Gaussians
(i.e., K) in the GMM on background substraction performance.
As shown in [29], the background model with K=1 can only
deal with static background. Therefore, more Gaussians are
needed in aquatic debris detection to account for the dynamics
from camera shaking, reflection, and noises. A larger K can
enrich the information maintained by the GMM and hence
improve its robustness. However, it also imposes additional
computation overhead for the smartphone. In Section VII-A3,
we will evaluate the trade-off between system overhead and
detection performance through experiments, which guides the
setting of K . We note that it may require a large K to
describe the environments with more complex and dynamic

background. Our approach can be easily extended to employ
existing online algorithms that maintain a GMM with variable
K adaptive to background changes, such as the reversible jump
Markov chain Monte Carlo method [24] and its variant [30]
that has been used for video processing.

C. Debris Identification

The binarized foreground image contains randomly dis-
tributed noise pixels, as depicted in Figure 2(b). Because the
background subtraction is conducted in a pixel-wise manner,
the labeling of foreground and background can be affected
by camera noise, resulting in false foreground pixels. To
deal with these noise pixels, we adopt the opening operation
in image morphology [19]. The opening operation, which
consists of erosion followed by dilation, eliminates the noise
pixels through erosion while preserving the true foreground by
dilation. After the noise removal, we employ region growing
to identify the debris objects from the foreground image. It
uses the foreground pixels as the initial seed points and forms
connected regions that represent the candidate debris objects
by merging nearby foreground pixels.

We note that the extracted foreground candidate objects
may contain objects that can move actively, e.g., boats and
swimmers. SOAR adopts a threshold-based approach to filter
out these non-debris objects. Specifically, the robot estimates
the object movement speed based on the pinhole camera
projection model (cf. Section V-D). When the estimated speed
is higher than a threshold, SOAR will save the image and
periodically transmit back to a central server for human in-
spection. The threshold on speed is chosen to exclude the non-
debris objects with active mobility. Similar heuristics based
on object moving orientations can be applied to improve the
accuracy of debris recognition. We use another threshold-based
method to remove the small objects. The small object size in
the image usually indicates a false alarm or a distant debris
object. Ignoring them does not affect the system accuracy since
distant real debris objects will likely be detected when they
approach closer to the camera. Note that the shape of debris
object has little impact on the debris detection performance,
as the false negatives in detection are mainly caused by the
high color similarity between foreground and background and
the long distance between object and camera.

D. Dynamic Task Offloading

A key advantage of smartphone-based robots lies in their
capability of leveraging the abundant resources of the cloud. To
prolong the smartphone battery lifetime, SOAR dynamically
offloads the entire/partial image processing to the cloud when
there is network coverage. As the typical coverage of a
cellular tower is up to several miles [28], cellular networks
can be available in nearshore water surface. The offloading
decision mainly depends on two factors: 1) the overhead of
image processing algorithms, e.g., the power consumption,
when they are executed locally; and 2) the wireless network
condition, e.g., the uploading speed, which determines the
energy consumption for uploading images to the cloud. In our
design, SOAR has three offloading schemes, i.e., cloud, local,
and hybrid processing, and dynamically chooses a scheme with
the lowest energy consumption. The energy consumption of
these schemes are analyzed as follows.

3

4

5

6

7

8

9

1 1.5 2 2.5

E
n
er

g
y

(J
)

WiFi link speed γ (Mbps)

cloud processing
hybrid processing

local processing

Fig. 3. Energy consumption per frame on Samsung Galaxy Nexus.

Cloud and local processing schemes: We first analyze
the energy consumption of the local and cloud processing
schemes, where all the processing on the original frame is
conducted either in the cloud or on the phone. When a new
frame is available, SOAR checks the network (3G/4G/WiFi)
link speed and estimates the delay to upload this frame. The
energy consumption for uploading the entire image is given
by ecloud = pc(γ) · s/γ, where s is the frame size, γ is
the measured link speed, and pc(γ) is the uploading power
consumption under the link speed γ. Alternatively, the frame
can be processed on the phone. Let tl denote the delay to pro-
cess a frame locally, including image registration, background
subtraction, and debris identification. Our measurements show
that these modules have similar CPU power consumption,
which is denoted by pl. The energy drain for processing a
frame on the phone is thus given by elocal=pl ·tl.

Hybrid processing scheme: In addition to the above two
options, we propose a hybrid solution that offloads the Hough
transform in image registration to the cloud and conducts
the rest of processing locally. Such a design is motivated
by the observation that the Hough transform incurs nearly
70% processing overhead for a frame (cf. Section VII-A1).
Moreover, as the energy consumption for offloading is largely
determined by the uploading volume, we propose to upload
a rectangular part of the original frame, which contains the
horizon line. As the camera is shaking, the selection is based on
the horizon line in the reference frame and the accelerometer
readings. Specifically, we adopt the accumulated linear vertical
acceleration (denoted by

∑
az) over the time duration from the

predecessor reference frame to the current frame to quantify
the camera shaking. In theory, if

∑
az < 0, the horizon line

will shift upward in the current frame; otherwise, it will shift
downward. Therefore, from the sign of

∑
az , we can estimate

whether the horizon line in the current frame is in the upper
or lower part divided by the horizon line in the reference
frame. We verify this hypothesis using 20 video sequences
with each consisting of 30 frames. The results show that this
hypothesis holds for 576 frames out of all 600 frames. In our
hybrid scheme, the rectangular part to be uploaded has the
original frame width and a height (denoted by hc) from the
horizon line midpoint in the unregistered reference frame to
either width depending on the sign of

∑
az . Let h0 denote

the original frame height, and th denote the delay to conduct
Hough transform locally. The energy consumption for hybrid
processing is given by ehybrid =

hc

h0

ecloud+
tl−th
tl

elocal. Note that
this formula ignores the low-probability cases where the above
hypothesis does not hold. In these cases, the cloud will fail

to identify the horizon line and the original frame will be
processed locally.

By comparing elocal, ehybrid, and ecloud, SOAR chooses a
scheme with the lowest energy consumption. All the parame-
ters except the height hc in hybrid scheme and the link speed
γ can be obtained using offline measurements. In our current
prototype, we use WiFi to upload video frames to the cloud,
although the implementation can be easily extended to cellular
network. We measure the power consumption of a Samsung
Galaxy Nexus using an Agilent 34411A multimeter when the
smartphone is uploading video frames under various WiFi link
speed settings and locally processing the frames. Figure 3 plots
the energy consumption per frame under the three schemes.
Note that for the hybrid scheme, we set hc/h0 = 50%. We
can observe that when the link speed is high, it is preferable
to offload the entire/partial image processing to the cloud for
energy conservation.

V. COVERAGE-BASED ROTATION SCHEDULING

In this section, we first introduce camera sensing and
debris arrival models, and analyze the effectiveness of covering
debris arrivals. We then present a rotation scheduling algorithm
that aims to minimize the rotation energy consumption while
maintaining a desired coverage rate for debris arrivals.

A. Camera and Debris Models

The field of view (FOV) is a widely used concept to
characterize a camera’s sensing area, in which any object with
dimensions larger than pre-defined thresholds can be reliably
detected from the taken images. A camera’s FOV is typically
represented by a sector originated at the camera’s pinhole with
an angular view α and a radius R [19], where α is hardware-
dependent and R can be measured through experiments for
a specific application. For instance, in pedestrian detection,
the camera’s FOV has a radius of up to 40 meters [15]. For
the objects within the FOV, image sensing is insensitive to
their dimensions as long as they are larger than a certain
size. For instance, our on-water experiments show that any
floating object with a cross-sectional area over 0.28m2 (e.g.,
a five gallon water bottle) can be reliably detected at 40
meters away from a smartphone’s camera. We note that FOV
is a conservative approximation to the camera’s sensing area
because the objects outside FOV may also be detected by
the camera. This approximation simplifies the analysis of the
coverage of debris arrivals. In Section V-B, we will show that
the rotation scheduling algorithm does not depend on the value
of R.

Since we focus on the nearshore debris arrival monitoring,
the surveillance region for SOAR is defined as the semi-
circular area originated at the robot with a radius of R. We
define the camera orientation by its optical axis. Because of the
limited angular coverage of FOV, SOAR needs to constantly
adjust its orientation to maintain a desired coverage level for
debris arrivals over the defined surveillance region. In this
paper, we assume that the adjustments of camera orientation
only occur at time instants that are multiples of a fixed time
interval unit, which is referred to as slot.

In the nearshore water environments, debris objects often
passively drift with water current that moves straightly in a

Fig. 4. Illustration of FOV, surveillance region, thickness, debris arriving
angle β, debris movement orientation θ and its estimation, and the cut-off
region.

fixed direction [12]. We set up a Cartesian coordinate system
with x-axis, y-axis, and z-axis, which are parallel, horizontally
perpendicular, and vertically perpendicular to the shoreline,
respectively. We assume that the positions of debris objects on
the water surface at a given time instant follow the Poisson
point process, which has been verified in previous studies [10]
[12]. Our analysis (omitted due to space limit) shows that the
number of debris objects that arrive at the surveillance region
frontier, as illustrated in Figure 4, follows the Poisson process.
A Poisson process is characterized by an arrival rate, denoted
by λ, and a time interval, denoted by τ . The λ is the expected
number of arriving debris objects at the surveillance region
during a slot, and τ is the number of slots. The probability
that there is at least one object arriving at the surveillance
region during the interval τ is

Pa = 1− e−λτ . (1)

As the occurrences of debris objects are rare events, the
Poisson process has a small λ. In Section V-D, we will describe
an approach to estimating λ based on the historical detection
results and envision a cloud-based approach that leverages the
publicly available information about aquatic debris.

B. Debris Arrival Coverage

In the rotation scheduling, an arriving debris object is cov-
ered by SOAR if the arrival position at the surveillance region
frontier falls into the camera’s FOV. A rotation schedule aims
to cover as many newly arriving debris objects as possible.
Accordingly, our rotation scheduling algorithm controls the
orientation of SOAR based on the statistics of the historical
debris arrival observations. Therefore, it is important to model
the arrivals of debris objects at the surveillance region. We note
that whether a debris object covered by the camera’s FOV can
be eventually extracted from the taken images is determined
by the performance of the CV algorithms (cf. Section IV).
However, it is desirable to maximize the coverage rate, which
improves the overall debris monitoring performance. We define
the coverage rate for debris arrivals provided by SOAR as
the ratio of the number of trajectories hitting camera’s FOV
frontier to that hitting surveillance region frontier. However,
one immediate challenge is that lines are uncountable. We
employ thickness in geometric probability [27] to measure
the set of trajectories. Specifically, the thickness of an arc
frontier, denoted by T , is defined as the length of its projection
to the line perpendicular to debris movement orientation, as
illustrated in Figure 4.

The thickness allows us to directly evaluate the debris
coverage performance. We first analyze the probability of
miss coverage based on thickness. Let θ denote the debris
movement orientation, which is the angle between the debris’
trajectory and x-axis. Let β denote the debris arriving angle,
which is the angle between the radius from debris’ arrival
position at the surveillance region frontier and x-axis. Both
θ and β are illustrated in Figure 4. To simplify the discussion,
we discretize the possible arriving angles by 1◦, and define
arrival frontier as the 1◦ arc centered at the arrival position.
Let T (β) and T0 denote the thickness of arrival frontier
and the thickness of the whole surveillance region frontier,
respectively. Based on the geometric relationship, we have
T (β)=2R sin 0.5◦ cos(β−θ) and T0=(1+sin θ)R. Therefore,
the probability that a debris object hits the arrival frontier
defined by β conditioned that its trajectory intersects with the
surveillance region frontier, is given by g(β, θ) = T (β)/T0,
which is independent of R. As the probability that at least
one debris object arrives at the surveillance region is Pa given
in Equation (1), the probability that at least one debris object
reaches the arrival frontier defined by β (denoted by Pa(β))
is Pa(β) = Pa · T (β)/T0 = Pa · g(β, θ). We note that if β is
not covered by the FOV during an interval τ , Pa(β) represents
the probability of missing debris arrivals. We then derive the
miss coverage rate, which will be used to schedule the rotation
of SOAR. Let tr(β) denote the end time instant of the most
recent slot when β was covered by the camera’s FOV, and
t denote the end time instant of interval [tr(β), t], during
which the arrival frontier defined by β remains uncovered. The
miss coverage rate at arriving angle β and time t, denoted by
ω(β, t | tr(β), θ), is defined as the probability of missing debris
arrivals during interval [tr(β), t]. Formally,

ω(β, t | tr(β), θ) = Pa(β) | τ=t−tr(β)

= (1−exp(−λ(t−tr(β))))·g(β, θ). (2)

Note that the miss coverage rate does not depend on the spe-
cific value of R, but the ratio of thicknesses, i.e., g(β, θ). Thus,
the coverage-based rotation scheduling algorithm presented in
Section V-C will not rely on R.

C. Coverage-based Rotation Scheduling

Because of the limited angular coverage and energy budget,
the rotation of SOAR needs to be carefully scheduled to
achieve the desired coverage rate for debris arrivals. In this
section, we formulate the problem of coverage-based robot
rotation scheduling. Our objective is to schedule the next
camera orientation and corresponding monitoring interval to
minimize the overall energy consumption, subject to an upper-
bounded miss coverage rate at all arrival angles.

As the rotation energy consumption is approximately pro-
portional to the orientation change [21], we adopt the changed
orientation to characterize the consumed energy in rotation. Let

θ̃ denote the estimated debris movement orientation (cf. Sec-
tion V-D). Suppose the current camera orientation and time
instant are β′

0 and t′. The next rotation schedule, including
the camera orientation β0 and end time instant of monitoring
interval t, minimizes the average rotation rate v:

v =
|β0 − β′

0|

t− t′
, (3)

H

y2

h1

water

surface

focus

y1

h2

f

z

y

x

(a) Pinhole projection y-z.

x2

water surface

x1

focus

h1
h2

H

d1d2

y
x

z

(b) Pinhole projection x-z.

Fig. 5. Pinhole camera projection model.

subject to

ω(β, t | tr(β), θ̃) < ξ, ∀β∈ [0, β0−α/2] ∪ [β0+α/2, π], (4)

where ξ is a user-specified maximally tolerable miss coverage
rate. The constraint in Equation (4) upper-bounds the miss
coverage rate ω at each uncovered β. Note that for β within
the camera’s FOV, i.e., β∈ [β0−α/2, β0+α/2], it has zero miss
coverage rate. The above problem can be efficiently solved
by searching a set of discrete candidate orientations. During
surveillance, SOAR keeps a map of ω at each β, and updates
it before each new scheduling to account for system dynamics,
which includes the error in orientation adjustment, the updated

θ̃ (cf. Section V-D) and λ. With the updated map of ω, SOAR
adaptively schedules the next orientation and the associated
monitoring interval.

Equation (4) ensures an upper bound on ω for uncovered
arriving angles. Given the debris movement orientation θ,
there always exists a cut-off region as illustrated in Figure 4.
Specifically, the arrival position of a debris object will never
fall into the frontier of this cut-off region. To avoid the
unnecessary rotation, the surveillance region can exclude this
cut-off region. Our analysis shows that v is reduced by about
25% after excluding this cut-off region when θ=π/3.

D. Debris Movement and Arrival Estimation

From Equation (2), the miss coverage rate ω depends
on the debris movement orientation θ. Before deployment,
SOAR can be configured with a coarsely estimated θ from
prior knowledge about the water movement direction in the
deployment region. Once SOAR detects a debris object, θ can
be accurately estimated based on the pinhole camera projection
model and the positions of the object in images. Figure 5
shows the pinhole projection model. Specifically, Figure 5(a)
illustrates how real-world distance along y-axis is projected to
vertical axis h in the image. It can be obtained that |y1−y2|=
fH · |1/h2−1/h1|, where y1 and y2 are distances between
SOAR and the debris object in two frames; h1 and h2 are the
vertical pixel distance equivalents of y1 and y2; f is the camera
focal length; and H is the mounting height of smartphone
on SOAR. Similarly, Figure 5(b) illustrates how real-world
distance along x-axis corresponds to horizontal axis d. The
following relationship holds |x1−x2|=H · |d2/h2−d1/h1|,
where x1, x2, d1, and d2 are similar measures to y1, y2, h1,
and h2. Based on the geometric relation shown in Figure 4,

the estimated debris movement orientation θ̃ is given by

θ̃=arctan

∣∣∣∣
y1−y2
x1−x2

∣∣∣∣=arctan

(
f ·

∣∣∣∣
h1−h2

d2h1−d1h2

∣∣∣∣
)
+θr, (5)

where θr is the heading direction of SOAR and can be obtained
from the built-in digital compass of smartphone. We will

evaluate the accuracy of θ̃ in Section VII-A2. Moreover, the
object movement speed can be estimated by (|x1−x2|

2+|y1−
y2|

2)1/2/|t1−t2|, where t1 and t2 are the time instants when
the object is at (x1, y1, 0) and (x2, y2, 0), respectively.

We then describe two approaches to estimating the debris
arrival rate λ. First, λ can be estimated based on the historical
detection results by SOAR. Suppose the robot detects n debris
objects in the rotation schedule specified by β0 and t. As
discussed in Section V-B, the probability that an arriving
debris object is covered by the camera’s FOV conditioned
that it arrives at the surveillance region is given by the ratio
of their thicknesses, i.e., TFOV/T0. Hence, the expectation of
debris arrivals at the whole surveillance region during one
slot, i.e., λ, can be estimated by nT0/(PdTFOV(t−t′)), where
Pd is the lower bound on detection probability for the FOV
and t− t′ counts the monitoring slots. Second, the long-
range communication capability of SOAR makes it possible to
exploit the available web resources to estimate λ. For instance,
the Marine Debris Clearinghouse [8] is a representative online
tool for aquatic debris tracking. Based on satellite images, on-
site reports, and aquatic field simulations, it can estimate the
intensity of incoming debris over large areas.

VI. SYSTEM PROTOTYPE

We have built a proof-of-concept prototype of SOAR for e-
valuation. The vision-based debris detection algorithm present-
ed in Section IV is fully implemented on smartphone platforms
running Android 4.3 Jelly Bean. System evaluation is mainly
conducted on two representative handsets, a Samsung Galaxy
Nexus (referred to as Galaxy) and a Google Nexus 4 (referred
to as Nexus). The implementation takes about 1.99MB storage
on the phone, and requires about 10.2MB RAM when the
frame resolution is set to be 720×480. When a new frame
is available, SOAR checks the current WiFi condition using
Android API WifiInfo.getLinkSpeed(). Based on the
measured link speed and horizon line position, it determines
whether this newly arrived frame is locally processed or
entirely/partially uploaded to the cloud, following the scheme
proposed in Section IV-D. Our initial implementation of image
processing modules in Java incurs extensive delays on current
Android system. To boost the frame processing performance,
we use OpenCV libraries and interface them with Java using
Java Native Interface on Android. In particular, we adopt
OpenCV’s native implementation of the Hough transform,
which is more efficient than other implementations in our tests.

We integrate the smartphone to a gliding robotic fish
developed in our previous work. The fish platform weights
9 kilogram and represents a hybrid of underwater gliders and
robotic fish with advantages of both. It is equipped with
a ZigBee radio for wireless communication, two 75W · h
onboard batteries, and a circuit board for mobility control,
localization, and navigation. On the control board, we im-
plement a closed-loop proportional-integral-derivative (PID)
controller that adaptively configures the tail beat based on the
discrepancy between the scheduled and actual orientations. In
our current implementation, we use a host computer to relay
the communication between the smartphone (using WiFi) and
the fish (using ZigBee). In the future, we will establish direct

connection between them, and migrate the PID controller to
the smartphone to reduce the physical size and cost of the fish
control board. Figure 1(b) depicts our prototype system that
integrates a Galaxy in a water-proof enclosure with a gliding
robotic fish.

VII. PERFORMANCE EVALUATION

We evaluate SOAR through testbed experiments and sim-
ulations based on data traces collected from the prototype.
The testbed experiments validate the feasibility of SOAR by
evaluating the computation overhead, effectiveness of each
module, and the overall performance of a fully integrated
SOAR. The simulations extensively evaluate the performance
of SOAR working under wide ranges for parameter settings.

A. Testbed Experiments

We evaluate SOAR in controlled lab experiments to fully
understand its performance. We conduct extensive experiments
using our prototype in a 15 feet × 10 feet water tank in
our lab. Along one side of the tank, we vertically place a
piece of white foam board above the water surface to imitate
the sky area. The line where the foam board intersects with
the water surface produces an artificial horizon line. In the
experiments, we set the camera frame rate to be 0.25 fps. The
setting is based on the fact that debris usually has a slow
drifting speed and hence does not require a rapidly updated
background model. Moreover, a low frame rate helps prolong
the battery lifetime. The GMM comprises 3 three-dimensional
Gaussians (i.e., K = 3), unless otherwise specified. We test
the debris detection performance under various environmental
conditions and experimental settings, which include different
camera shaking levels, with and without registration, and
different settings of GMM. For each scenario, we conduct 9
runs of experiments. For each run, we calculate the detection
probability as the ratio of frames with correct detections to the
total frames with debris, and the false alarm rate as the ratio of
frames with false detections to the total frames without debris.

1) Overhead on Smartphone Hardware: We first evaluate
the overhead of the vision-based detection algorithms on
smartphone platforms. Specifically, we measure the compu-
tation delay of each image processing module, i.e., image
registration, background subtraction, and debris identification
on Galaxy and Nexus, respectively. Galaxy has an 1.2GHz
dual-core processor and 1GB memory, and Nexus has an
1.5GHz quad-core processor and 2GB memory. They are
representative mid- and high-end mainstream smartphone plat-
forms. The computation delay is measured as the elapsed time
using Android API System.nanoTime(). The results are
plotted in Figure 6. We can see that background subtraction
takes the least time, followed by debris identification com-
bined with debris movement orientation estimation. Image
registration incurs the longest delay. Breakdown shows that
this long delay is mostly caused by the Hough transform. The
overall computation delay is within 3.7 and 3.3 seconds on
Galaxy and Nexus, respectively, which well meet the real-
time requirement of debris monitoring as debris arrivals are
typically sporadic [10] [12].

0

1

2

3

image background identification

E
x
ec

u
ti

o
n

ti
m

e
(s

)

registration subtraction & θ estimation

Galaxy
Nexus

Hough on Galaxy
Hough on Nexus

Fig. 6. Execution time of image processing mod-
ules.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
D

F

Relative estimation error (%)

with registration

without registration

Fig. 7. CDF and average of the relative estimation
error for θ.

0.5

0.6

0.7

0.8

0.9

1

2 3 6
0

0.2

0.4

0.6

0.8

1

D
et

ec
ti

o
n

p
ro

b
ab

il
it

y

R
el

at
iv

e
ex

ec
u
ti

o
n

ti
m

e

Number of Gaussians K

detection probability
relative execution time

Fig. 8. Impact of the number of mixed Gaussians
K .

 horizon line of predecessor frame
 horizon line of current frame

(a) Original frame (b) Gaussian with the largest weight (c) Without registration (d) With registration

Fig. 9. Sample background subtraction outputs for approaches with/without horizon-based image registration.

2) Accuracy of Debris Movement Orientation Estimation:
We then evaluate the debris movement orientation estimation
presented in Section V-D. Initially, the debris movement ori-
entation θ is unknown to SOAR. After a debris object is
successfully detected in two frames, SOAR can estimate θ
based on Equation (5). In the experiments, an object (a can)
is fastened to a rope. We drag the object using the rope
to simulate the movement of debris object. We define the

relative estimation error as |θ−θ̃|/θ, where θ̃ is the estimated
orientation from Equation (5) and θ is the groundtruth obtained
by using a protractor. Figure 7 plots the cumulative distribution
function (CDF) and the average of the relative estimation error
for the approaches with and without image registration. We can
see that the approach with registration can accurately estimate
θ, with an average relative estimation error of only about 7%.
In contrast, the approach without registration results in an
average relative estimation error of around 43%.

3) Impact of Mixed Gaussians: We now evaluate the im-
pact of the number of mixed Gaussians (i.e., K) on detection
performance. Section IV-B discusses the trade-off between the
detection performance and system overhead caused by the
setting of K . The detection probability and execution time on
Galaxy are plotted in Figure 8. We can see that the detection
probability increases with K . Moreover, Figure 10 evaluates
the false alarm rate versus K , where the error bar represents the
standard deviation. It can be observed that the false alarm rate
decreases with K . A larger K imposes heavier computation
overhead in both image segmentation and background model
update. When the GMM adopts 2 Gaussians, the computation
delay is about 30% of that with 6 Gaussians. From the figures,
we also find that the setting K=3 achieves a satisfactory trade-
off between detection performance and computation delay.
Therefore, we set K=3 in other testbed experiments.

4) Effectiveness of Image Registration: As discussed in
Section IV-B, the background subtraction is conducted in
a pixel-wise manner, hence its performance is sensitive to

camera shaking. Figure 9 shows a sample of background sub-
traction. Specifically, Figure 9(a) is the original frame where
the red and black dashed lines represent the extracted horizon
lines for this frame and the registered predecessor frame,
respectively. Figure 9(b) shows the background model, where
each pixel is the mean vector of the Gaussian with the largest
weight in the GMM. Figure 9(c) is the result of background
subtraction without image registration. Figure 9(d) is the result
with image registration before subtraction. We can see that
our horizon-based registration effectively mitigates the impact
of camera shaking, and hence the detection algorithm can
more accurately pinpoint the foreground object location in the
image. Figure 11 plots the detection probability for approaches
with and without image registration under different camera
shaking levels. In the experiments, we generate different levels
of waves by controlling a feed pump connected to the tank.
The az reported in Figure 11 is the average linear vertical
acceleration (i.e., excluding gravity) measured by the built-
in accelerometer on smartphone, and hence characterizes the
camera shaking levels. We can see that the image registration
not only improves the average detection performance, but
also decreases the variance in detection probability in the
presence of camera shaking. It effectively mitigates the impact
of shaking, leading to a smaller degradation in detection
probability as camera shaking increases.

5) Integrated Evaluation: In this set of experiments, all
modules of SOAR (vision-based debris detection, θ estima-
tion, rotation scheduling, and PID-controlled orientation ad-
justment) are integrated and evaluated. Similar to previous
experiments, we drag a can to simulate a debris object. The
debris movement orientation θ is 0.156π, which is unknown
to the system before deployment. We set the slot duration
as 1 minute. At time t = 0, SOAR is deployed perpendic-
ularly to the tank length. At time t = 1min, it starts the
first monitoring round as discussed in Section III. In this
experiment, SOAR achieves 83.3% detection probability and

0

0.05

0.1

0.15

0.2

2 3 6
Number of Gaussians K

F
al

se
al

ar
m

ra
te

Fig. 10. False alarm rate versus number of mixed
Gaussians K .

0.5

0.6

0.7

0.8

0.9

1

w/o registration w/i registration

D
et

ec
ti

o
n

p
ro

b
ab

il
it

y

az =0.17m/s2

az =0.09m/s2

Fig. 11. Impact of image registration and shaking
level.

0◦

30◦

60◦

90◦

1 2 3 4 5 6
Index of scheduling rounds

C
am

er
a

o
ri

en
ta

ti
o
n
β simulated schdl

expected schdl

actual orient

Fig. 12. Simulated / expected / actual orientations
in the integrated evaluation.

0

5

10

15

20

25

30

1 2 3 4 5 6

T
o
ta

l
m

o
n
it

o
ri

n
g

ti
m

e
(m

in
)

Index of scheduling rounds

expected schedule

simulated schedule

Fig. 13. Simulated / actual monitoring intervals in
the integrated evaluation.

0.5

0.6

0.7

0.8

0.9

1

0.2 0.6 1.2 2

D
et

ec
ti

o
n

p
ro

b
ab

il
it

y

Frame rate

trace 1
trace 2

Fig. 14. Impact of frame rate on debris detection
probability.

0

0.1

0.2

0.3

0.4

1 2 3 4 5 6
0.2

0.4

0.6

0.8

M
ax

im
u
m

ω

A
v
er

ag
e

ro
ta

ti
o
n

ra
te
v

Index of scheduling rounds

desired upper bound on ω

ωm of our approach

ωm of uniform scan

v of our approach

v of uniform scan

Fig. 15. Maximum ω and average rotation rate v
versus index of scheduling rounds.

5.8% average relative θ estimation error. We further study the
performance of rotation scheduling and orientation adjustment
of SOAR. It is unlikely for SOAR to rotate to the exact
scheduled orientation due to complex fluid dynamics and
compass inaccuracy. This orientation adjustment error and
minor inaccuracy in θ estimation affect the rotation scheduling
for the next round. For evaluation, we compare the actual
rotations of SOAR with the real-time scheduled rotations
during this experiment (referred to as expected schedule), and
those in an ideal simulation (referred to as simulated schedule)
where we assume both orientation adjustment and θ estimation
are accurate and thus feed the scheduling algorithm with
groundtruth. We note that the differences between the actual
rotations and expected schedule characterize the performance
of the PID-controlled orientation adjustment. The deviations
between the expected schedule and simulated schedule indicate
the robustness of the rotation scheduling algorithm to the con-
trol and estimation errors. The results are shown in Figure 12
and Figure 13. We find that the orientation adjustment errors
vary for different expected orientations due to different levels
of fluid obstruction. For instance, in the 3rd scheduling round,
SOAR is subject to a higher level of fluid obstruction when
it targets an expected orientation perpendicular to the water
movement direction. Our PID controller can generally maintain
an orientation adjustment error lower than 15◦. Moreover, as
shown in Figure 13, the expected monitoring intervals well
follow the simulated schedule because the temporal scheduling
is mainly determined by the debris arriving intensity over time.

B. Trace-driven Simulations

To more extensively evaluate SOAR under realistic settings,
we conduct simulations driven by real data traces collected
using our prototype in the water tank. The data include error
traces of SOAR orientation adjustments and video traces of

debris arrivals. First, the error traces of SOAR orientation
adjustments are collected using our prototype system. The
camera orientation is represented by the heading direction
of SOAR. We collect the error traces by measuring the
discrepancy between the desired orientation and actual heading
direction. Second, we use our prototype to collect two distinct
sets of video traces of an arriving bottle. In our prototype,
the phone is mounted about 3 inches above the water surface.
Trace 1 is collected in calm environment, and has 1495 frames
in total. Trace 2, with a total of 1275 frames, is collected in
the presence of persistent waves generated by the feed pump.
To provide groundtruth data, the foreground debris object in
each frame is manually labeled.

In the simulations, SOAR is deployed to monitor debris
objects arriving in a semi-circular surveillance region. The
arrival rate λ is set to be 9, unless otherwise specified. The
debris movement orientation is θ=π/3, and we assume that θ
is known to the robot. We set the FOV angular coverage α to
be 5π/18 based on our measurements of Galaxy. Initially, the
robot is deployed perpendicular to the shoreline. It is allowed
to adjust its orientation after the first slot. For each orientation
adjustment, the actual direction is set according to the collected
traces, which is thus subject to discrepancies from the desired
orientation.

1) Impact of Frame Rate on Detection Performance:
Figure 14 plots the detection probability versus frame rate.
We can observe that the detection probability increases with
frame rate. This is because a higher frame rate enables the
GMM to be more timely updated to capture the environmental
condition changes. However, the improvement gained by in-
creasing frame rate is fairly limited. The reasons are two-fold.
First, debris objects usually drift slowly with water current.
The GMM can thus be updated with a low rate. Second,

0.1

0.3

0.5

0.7

1 3 5 7
0

5

10

15

20

A
v
er

ag
e

ro
ta

ti
o
n

ra
te
v

T
o
ta

l
m

o
n
it

o
ri

n
g

ti
m

e
(s

lo
t)

Index of scheduling rounds

t (λ=4.5)
t (λ=9.0)

v (λ=4.5)
v (λ=9.0)

Fig. 16. Impact of arrival rate λ on rotation rate
v and scheduling frequency.

0

0.1

0.2

0.3

1 2 3 4 5
Index of scheduling rounds

M
ax

im
u
m

ω

ε(θ) =0%
ε(θ) =5%

ε(θ)=10%
ε(θ)=15%

Fig. 17. Impact of estimation error in debris
movement orientation θ.

25

30

35

40

45

50

10 20 30 40
0

2

4

6

L
if

et
im

e
(d

ay
)

E
n
er

g
y

co
n
su

m
p
ti

o
n

Duty cycle (%)

(W
·
h

/d
ay

)

fish rotation
phone sleep

phone wake

lifetime (local)
lifetime (hybrid)

Fig. 18. Projected lifetime and daily energy
consumption of SOAR.

our horizon-based image registration effectively mitigates the
impact of camera shaking, which is the major affecting factor
for debris detection. Hence, a low frame rate can achieve sat-
isfactory debris detection performance. Moreover, in terms of
system overhead, a low frame rate is desirable for smartphone
platforms that have constraints on resources and energy supply.

2) Coverage Effectiveness: We compare the coverage ef-
fectiveness of our approach with a heuristic baseline approach
that uniformly scans the surveillance region. Specifically, the
baseline approach evenly partitions the semi-circular surveil-
lance region into ⌈π/α⌉ sub-regions. In this scheme, the robot
sequentially scans the sub-regions by making an orientation
adjustment each slot. For our approach, the desired upper
bound on miss coverage rate is set to be 0.3. We evaluate
the coverage effectiveness by examining the maximum miss
coverage rate (denoted by ωm) among all arriving angles. The
ωm characterizes the worst-case debris coverage performance
for a rotation schedule. Figure 15 plots the ωm versus index
of scheduling rounds. We can observe that our approach can
guarantee the upper bound on miss coverage rate, since it
adaptively allocates surveillance slots based on the ω at each
β, while the uniform scan cannot bound the ωm. Moreover, we
evaluate the average rotation rate v, where a larger v indicates
higher power consumption. Figure 15 also plots the v versus
index of scheduling rounds. As the uniform scan approach
continuously adjusts the orientation, it consumes more power
than our approach.

3) Impact of Arrival Rate: Figure 16 plots the average
rotation rate v versus index of scheduling rounds under dif-
ferent settings of debris arrival rate λ. We can see that the
robot has a higher v when λ is higher. This is consistent
with the intuition that the robot needs to rotate faster when
debris arrives more frequently. Figure 16 also plots the total
monitoring time versus index of scheduling rounds. We can see
that for a higher λ, the rotation scheduling has to be conducted
more frequently to meet the upper-bounded miss coverage rate
ω, as ω at the uncovered arriving angles increases with λ.
The robot is scheduled to rotate less frequently under a lower
λ, resulting in a lower v and a longer monitoring interval at
each orientation. Overall, the results in Figure 16 demonstrate
that our scheduling algorithm can adaptively control the robot
rotation to achieve the desired coverage performance while
minimizing the energy consumption.

4) Impact of Estimation Errors: This set of simulations
evaluate the impact of estimation errors of debris movement
orientation θ on debris coverage performance. Let ε(·) denote

the relative estimation error with respect to groundtruth. Fig-
ure 17 plots the maximum miss coverage rate ωm versus index
of scheduling rounds under various estimation error levels for
θ. We note that the estimation error in θ affects the scheduling
of camera orientation, as θ determines the distribution of debris
arriving probability at the frontier of surveillance region. From
the figure, we can see that our rotation scheduling algorithm
generally maintains ωm below the desired upper bound of 0.3,
as long as the relative estimation errors for θ is below 15%. As
shown in Section VII-A, ε(θ) is only about 7%. Thus, SOAR
can tolerate practical inaccuracy in estimating θ. Moreover,
our analysis (omitted due to space limit) validates that SOAR
shows similar tolerance to the inaccuracy in estimating debris
arrival rate λ.

5) Projected Lifetime: Finally, we evaluate the lifetime of
SOAR based on its power consumption profile. The major
energy consumption of SOAR is due to the smartphone during
the wake periods and the fish rotation. According to our results
from the integrated evaluation (cf. Figure 13), a monitoring
round lasts for 5 minutes averagely, and SOAR can rotate to the
scheduled orientation within 15 seconds. We can thus calculate
the upper bound on daily (12 hours of daytime) energy con-
sumption for fish rotation as (12×60/5)×(15/3600)×pr W ·h,
where pr is the battery power consumption for fish rotation.
The energy drain on smartphone can be calculated using offline
power consumption measurements and the duty cycle. The
total battery capacity of SOAR is 170W·h, including a backup
13.5W ·h and two main 75W ·h batteries on the fish, and a
6.48W·h battery on the smartphone. Fig.18 plots the projected
lifetime under various duty cycle settings, when all the CV
tasks are conducted on the smartphone. The duty cycle is
defined as the ratio of wake time to the total time. As expected,
the lifetime decreases with duty cycle. Note that a low duty
cycle will decrease the temporal sensing granularity of SOAR.
For instance, during a 5 minutes monitoring interval, it can
capture and process about 20 and 50 frames under 20% and
50% duty cycles, respectively. The breakdown of SOAR daily
energy consumption is also shown in Fig.18. We find that
the majority of energy is consumed by the wake periods and
fish rotation. Moreover, Fig.18 also plots the projected lifetime
when smartphone runs the hybrid scheme under a link speed of
2Mbps. The hybrid scheme reduces the power consumption for
smartphone during the wake periods by offloading the intensive
Hough transform to the cloud. It can be seen that the hybrid
scheme leads to 9.1% to 21.5% improvement on lifetime under
different duty cycles.

VIII. CONCLUSION AND FUTURE WORK

This paper presents SOAR – a new vision-based robotic
sensor system designed for aquatic debris monitoring. SOAR
integrates an off-the-shelf Android smartphone and a gliding
robotic fish. The vision-based debris detection algorithms of
SOAR effectively deal with various dynamics such as camera
shaking and reflection. A rotation scheduling algorithm adap-
tively guides the rotation of SOAR to capture the images of
arriving debris objects. Moreover, SOAR dynamically offloads
the entire/partial image processing to the cloud for energy
conservation. Testbed experiments and extensive simulations
based on a prototype system show that SOAR provides robust
debris detection performance, meets the real-time requirement
on smartphone platforms, and efficiently covers the sporadic
debris arrivals.

In our future work, we plan to deploy SOAR in an
inland lake and evaluate it under various conditions such as
debris flow speed and brightness/lightening. Moreover, we
will develop multi-SOAR coordination schemes, including the
fusion of images taken by different robots and collaborative
movement/rotation scheduling algorithms for increased spa-
tiotemporal coverage.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. National
Science Foundation under grants CNS-1218475, IIS-0916720,
CNS-1059373, IIS-1319602, CCF-1331852, IIP-1343413, and
the National Nature Science Foundation of China (Grant
No. 61202350). We thank Tian Hao, Dennis Phillips, and
Zheyun Feng for their help on Android development, platform
building, and image processing algorithms. We also thank our
shepherd Dr. Bodhi Priyantha and the anonymous reviewers
for providing valuable feedback.

REFERENCES

[1] 2011 Japan tsunami. http://marinedebris.noaa.gov/tsunamidebris.

[2] Hurricane Sandy. http://usat.ly/LWoxTI.

[3] Marine debris impacts. http://water.epa.gov/type/oceb/marinedebris.

[4] Problem with marine debris. http://waterboards.ca.gov/water issues.

[5] Project Kaisei. http://projectkaisei.org.

[6] Gliding robotic fish. http://nbcnews.to/1fGAomj.

[7] LG Optimus Net. http://amzn.to/Y4BvO9.

[8] NOAA Clearinghouse. http://clearinghouse.marinedebris.noaa.gov.

[9] J. Ai and A. Abouzeid, “Coverage by directional sensors in randomly
deployed wireless sensor networks,” Journal of Combinatorial Opti-

mization, vol. 11, no. 1, pp. 21–41, 2006.

[10] R. C. Boland and M. J. Donohue, “Marine debris accumulation in
the nearshore marine habitat of the endangered Hawaiian monk seal,”
Marine Pollution Bulletin, vol. 46, no. 11, pp. 1385–1394, 2003.

[11] Crossbow Technology, MICA2, TelosB datasheets.

[12] J. Davies, J. Baxter, M. Bradley, D. Connor, J. Khan, E. Murray,
W. Sanderson, C. Turnbull, and M. Vincent, Marine Monitoring Hand-

book. Joint Nature Conservation Committee, 2001.

[13] U. M. Erdem and S. Sclaroff, “Automated camera layout to satisfy
task-specific and floor plan-specific coverage requirements,” Computer

Vision and Image Understanding, vol. 103, no. 3, pp. 156–169, 2006.

[14] C. C. Eriksen, T. J. Osse, R. D. Light, T. Wen, T. W. Lehman, P. L.
Sabin, J. W. Ballard, and A. M. Chiodi, “Seaglider: a long-range
autonomous underwater vehicle for oceanographic research,” IEEE

Journal of Oceanic Engineering, vol. 26, no. 4, pp. 424–436, 2001.

[15] T. Gandhi and M. M. Trivedi, “Pedestrian protection systems: issues,
survey, and challenges,” IEEE Transactions on Intelligent Transporta-

tion Systems, vol. 8, no. 3, pp. 413–430, 2007.

[16] T. Hao, R. Zhou, and G. Xing, “COBRA: color barcode streaming
for smartphone systems,” in Proceedings of the 10th International

Conference on Mobile Systems, Applications, and Services (MobiSys),
2012, pp. 85–98.

[17] M. Hoffmann, M. Wittke, J. Hahner, and C. Muller-Schloer, “Spatial
partitioning in self-organizing smart camera systems,” Journal of Se-

lected Topics in Signal Processing, vol. 2, no. 4, pp. 480–492, 2008.

[18] J. Illingworth and J. Kittler, “A survey of the Hough transform,”
Computer Vision, Graphics, and Image Processing, vol. 44, no. 1, pp.
87–116, 1988.

[19] A. K. Jain, Fundamentals of Digital Image Processing. Prentice Hall,
1989, vol. 3.

[20] S. Kako, A. Isobe, and S. Magome, “Low altitude remote-sensing
method to monitor marine and beach litter of various colors using a
balloon equipped with a digital camera,” Marine Pollution Bulletin,
vol. 64, no. 6, pp. 1156–1162, 2012.

[21] N. E. Leonard and J. G. Graver, “Model-based feedback control of
autonomous underwater gliders,” IEEE Journal of Oceanic Engineering,
vol. 26, no. 4, pp. 633–645, 2001.

[22] T. Mace, “At-sea detection of marine debris: overview of technologies,
processes, issues, and options,” Marine Pollution Bulletin, vol. 65, no. 1,
pp. 23–27, 2012.

[23] M. Rahimi, R. Baer, O. I. Iroezi, J. C. Garcia, J. Warrior, D. Estrin,
and M. Srivastava, “Cyclops: in situ image sensing and interpretation
in wireless sensor networks,” in Proceedings of the 3rd International

Conference on Embedded Networked Sensor Systems (SenSys), 2005,
pp. 192–204.

[24] S. Richardson and P. J. Green, “On Bayesian analysis of mixtures with
an unknown number of components,” Journal of the Royal Statistical

Society, vol. 59, no. 4, pp. 731–792, 1997.

[25] D. L. Rudnick, R. E. Davis, C. C. Eriksen, D. M. Fratantoni, and M. J.
Perry, “Underwater gliders for ocean research,” Marine Technology

Society Journal, vol. 38, no. 2, pp. 73–84, 2004.

[26] Y. Shen, W. Hu, J. Liu, M. Yang, B. Wei, and C. T. Chou, “Efficient
background subtraction for real-time tracking in embedded camera
network,” in Proceedings of the 10th International Conference on

Embedded Networked Sensor Systems (SenSys), 2012, pp. 295–308.

[27] H. Solomon, Geometric Probability. Society for industrial and applied
mathematics, 1978, vol. 28.

[28] C. Song, Z. Qu, N. Blumm, and A.-L. Barabási, “Limits of predictability
in human mobility,” Science, vol. 327, no. 5968, pp. 1018–1021, 2010.

[29] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture mod-
els for real-time tracking,” in Proceedings of the 13th IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 1999, pp. 246–
252.

[30] R. Tan, H. Huo, J. Qian, and T. Fang, “Traffic video segmentation using
adaptive-k gaussian mixture model,” in Advances in Machine Vision,

Image Processing, and Pattern Analysis, 2006, pp. 125–134.

[31] I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke, “Data
collection, storage, and retrieval with an underwater sensor network,”
in Proceedings of the 3rd International Conference on Embedded

Networked Sensor Systems (SenSys), 2005, pp. 154–165.

[32] C.-W. You, N. D. Lane, F. Chen, R. Wang, Z. Chen, , T. J. Bao,
Y. Cheng, M. Lin, L. Torresani, and A. T. Campbell, “CarSafe app:
alerting drowsy and distracted drivers using dual cameras on smart-
phones,” in Proceedings of the 11th International Conference on Mobile

Systems, Applications, and Services (MobiSys), 2013, pp. 13–26.

[33] Z. Zivkovic, “Improved adaptive Gaussian mixture model for back-
ground subtraction,” in Proceedings of the 17th International Confer-

ence on Pattern Recognition (ICPR), 2004, pp. 28–31.

