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Abstract—Wireless sensor networks (WSNs) deployed for mission-critical applications face the fundamental challenge of meeting
stringent spatiotemporal performance requirements using nodes with limited sensing capacity. Although advance network planning
and dense node deployment may initially achieve the required performance, they often fail to adapt to the unpredictability and
variability of physical reality. This paper explores efficient use of mobile sensors to address limitations of static WSNs for target
detection. We propose a data-fusion-based detection model that enables static and mobile sensors to effectively collaborate in target
detection. An optimal sensor movement scheduling algorithm is developed to minimize the total moving distance of sensors while
achieving a set of spatiotemporal performance requirements including high detection probability, low system false alarm rate, and
bounded detection delay. The effectiveness of our approach is validated by extensive simulations based on real data traces collected
by 23 sensor nodes.
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1 INTRODUCTION

DEPLOYING wireless sensor networks (WSNs) for mission
critical applications (such as intruder detection and

tracking) often face the fundamental challenge of meeting
stringent spatial and temporal performance requirements
imposed by users. For instance, a surveillance application
may require any intruder to be detected with a high
probability (e.g., >90%), a low false alarm rate (e.g., <1%),
and within a bounded delay (e.g., 20 s). Due to the limited
capability and unreliable nature of low-power sensor nodes,
overprovisioning (of coverage, detection, and communica-
tion capabilities) seems to be the only choice for a static
sensor network to meet such stringent performance
requirements. However, overprovisioning only works up
to the point where the reality meets the original expectation
about the characteristics of physical phenomena and
environments. If a new on-demand task arises after
deployment and its requirements exceed the statically
planned network capability, the task could not be accom-
plished. For instance, in a battlefield monitoring scenario,
sensor failures in a small region may lead to a perimeter

breach and the sensor nodes deployed in other regions
become useless.

To better cope with the unpredictability and variability of
physical reality and improve the agility of sensor networks,
mobile sensors can be introduced to dynamically reconfi-
gure the sensor network capability in an on-demand manner.
In a static-mobile hybrid sensor network, the mobile sensors
can move close to targets and increase the signal-to-noise
ratio (SNR) and the fidelity of detection results beyond what
is achievable by static sensor nodes alone in many situations.
Furthermore, efficient collaboration between mobile and
static nodes could effectively change sensing densities on
demand, potentially reducing the number of sensors needed
comparing to all-static network deployments.

However, several challenges must be addressed in order
to take advantage of the mobility of WSNs in target detection.
First, due to the higher design complexity and manufactur-
ing cost, the number of mobile nodes available in a network is
often limited. Therefore, mobile sensors must effectively
collaborate with static sensors to achieve the maximum
utility. Second, mobile sensors are only capable of low-speed
and short-distance movement, in practice, due to the high
power consumption of locomotion. For instance, the typical
speed of several mobile sensor platforms (e.g., Packbot [33],
Robomote [14], and XYZ [28]) is only 0.5-2 m/s. An XYZ
mobile sensor powered by two AA batteries can only move
about 165 meters [28] before the depletion of batteries.
Therefore, the movement of mobile sensors must be
efficiently scheduled in order to maximize the amount of
target information gathered within a short moving distance.

In this paper, we propose a data-fusion-centric target
detection model that features effective collaboration be-
tween static and mobile sensors. We derive an optimal
sensor movement scheduling algorithm that minimizes the
total moving distance of sensors under a set of spatiotem-
poral performance requirements including: 1) bounded
detection delay; 2) high target detection probability; and
3) low system false alarm rate. Furthermore, we conduct
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extensive simulations based on real data traces collected by
23 sensors in the SensIT vehicle detection and classification
experiments [17]. Our results show that a small number of
mobile sensors can significantly boost the detection perfor-
mance of a network. Moreover, our algorithm can achieve
satisfactory performance in a range of realistic scenarios
with single/multiple moving vehicles and high variations
in the speed of mobile sensors.

The rest of the paper is organized as follows: Section 2
reviews related work. Sections 3 and 4 introduce the
background and the formulation of our problem, respec-
tively. The optimal sensor movement scheduling is studied
in Section 5. Extensions of our solution are discussed in
Section 6. We present simulation results in Section 7 and
conclude the paper in Section 8.

2 RELATED WORK

Recent work demonstrated that the sensing performance of
WSNs can be improved by integrating mobility. Several
projects proposed to eliminate coverage holes in a sensing
field by relocating mobile sensors [5], [39], [37]. Although
such an approach improves the sensing coverage of a
network deployment, it does not dynamically improve the
network’s performance after targets of interest appear.
Complementary to these projects, we focus on online sensor
collaboration and movement scheduling strategies that are
used after the appearance of targets.

In our recent work [34], we proposed a decision-fusion-
based detection model in which each mobile sensor makes
its own detection decision and locally controls its move-
ment. In this paper, we adopt a value-fusion-based
detection model that significantly simplifies the task of
mobile sensors. Specifically, each mobile sensor in a
detection process is only required to move a certain distance
and send its measurements to its cluster head. Such a model
is more suitable for mobile sensors with limited capability
of signal processing and motion control. In contrast, a
mobile sensor in the algorithm proposed in [34] must be
able to locally detect targets and adaptively control their
movement. Moreover, this paper studies several important
issues that are not addressed in [34] including optimal
movement scheduling and multitarget detection.

Several recent studies [8], [26] analyzed the impact of
mobility on detection delay and area coverage. These studies
are based on random mobility model and do not address the
issue of actively controlling the movement of sensors. Bisnik
et al. [2] analyzed the performance of detecting stochastic
events using mobile sensors. Chin et al. [9] proposed to
improve the coverage of a region by patrolling static routes
using mobile sensors. Different from [9], we study efficient
sensor collaboration and movement scheduling strategies
that achieve specified target detection performance. Mobile
sensors that can move reactively are used in a networked
robotic sensor architecture [1], [29] to improve the sampling
density over a region. However, they did not focus on target
detection under spatiotemporal performance constraints.

Collaborative target detection in stationary sensor net-
works has been extensively studied [4], [12], [11], [16], [25],
[36]. Several recent projects also studied network deploy-
ment strategies that can achieve specified detection perfor-
mance [11], [15], [41]. Our recent work [40] investigates the
fundamental impacts of data fusion on the coverage of

WSNs. Practical network protocols that facilitate target
detection and tracking using static or mobile sensors have
also been investigated [6], [20], [27], [42]. Complementary to
these studies that deal with the mobility of targets, we focus
on improving target detection performance by utilizing the
mobility of sensors.

Several recent studies [31], [3], [7] formulate target
detection and tracking in mobile WSNs as game problems
and propose several motion strategies for mobile sensors. In
these works, the mobile sensors move actively to improve
the surveillance quality. However, the power consumption
of locomotion is not explicitly considered. In contrast, the
mobile sensors in our approach move reactively only when a
coarse detection consensus is reached and the power
consumption of locomotion is minimized.

As a fundamental issue in robotics, motion planning has
been extensively studied [22]. We refer to [21], [10] for
comprehensive surveys on this topic. Recent works [30], [23]
consider the motion planning/control of autonomous robots
for searching/tracking targets. Sensor movement schedul-
ing in mobile WSNs for target detection poses several new
challenges that have not been addressed in the existing
robotic motion planning literature, which include limited
mobility of sensors, resource constraints, and stringent
quality-of-service requirements such as low false alarm rate,
high detection probability, and bounded detection delay.

3 PRELIMINARIES

In this section, we describe a single-sensor sensing model and
a multisensor fusion model that are used in our solutions.

3.1 Target and Sensing Model

Sensors detect targets by measuring the energy of signals
emitted by targets. Suppose a target is at location u and emits
a signal of powerW. The signal power decays as a function of
the distance from the target. The signal power measured by a
sensor that is d meters away from the target is given by

WðdÞ ¼ W � wðdÞ;

where wðdÞ is a nonincreasing function satisfying wð0Þ ¼ 1
and wð1Þ ¼ 0. The wðdÞ is referred to as the signal decay
function.

Measurements at a sensor are corrupted by noise
modeled as the Gaussian distribution with zero mean. Let
N2
i ðT Þ denote the noise energy measured by sensor i during

time interval T . Let xi be the distance between sensor i and
the target. When the target remains stationary during T , the
total energy sensor i measures during T is:

UiðT Þ ¼WðxiÞ � T þN2
i ðT Þ: ð1Þ

We note that the above sensing and noise models have
been widely assumed in the literature of signal detection
[17], [36], [12], [34], [40], [41] and also have been empirically
verified [24], [19]. We note that the algorithm proposed in
this paper does not depend on the specific form of the
signal decay function wðdÞ. In practice, the parameters of
sensing and noise models are often estimated using a
training data set before deployment or during initialization
phase of the network. In particular, for acoustic sensors, the
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signal decay function can be expressed as follows [17], [12],
[34], [41]:

wðdÞ ¼
1

ðd=d0Þk
; if d > d0;

1; if d � d0;

8<
: ð2Þ

where k is the decay factor and d0 is a constant determined
by the size of the target and the sensor. We note that the
decay factor k is typically between 2 to 5. In this paper, we
adopt the signal decay function in (2) for the numerical
examples and simulations that are based on the acoustic
data traces from the SensIT experiments [17].

3.2 Multisensor Fusion Model

We assume that the network is organized into clusters.
Sensors send their energy measurements to the cluster
head, which, in turn, compares the average of all measure-
ments to a threshold �. If the average is greater than �, the
cluster head decides that a target is present. Otherwise, it
decides there is no target. � is referred to as the detection
threshold hereafter. Such a value-based data fusion model
has been studied in the literature [12].

The performance of detection is characterized by the
probability of false alarm (or false alarm rate) and
probability of detection, denoted by PF and PD, respec-
tively. The PF is the probability that a target is regarded to
be present when the target is actually absent. The PD is the
probability that a target is correctly detected. Suppose there
exist n sensors and each sensor measures signal energy for
duration T , PF can be expressed as

PF ¼ P
1

n

Xn
i¼1

N2
i ðT Þ > �

 !

¼ 1� P
Xn
i¼1

N2
i ðT Þ � n�

 !
:

ð3Þ

We assume that the noise signal strength is a random
variable that follows zero-mean normal distribution. Hence,Pn

i¼1 N
2
i ðT Þ follows the Chi-square distribution with n

degrees of freedom whose cumulative distribution function
is denoted as Xnð�Þ. So, (3) becomes:

PF ¼ 1�Xnðn�Þ: ð4Þ

The probability of detecting a target is

PD ¼ P
1

n

Xn
i¼1

ðWðxiÞ � T þN2
i ðT ÞÞ > �

 !

¼ P
Xn
i¼1

N2
i ðT Þ > n� �

Xn
i¼1

WðxiÞ � T
 !

¼ 1�Xn n� �
Xn
i¼1

WðxiÞ � T
 !

:

ð5Þ

4 MOBILITY-ASSISTED SPATIOTEMPORAL

DETECTION PROBLEM

This section formulates our problem called the Mobility-
assisted Spatiotemporal Detection (MSD). We first provide
a brief overview of our basic approach. We describe the

assumptions made in this paper in Section 4.3 and formally
formulate the MSD problem in Section 4.4.

4.1 Approach Overview

The MSD problem is characterized by a 4-tuple ðA;�; �;DÞ.
Specifically, for a given set of static and mobile sensors and
any target that appears at one of the locations in set A, our
objective is to minimize the total expected moving distance
of the mobile sensors subject to the following constraints:
1) PD is no lower than �; 2) PF is no higher than �; and
3) the expected detection delay is no greater than D
seconds. The objective of minimizing the total expected
moving distance of mobile sensors is motivated by the
following practical considerations. First, as discussed in
Section 1, reducing the moving distance of mobile sensors
prolongs network lifetime as the power consumption of
locomotion is high. Second, short moving distances mitigate
the side effects of mobility such as disruptions to network
topology and compromise on stealthiness of a network
which is not desirable for many applications deployed in
hostile environments like battlefields.

We assume that targets appear at a set of known physical
locations referred to as surveillance locations with certain
probabilities. Surveillance locations are often identified by
the network autonomously after the deployment. We note
that the monitored physical phenomenon in many applica-
tions has complex or unknown spatial distribution. The
network is organized into clusters around surveillance
locations by running a clustering protocol. Clustering has
considerable impact on the detection performance of the
network. We note that clustering in WSNs has been
extensively studied. In particular, if the surveillance
locations are static due to constant target distribution, we
can employ static clustering algorithms [41]. The clustering
algorithm in [41] maximizes the system detection perfor-
mances at surveillance locations. If the surveillance loca-
tions are dynamic due to changeable target distribution, we
can employ dynamic clustering algorithms such as the one
proposed in [6]. In this paper, the sensor closest to the
surveillance location is elected as the cluster head. Each
static sensor belongs to only one cluster. However, a mobile
sensor may belong to multiple clusters because it can
contribute to the target detection at different surveillance
locations. In the rest of this paper, we focus on a
surveillance location and the corresponding cluster.

We propose a data-fusion-centric detection model as
follows: Initially, all sensors in a cluster periodically send
the measurements to the cluster head that compares the
average energy against a threshold �1. Once a positive
detection decision is made, the cluster head initiates the
second phase of detection by sending mobile sensors on a
movement schedule S that specifies which sensors should
move, the time instances to start moving, and the distances
to move. Mobile sensors then move toward the surveillance
location according to the schedule. After a certain delay,
each sensor sends the cluster head the sum of its energy
measurements. Finally, the final detection decision is made
by the cluster head by comparing against another threshold
�2. The detection thresholds �1, �2 and the movement
schedule S are determined under the constraints that the
aggregate delays, PD and PF of the two phases must satisfy
the requirements specified by D, �, and �, respectively.
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A key advantage of the above two-phase detection model
is the reduced total distance of moving as the mobile
sensors move in a reactive manner. Moreover, this model
facilitates the collaboration between static and mobile
sensors. As the decision of the first phase is made based
on the measurements of all sensors in a cluster, the static
sensors help filter out false alarms that would trigger
unnecessary movement of mobile sensors. In addition, the
accuracy of the final detection decision is improved in
the second phase because the signal to noise ratios are
increased as the mobile sensors move closer to the
surveillance location.

4.2 A Numerical Example

We now illustrate our approach using a numerical example
depicted in Fig. 1. To simplify the discussion, suppose there is
only one surveillance location, which is monitored by three
static and three mobile sensors. The required PD and PF are
90 and 5 percent, respectively. The average speed of a mobile
sensor is 0.5 m/s. During initialization, the cluster head
estimates the parameters of target energy model (see (2))
using a training data set. We use the following parameters:
W ¼ 0:51 (after normalization), d0 ¼ 2:6 m, and k ¼ 2, which
are estimated using the data set collected in a vehicle
detection experiment [17] (the details are given in Section 7).

Initially, each sensor periodically measures acoustic
energy and reports to the cluster head every 0.75 seconds.
According to (4) and (5), the maximum achievable PD can be
computed to be 81.5 percent under aPF of 5 percent. Suppose
the maximum time that a mobile sensor can spend on moving
is 10 seconds, which is determined by the allowable detection
delay and other processing delay. To improve PD to
95 percent, the cluster head computes a movement schedule
in which sensor x moves 5 m toward the target. As a result,
the SNR of sensor x is increased from �3:14 to 4.5 dB. When
each sensor can only move for 5 seconds due to a shorter
detection delay requirement, three sensors x, y, and z are
scheduled to move 2.5 m toward the target. The average SNR
of the three sensors is increased from �3:69 to �0:82 dB.

This example shows that the detection delay can be
reduced by scheduling more sensors to move simulta-
neously. In our solution, the detection thresholds of the two

detection phases and the movement schedule are jointly
determined to satisfy the detection performance require-
ments specified by �, �, and D. In addition, we prove that
our solution can minimize the total moving distance of
sensors (see Section 5).

4.3 Assumptions

We make the following assumptions before we formulate
the problem formally. First, the clocks of all sensors are
synchronized. Second, we assume that each mobile node
knows its own location (through a GPS unit mounted on it
or a localization service in the network) and can orient its
movement in a given direction.

In the first phase of detection, all sensors operate in a
synchronous sleep schedule in which they wake up to sample
energy at a period of S seconds. We assume that the
probability that a target may appear at any time instance is
uniform. Therefore, the expected detection delay due to sleep
scheduling isS=2. Suppose S ¼ 2�D, whereD is the required
detection delay bound. Thus, the expected delay of the first-
phase detection is S=2 ¼ �D, where � 2 ð0; 1Þ is a constant
chosen according to the desirable trade-off between detection
delay and power consumption. For the convenience of
discussion, we assume � ¼ 1=2 in the rest of discussion. After
waking up, each sensor samples energy for T seconds and
sends to the cluster head. For instance, the acoustic data are
recorded at a frequency of 4,960 Hz in every 0.75 s in the
SensIT experiments [17]. That is, T is 0.75 s.

In the second phase of detection, all sensors in the cluster
sample energy at a period of T . After a delay of D=2, sensors
report the sum of their energy measurements to the cluster
head. This is necessary to bound the total expected detection
delay within D as the expected delay of the first-phase
detection is D=2. The mobile sensors belong to multiple
clusters and may return to their original locations after the
second phase of detection as they may be requested to detect
targets at other locations. Fig. 2 illustrates the temporal view
of the two-phase detection model employed by our approach.

We assume that the average speed of a mobile sensor is v
unless it is stationary. To simplify the motion control of
mobile sensors, we assume that the moving distance of a
mobile sensor in the second phase is always multiple of vT .
Furthermore, to simplify our problem formulation, we
assume that the distance between a sensor and a surveillance
location is also multiple of vT . Both v and T are small in
practice. For instance, T is 0.75 s in the experiments in [17]
and v is 0.5-2 m/s for typical mobile sensor systems [14],
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Fig. 1. Two examples of sensor movement scheduling. Mobile and static
sensors are represented by solid and void circles, respectively. When
the maximum movement delay is 5 seconds, sensor x moves 5 m
toward the target. When the maximum movement delay is 5 seconds,
sensors x, y, and z move 2.5 m toward the target. The distances
between the target and the three static sensors are 8, 9, and 10 m,
respectively. The distances between the target and x, y, and z are 11,
12, and 13 m, respectively.

Fig. 2. In the first-phase detection, all sensors sample at a period of D.
Each sampling lasts for T time. Expected detection delay is D=2. In the
second-phase detection, sensors continuously sample at an interval of
T for D=2 time.



[28], [33]. Under such settings, vT is about 0:4-1:5 meters. As

the sensor locations in real deployment are typically tens to

hundreds of meters [17], the assumption that the sensor

locations are multiple of vT does not introduce significant

errors. We also evaluate the impact of step length, i.e., vT , on

system performance in Section 7.3.

4.4 Problem Formulation

In this section, we present the formulation of the MSD

problem. We assume that targets appear at low frequencies

and the probability that two targets appear in the same

detection window is negligible. Thus, our following discus-

sion focuses on one surveillance location u. In Section 6, we

relax this assumption and extend our approach to the case of

detecting multiple targets. We define the following notations:

1. The Pu denotes the probability that a target appears
at location u 2 A during time D, which is known or
can be estimated by the history of detection.

2. The xi represents the distance between sensor i
and location u. We assume that u is the origin, and
hence, xi also represents sensor i’s location.1

3. A sensor move, denoted byMiðx; tÞ, is the process in
which sensor i moves from location x to x� vT in
time interval ½t; tþ T �, where T is the sampling
interval (see Section 4.3).

4. A movement schedule, denoted by S ¼ fMiðx; tÞg, is a
list of moves. The kSk represents the cardinality of S,
i.e., the total number of moves in the schedule.
Therefore, kSk quantifies the total movement dis-
tance of mobile sensors.

5. The cluster that monitors location u contains a set of
sensors indexed as 1; 2; . . . ; n. The sensors are
initially located at ðx0

1; . . . ; x0
nÞ.

6. Ns and Nm represent the sets of indices of static and
mobile sensors, respectively.

Our objective is to find a 3-tuple <�1; �2;S> in which �1

and �2 are two detection thresholds and S is a sensor

movement schedule, such that the total expected distance

that the mobile sensors move away from their original

positions is minimized:

�
Pu � PD1

þ ð1� PuÞ � PF1

�
� kSk; ð6Þ

subject to

PF1
� PF2

� �; ð7Þ
PD1
� PD2

� �; ð8Þ
8Miðxi; tÞ 2 S;

ði 2 NmÞ ^
�
vT � xi � xi0

�
^ 0 � t � D

2
� T

� �
; ð9Þ

�1 2
�
�1ð0Þ; �1ð1Þ � � � �1ðkÞ

�
; ð10Þ

�2 2
�
�2ð0Þ; �2ð1Þ � � � �2ðkÞ

�
: ð11Þ

PF1
, PD1

, PF2
, and PD2

are given by

PF1
¼ 1� Xnðn�1Þ; ð12Þ

PF2
¼ 1� Xnmðnm�2Þ; ð13Þ

PD1
¼ 1� Xn n�1 �

Xn
i¼1

W ðx0
i Þ � T

 !
; ð14Þ

PD2
¼ 1� Xnm mn�2 �

Xn
i¼1

Xm�1

j¼0

Eiðj;SÞ
 !

; ð15Þ

m ¼ D

2T
; ð16Þ

where Eiðj;SÞ is the energy sampled by sensor i during
interval ½jT ; ðjþ 1ÞT � under the movement schedule S:

Eiðj;SÞ ¼

Z ðjþ1ÞT

jT

Wðx� vtÞdt; ifMiðx; jT Þ 2 S;

WðxÞ � T; ifMiðx; jT Þ 62 S:

8<
: ð17Þ

The objective function (6) quantifies the total expected
distance that sensors move away from their original
locations. The movement of sensors is the result of a
positive decision in the first-phase detection, which has a
probability of Pu � PD1

being correct and a probability of
ð1� PuÞ � PF1

being a false alarm.
Inequalities (7) and (8) require that the joint PF and PD of

the two phases must meet the constraints specified by the
application. Equation (9) specifies the spatial and temporal
constraints of sensor movement. Each mobile sensor must
move between its initial location and the target location, and
the movement must complete within D=2. At the end of
D=2, all sensors send their energy measurements to the
cluster head which then makes the final detection decision.

Equations (10) and (11) specify that the values of two
detection thresholds are discrete. In practice, the precision of
a sensor is determined by the bandwidth of its ADC
converter. Detection probabilities of the two phases PD1

andPD2
are given by (14) and (15), respectively. According to

definition (17), Eiðj;SÞ is equal to the integral of power overT
if sensor i moves from x to x� vT in S. Otherwise, it is equal
to the product of T and power measured at x, which is the
position of sensor i after the last move that occurs before time
instance jT or its initial position x0

i if it has not moved.

5 OPTIMAL SOLUTION OF MSD PROBLEM

In this section, we first discuss the structure of the optimal
solution of the MSD problem. A dynamic-programming-
based optimal movement scheduling algorithm is then
presented in Section 5.2. In Section 5.3, we discuss how to
determine the detection thresholds of the two-phase detector.

5.1 Structure of Optimal Solution

The formulation in Section 4.4 shows that the MSD problem
is a nonlinear optimization problem with as many as
nD=2T þ 2 variables (�1, �2, and the movement schedule S
composed of at most nD=2T moves). An exhaustive search
of all possible values of these variables incurs exponential
complexity. In this section, we first analyze the structure of
the MSD problem, which allows us to develop an optimal
solution that has a polynomial-time complexity.

An MSD solution <�1; �2;S> is valid if all constraints can
be satisfied. A valid solution is optimal if it minimizes the
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1. As the detection performance of a sensor only depends on its distance
to the target, the sign of xi is insignificant.



cost function among all valid solutions. We note that when
the movement schedule S is known, unique values of �1

and �2 can be found. According to S, the total sampled
energy can be computed by (17), and hence, constraints (7)
to (11) can be evaluated. An exhaustive search in the
domains of �1 and �2 can find the values that minimize the
cost function (6) under the constraints. The S is said to be
valid/optimal, if the solution constructed by S and �1 and
�2 (that are found by the exhaustive search) is valid/
optimal. We now focus on finding the optimal movement
schedule. The search of �1 and �2 for a given movement
schedule is discussed in Section 5.3.

We define the following notation. For a movement
schedule X, EðXÞ ¼

Pn
i¼1

Pm�1
j¼0 Eiðj;XÞ, where Eiðj;XÞ is

defined in (17), representing the total energy sampled in the
second-phase detection. For a solution <�1; �2;S>, cð�1;SÞ
represents the value of the cost function (6). We have the
following theorem:

Theorem 1. Suppose S and S0 are two valid movement schedules.
If kSk ¼ kS0k and EðSÞ � EðS0Þ, there must exist �1 and �01
such that cð�1;SÞ � cð�01;S0Þ.

Proof. Suppose <�1; �2;S> and <�01; �
0
2;S0> minimize the

cost function among all valid solutions with schedules S
and S0, respectively. As S and S0 are known, such
solutions can be found by exhaustive searches of values
of f�1ð0Þ; �1ð1Þ � � � �1ðkÞg and f�2ð0Þ; �2ð1Þ � � � �2ðkÞg in poly-
nomial time. We construct a new solution <�01; �

0
2;S>.

We now show that it is a valid solution. Compared to
<�01; �

0
2;S0>, this new solution only changes the value of

PD2
in all constraints. As detection probability function

PD always increases with total measured energy and
EðSÞ � EðS0Þ, we have PD2

ð�02;SÞ � PD2
ð�02;S0Þ. There-

fore, constraint (8) can be met and <�01; �
0
2;S> is a valid

solution. Since kSk ¼ kS0k and <�1; �2;S> minimizes the
cost function among all valid solutions with S, we have

cð�1;SÞ ¼ ðPu � PD1
ð�1Þ þ ð1� PuÞ � PF1

ð�1ÞÞkSk

� ðPu � PD1
ð�01Þ þ ð1� PuÞ � PF1

ð�01ÞÞkSk

¼ ðPu � PD1
ð�01Þ þ ð1� PuÞ � PF1

ð�01ÞÞkS0k

¼ cð�01;S0Þ:
ut

Theorem 1 shows that the expected number of moves
decreases with the total amount of energy sampled by
sensors. Therefore, the optimal movement schedule must
maximize the amount of energy gathered by mobile sensors
for a given number of moves.

5.2 Optimal Sensor Movement Scheduling

In this section, we present an optimal movement scheduling
algorithm that enables sensors to gather the maximum
amount of energy for a given number of moves.

According to (2), target energy decays with distance d in
the order of 1=dk (2 � k � 5). Therefore, for the same
moving distance, a sensor senses more energy when it gets
closer to the target. This observation leads to the intuition
that moving the sensors that are closer to the target first
may maximize the total measured energy. A simple greedy
heuristic motivated by this observation works as follows to

schedule N moves: Move sensors according to their
distance to the target, starting with the sensor closest to
the target. Stop moving a sensor if it reaches the location of
the target or the number of moves that have scheduled is N .
However, this heuristic is not always optimal because it
does not consider the temporal duration of energy sensing,
which can be illustrated by the following example.

In Fig. 3, two moves are scheduled for sensors a and b that
are initially x and x� 1 away from the target, respectively.
As b is closer to the target, it moves two steps, while a
remains stationary. Fig. 3b illustrates another schedule in
which both a and b move one step from time 0. To simplify
our discussion, we set d0 ¼ 1, k ¼ 2 in the energy attenuation
model defined by (2), and v ¼ T ¼ 1. Suppose E1 and E2

represent total amount of energy gathered in a duration of l
seconds under the two schedules, respectively. E1 and E2

are derived in (18) and (19) according to (17). In the first
schedule, b senses for two seconds when it moves from x� 1
to x� 3, and l� 2 seconds at x� 3, while a does not move
and senses for l seconds at x. E2 can be computed similarly.
When l ¼ 10 and x ¼ 20, E1 ¼ 0:0589 > 0:0583 ¼ E2. How-
ever, when l ¼ 3 and x ¼ 20, E1 ¼ 0:0172 < 0:0173 ¼ E2. We
can see that moving a sensor two steps is superior to moving
two sensors one step only when the duration of sensing is
long (i.e., l ¼ 10):

E1 ¼
Z 2

0

dt

ðx� 1� tÞ2
þ l� 2

ðx� 3Þ2
þ l

x2

¼ 1

x� 3
� 1

x� 1
þ l� 2

ðx� 3Þ2
þ l

x2
; ð18Þ

E2 ¼
Z 1

0

dt

ðx� tÞ2
þ l� 1

ðx� 2Þ2
þ
Z 1

0

dt

ðx� 1� tÞ2
þ l� 1

ðx� 1Þ2

¼ 1

x� 2
� 1

x
þ l� 1

ðx� 2Þ2
þ l� 1

ðx� 1Þ2
: ð19Þ

This example shows that sensors’ locations and the
duration of sensing should be jointly considered in order to
maximize the total amount of sensed energy. We now
consider the optimal movement schedule of H moves when
there is only one sensor i. Obviously, the measured energy
always decreases with i’s distance to the target and
increases with the sensing duration. Therefore, the optimal
schedule for i is to move H steps consecutively from time
zero, which allows it to sense at the closest location possible
at any time instance. Interestingly, this conclusion still holds
when there are more than one sensors. This is because
sensors can move in parallel, and hence, optimizing the
movement of each sensor individually maximizes the total

1856 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 12, DECEMBER 2010

Fig. 3. Two different movement schedules of two sensors. The number
of total moves in both schedules is two. (a) Sensor b moves two steps,
while sensor a remains fixed. (b) Both sensors a and b move one step.



amount of energy sensed by all sensors. We have the
following theorem:

Theorem 2. Suppose an optimal schedule has total L moves.
There are n sensors such that sensor i moves li steps with
L ¼

P
1�i�n li. For each sensor i, li moves occur consecutively

from time zero.

Proof. Suppose sensor i moves li steps in an arbitrary
schedule S. The li moves of sensor i can be partitioned
into K groups and each group consists of continuous
moves. Denote tj and lji (ð1 � j � KÞ) as the time sensor i
waits before starting the jth group of moves and the
number of moves in the jth group, respectively. For
example, sensor i waits for t1 before moving l1i steps
continuously without a stop. Denote ei as the total
amount of energy gathered by sensor i, which can be
expressed as follows:

ei ¼
Z liT

0

W
�
x0
i � vt

�
dtþ t1W ðx0

i Þ

þ
X

2�j�K
tjW x0

i � vT
X

1�m�j�1

lmi

 !

þ D

2
�
X

2�j�K
tj � liT

 !
�W
�
x0
i � vliT

�
:

The integral in the above equation is equal to the energy
gathered during the j moves. The last term corresponds
to the energy gathered after sensor i stops at the final
location and each other term corresponds to the energy
gathered between two groups of moves. Obviously,P

1�j�K l
j
i ¼ li. Then, we have

ei ¼
Z liT

0

W
�
x0
i � vt

�
dtþ D

2
� liT

� �
�W
�
x0
i � vliT

�
þ t1

�
W
�
x0
i

�
�W

�
x0
i � vliT

��
þ
X

2�j�K
tj W x0

i � vT
X

1�m�j�1

lmi

 !
�W

�
x0
i � vliT

� !
:

As li �
P

1�m�j�1 l
m
i andWð�Þ is a decreasing function, the

above equation is maximized when ti ¼ 0 (1 � i � K).
That is, all the moves of sensor i are continuous and start at
time zero. tu
According to Theorem 2, the number of possible move

combinations in the optimal schedule is significantly
reduced. We now present a dynamic programming algo-
rithm that finds the optimal schedule for a given number of
sensor moves.

Let hi be the number of consecutive moves of sensor i in
the optimal schedule. The location of sensor i after the moves
is x0

i � vhiT , where x0
i is the initial location of i. The total

amount of energy sensed by sensor iduring the second-phase
detection, denoted by eiðhiÞ, can be calculated as follows:

eiðhiÞ ¼
Z hiT

0

W
�
x0
i � vt

�
dtþ D

2
� hiT

� �
�W
�
x0
i � vhiT

�
:

ð20Þ

We number mobile sensors by 1; . . . ; n. Let Eðj; hÞ be the
maximum total amount of energy sensed by sensors 1; . . . ; j

with a total number of h moves. Then, we have a dynamic
programming recursion:

Eðj; hÞ ¼ max
0�hj�Hj

fEðj� 1; h� hjÞ þ ejðhjÞg; ð21Þ

Hj ¼ min
D

2T
;
x0
j

vT

 !
; ð22Þ

where Hj is the maximum number of moves of sensor j as it
will stop moving if it reaches the location of the target or the
second-phase detection finishes at time D=2. The initial
condition of the above recursion is Eð0; hÞ ¼ 0.

According to (21), at the jth iteration of the recursion, the
optimal value of Eðj; hÞ is computed as the maximum value
of Hj cases which have been computed in previous
iterations of the recursion. Specifically, for the case where
sensor j moves hj steps, the total sensed energy can be
computed as Eðj� 1; h� hjÞ þ ejðhjÞ, where Eðj� 1; h�
hjÞ is the maximum total amount of energy sensed by
sensors 1; . . . ; j� 1 with a total number of h� hj moves.
According to Theorem 2, sensor j’s moves are consecutive
from time zero if it moves in the optimal schedule.
Therefore, at most Hj cases need to be considered when
computing Eðj; hÞ. The maximum amount of energy sensed
by all sensors in h moves is given by Eðn; hÞ.

We now describe how to construct the optimal schedule
using the dynamic programming recursion. For each Eðj; hÞ,
we define a schedule Sðj; hÞ initialized to be empty. The
Sðj; hÞ is filled incrementally in each iteration when comput-
ingEðj; hÞ. Specifically, in the jth iteration of the recursion, if
Eðj� 1; h� hxÞ þ ejðhxÞ gives the maximum value among all
cases, we add hx moves of j to Sðj; hÞ. Formally,

Sðj; hÞ ¼ Sðj� 1; h� hxÞ [ fMiðx; vxT Þ j 0 � x � hx � 1g;
hx ¼ arg max

0�hj�Hj

Eðj� 1; h� hjÞ þ ejðhjÞ:

The complexity of the dynamic programming procedure is
OððnD=T Þ2Þ.

5.3 Procedure of Solving MSD Problem

We now present the procedure of solving the MSD problem.
For each possible number of moves l, we first compute
Eðn; lÞ and the movement schedule Sðn; lÞ using the
scheduling algorithm described earlier. Then, the values
of �1 and �2 are searched to minimize the expected sensor
moving distance under the constraints. The maximum
number of moves is given by H ¼

P
1�i�n Hi, where Hi is

given by (22). The optimal movement schedule and �1 and
�2 can then be found in H iterations. Fig. 4 shows the
pseudocode of the procedure.

For each value of �1, PD1
and PF1

can be computed
according to (14) and (12). Furthermore, unique PF2

can be
determined as the minimum value that satisfies constraint
(7). This is because that a higher PF2

leads to a higher PF2
,

which may cause constraint (7) to be violated. Then, �2 can
be solved from PF2

according to (13). So far, constraints (7),
(9), (10), and (11) have been satisfied. For instance,
constraint (7) is enforced in solving �2. It remains to check
if constraint (8) is met. A new cost is computed according to
(6) if (8) is met. A zero cost may occur when all constraints
are satisfied without moving the sensors toward the target.
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If the new cost is lower than the current cost, the current
movement schedule and detection thresholds are recorded.
As Eðn; lÞ and Sðn; lÞ can be precomputed using the
scheduling algorithm, the complexity of the procedure is
OðH � kÞ.

6 EXTENSIONS

In this section, we extend our two-phase detection model to
an M-phase model and describe a coordination mechanism
that allows cluster heads to handle multiple targets.

6.1 Multiphase MSD Problem

In the two-phase model, a false alarm in the first phase
inevitably results in the movement of sensors. We address
this issue by a multiphase detector in which sensors carry
out multiple rounds of detection before making a decision
of moving.

Suppose the number of detection phases increases from 2
to M. Initially, all sensors perform measurements at a
period of G (G � T ) seconds. In each period, sensors sample
signal energy for T seconds and send their measurements to
the cluster head which makes a detection decision by
comparing the average of measurements against threshold
�1. If a positive decision is made, sensors then start
measuring at a period of T , and a detection decision is
made by the cluster head in each period. If all continuous
M � 1 positive decisions are made by the cluster head, the
last phase is initiated and mobile sensors start to move
toward the target according to the movement schedule S. If
a negative decision was made, the M-phase detection is
restarted and all sensors perform measurements at a period
of G seconds.

Figs. 5 and 6 illustrate two possible cases of the M-phase
detection. In Fig. 5, all M � 1 decisions made are positive,
and hence, sensors start their movement in the last phase. In
contrast, Fig. 6 shows that a negative decision is made in the
jth phase and the M-phase detection is restarted. We can

see that a system false alarm occurs only when all the first

M � 1 phases produce a false alarm. Therefore, the

unnecessary sensor movements measurement due to false

alarms can be effectively reduced.
To simplify our design, we assume that the detection

thresholds of sensors are identical in the first M � 1 phases.
The M-phase MSD problem is to minimize:

Pu
YM�1

j¼1

PDj
þ ð1� PuÞ

YM�1

k¼1

PFk

 !
� kSk; ð23Þ

subject to

YM
i¼1

PFi � �; ð24Þ

YM
i¼1

PDi
� �: ð25Þ

Constraint (9) is also applicable and not shown. PDiðPFiÞ
ð1 � i �M � 1Þand PDMðPFMÞ have the same expressions

as PD1ðPF1Þ and PD2ðPF2Þ in (14) and (15), respectively.

The cost function (23) is the total expected moving

distance in the Mth phase. The M-phase MSD problem

can be solved similarly as the two-phase MSD problem.

The major difference is the calculation of the PD and PF .

The time complexity of solving the M-phase MSD problem

is also OðH � kÞ.
Although more detection phases improve the perfor-

mance of detection and reduce the expected moving

distance of sensors, they inevitably lead to higher detection

delay. We now derive the maximum number of detection

phases under the given detection delay bound D. As

sensors perform measurements every G seconds in the first

phase, the expected delay between the start of the first

phase and the appearance of a target is G=2 seconds. After

the target is detected, the sampling delay of first M � 1
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Fig. 4. The procedure of solving the MSD problem.

Fig. 5. All the decisions made in the previous M-1 phases are positive.
Mobile sensors start their movement in the Mth phase.

Fig. 6. A negative decision is made in the jth phase, and the detection is
restarted from the first phase.



phases is ðM � 1ÞT , and the delay of the last phase is �D,
where � 2 ð0; 1Þ is a constant specified by the user.
Therefore, the expected system detection delay is G=2 þ
ðM � 1ÞT þ �D. As the total delay must be no longer than
D, the number of phases M must satisfy: G=2 þ
ðM � 1ÞT þ �D � D, then we have:

M � 2ð1� �ÞD�G
2T

þ 1: ð26Þ

As the duration of first phase must be no shorter than the

sampling interval T , i.e., G � T , the maximum number of

phases is bð2ð1��ÞD�T Þ2T þ 1c. In the simulations conducted in

this paper, we set � to be 0.5.

6.2 Detection of Multiple Targets

When multiple concurrent targets are close to each other,
efficient coordination among different clusters is needed as
the movement of sensors toward a target may affect the
detection performance of other targets. In this section, we
discuss two scenarios where coordinated scheduling is
necessary.

In the first scenario, multiple targets may appear
simultaneously where we need to determine which set of
sensors should move toward each target such that detection
criteria are satisfied and the total expected distance that
mobile sensors move away from their original positions is
minimized. Suppose that two targets may appear in
locations u and v simultaneously. Thus, for a sensor i, we
need to determine whether it should move to u or v and the
number of movements. Following (20), we use eui ðhiÞ and
evhðhiÞ to denote the energy sensed by sensor i if it has hi
movements toward u and v, respectively. Note that eui ðhiÞ ¼
0 (or evi ðhiÞ ¼ 0) if sensor i is out of the sensing range of
target u (or v). Consider sensors 1; 2; . . . ; j with a total
number of h movements. Suppose that our aim is to achieve
that the energy sensed for target u is at least gu and the
energy sensed for target v is at least gv. Let fðj; h; gu; gvÞ ¼ 1
denote the existence of such a movement schedule, and
fðj; h; gu; gvÞ ¼ 0 denote the nonexistence. Then, we have a
dynamic programming recursion as

fðj; h; gu; gvÞ ¼ max
hj

�
f
�
j� 1; h� hj; gu � euj ðhjÞ; gv

�
;

fðj� 1; h� hj; gu; gv � evjðhjÞ
�
;

where the initial condition is given by fð1; h; gu; gvÞ ¼ 1 for
gu � eu1ðhÞ and gv ¼ 0, and gv � ev1ðhÞ and gu ¼ 0, and
fð1; h; gu; gvÞ ¼ 0 for other values of h, gu, and gv. Note that
the implementation of the dynamic program needs to
discretize the level of energy where the maximum value of
gu (or gv) can be calculated by (22) assuming that all sensors
move to target u (or v). With the information of
fðn; h; gu; gvÞ, we can derive the optimal scheduling by a
procedure similar to the procedure described in Fig. 4
where for each possible l, if fðn; l; gu; gvÞ ¼ 1, we check
whether gu and gv satisfy the constraints of PD and PF of
both targets u and v. If so, the algorithm stops. Otherwise,
the algorithm continues with a new l.

We now discuss the second scenario where only one target
may appear at a time. However, before finishing detection
of the previous target, a new target may appear. In such a

scenario, offline scheduled movement may not be valid as
some sensors may not be available for detecting the following
target before they can move back to their original positions.
Due to its online fashion in this scenario, optimal scheduling
is not practical as we cannot predict the overlap between the
detections of the previous target and the following target. We
propose an on-demand coordination strategy to handle such
a scenario. Suppose that Au and Av are two cluster heads
which monitor locations u and v and share sensor i. We
assume that a sensor can correctly sense the target signal with
the highest SNR when multiple targets appear in its detection
range. When Au detects a possible target and requests i to
move toward u, sensor i sendsAv its distance and direction to
u. Av then adjusts its detection thresholds and sensor
movement schedules as follows: First, Av labels sensor i’s
initial position by the time instance it is available, which can
be calculated according to sensor i’s round-trip time. For
instance, it takes sensor i, 30 seconds to move to the location
of target u, and then, returns to its original position.
Therefore, i can be scheduled to move toward target v only
after 30 seconds. In the movement scheduling algorithm, the
total energy measurement of a sensor (20) is then calculated
according to its available time intervals. The coordination
among different clusters maximizes the utility of mobile
sensors by taking into account their available times when
detecting multiple targets.

7 SIMULATIONS

In this section, we conduct extensive simulations based on
the real data traces collected in the SensIT vehicle detection
experiments [17]. In the experiments, 75 WINS NG 2.0 nodes
are deployed to detect Assault Amphibian Vehicles (AAVs)
driving through several intersected roads. The data set used
in our simulations includes the ground truth data and the
time series recorded by 23 nodes at the frequency of 4,960 Hz.
The ground truth data include the positions of sensors and
the trajectories of the AAVs. Received energy is calculated
every 0.75 s. We refer to [17] for more detailed setup of the
experiments.

7.1 Simulation Methodology and Settings

The simulation code is written in C++. We use the data
traces for an AAV run as the training data for estimating the
energy attenuation model defined by (2). Our estimated
parameters are: W ¼ 0:51 (after normalization), d0 ¼ 2:6 m,
and k ¼ 2. The estimated energy model is used by cluster
heads to run the algorithm shown in Fig. 4 that computes
the detection thresholds and the movement schedule of
sensors. In the simulations, a sensor is associated with a real
sensor in the vehicle detection experiment [17]. We note that
multiple sensors can be associated with the same real
sensor. In each run of simulations, when a sensor makes a
measurement, the energy is set to be the real measurement
gathered by a sensor at a similar distance to target in the
data trace. Such a strategy realistically mimics the real
performance of sensors in our simulations.

We adopt two sensor deployments in the simulations. In
the first deployment, sensors are randomly distributed in a
sensing field of 50� 50 m2 surrounded by four roads, as
illustrated in Fig. 10. The centers of the four road sections
are chosen to be the surveillance locations. Vehicles drive
along the roads at a constant speed of 2:5 m=s, which is
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similar to the average speed of the AAVs in the data traces.
The simulation time of each run is 105 seconds. The settings
of such deployment allow us to evaluate the performance
of our approach in a large geographic region where
multiple targets may appear. The simulation results for
such deployment are presented in Sections 7.2-7.6. In the
second deployment, sensors are deployed according to the
sensor positions in the SensIT experiments [17] and
vehicles follow the trajectories of AAVs. Fig. 23 plots the
layout of sensors and the trajectory of an AAV run. We
choose a location as the surveillance location, as shown in
Fig. 23. The purpose of this deployment is mainly to
evaluate the impact of target mobility in realistic settings.
For both sensor deployments, the probability that a vehicle
appears at any time instance is set to be 5 percent unless
otherwise specified. Once a vehicle appears on a road, the
minimum interval before the next vehicle appears on the
same road is set to be 30 seconds. The detection delay
requirement D is set to be 16 s unless otherwise specified.
The requested false alarm rate (�) and detection probability
(�) are set to be 0.01 and 0.9 unless otherwise specified. In
each run of simulations, the speed of mobile sensors is
randomly chosen within 0:5-1 m=s. The simulation results
for such deployment are presented in Section 7.7.

We note that our simulation settings account for several
realistic factors. First, as we use a specific run (AAV3) in the
data traces to estimate the sensor measurement model,
there exists considerable deviation between the measure-
ments of sensors in our simulations and the training data.
This deviation is due to various reasons including the
difference between vehicles and the changing noise level
caused by wind. Therefore, the simulations evaluate the
robustness of our approach with respect to these impacts.
Moreover, our movement scheduling algorithm assumes
that targets remain stationary at each surveillance site
before disappearance. However, each AAV in our simula-
tions drives along a road. As a result, the actual SNRs
received by sensors are considerably lower than those used
in the movement scheduling algorithm. The performance of
our solution can be improved if the mobility of targets is
explicitly taken into consideration, e.g., by integrating with
target tracking algorithms [6].

7.2 Detection Performance

We now evaluate the detection performance of our two-
phase detection approach with different number of mobile
sensors and target localization errors.

In the first set of simulations, targets only appear at one
surveillance location and remain stationary. The perfor-
mance of detecting moving targets is evaluated in the rest of
this section. To evaluate the impact of mobility on system
detection performance, we plot four receiver operating
characteristic (ROC) curves under different numbers of
mobile nodes in Fig. 7. ROC curves characterize a detection
system’s achievable trade-off between PD and PF. In Fig. 7,
Static refers to the deployment in which all sensors remain
stationary. Total six sensors are deployed. We can see that
the system detection performance increases rapidly when
the false alarm rate is from 0 to 5 percent. Many detection
systems have to sacrifice much detection performance in
eliminating rare false alarms. Therefore, the ROC curve
often increases rapidly when the false alarm rate is low [36].
We can see that the system detection performance increases
significantly with the number of mobile sensors. In
particular, when all six sensors are mobile, the improve-
ment of detection probability is about 20-40 percent.

Fig. 8 shows the detection probability when the number
of sensors varies from 4 to 20. In each setting, the detection
threshold is computed to maximize the system PD under a
PF of 0.05. We can see that PD reaches about 81 percent
when only four sensors are mobile. In contrast, PD is only
about 42 percent if all sensors are static. When the total
number of sensors increases, the system performance under
different settings becomes similar because a near 100 percent
PD can be achieved without moving sensors. Fig. 8 also
shows that the use of mobile sensors can significantly reduce
the density of sensors needed in a deployment. For example,
eight mobile sensors achieve a similar detection perfor-
mance as 20 static sensors.

In previous sections, we assume that the target appears
at the surveillance location. However, in practice, due to the
spatial distribution of target as discussed in Section 4.1,
there may exist a distance between the target position and
the surveillance location, which is referred to as target
localization error. In this section, we evaluate the impact of
target localization error on the system detection perfor-
mance. In the simulations, the target appears at a fixed
position away from the surveillance location and remains
stationary. Five static sensors and five mobile sensors are
deployed. Fig. 9 plots the PD versus the target localization
error under various requested PF. We can see from the
figure that the system detection performance decreases with
the target localization error. However, the PD decreases by
only 0.1 when the localization error is up to 5 m. Several
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Fig. 7. ROC curves. Fig. 8. PD versus number of mobile sensors. PF ¼ 5 percent.



recent studies showed that the target localization error can
be reduced to be as small as 1 m [35].

7.3 Moving Distance

We now evaluate the performance of our movement
scheduling algorithm. To distinguish from baseline algo-
rithms, our two-phase detection algorithm is referred to as
the mobility-assisted detector (MD). We compare MD again
two baseline algorithms. Greedy is the implementation of the
greedy heuristic algorithm mentioned in Section 5.2. MD-
random is a variant of MD that employs a random
movement scheduling algorithm. Specifically, at each
scheduling step, a sensor is randomly chosen to move until
the required detection performance is achieved. Fig. 11
shows the average number of moves of 10 mobile sensors
when the requested PD varies from 0.8 to 0.95. The PF is set
to be 0.01. MD significantly outperforms the two baseline
algorithms, which demonstrates the effectiveness of our
optimal movement scheduling algorithm.

As discussed in Section 4.3, the movement of sensors is
scheduled in the unit of step, i.e., vT . Thus, the value of vT
affects the accuracy of movement scheduling and the total
moving distance of sensors. In this section, we evaluate the
impact of move step length, i.e., vT , on the system
performance. In the simulations, six mobile and six static
sensors are deployed. The requested PF and PD are 1 and
90 percent, respectively. The speeds of mobile sensors are
set to be 1 m=s. Fig. 12 plots the total moving distance
versus the move step length. Note that we change the
move step length by varying the sampling interval T . From
the figure, we can see that the total moving distance
increases slowly with the move step length in the MD
algorithm. This result demonstrates that the movement

scheduling algorithm of MD is robust to the granularity of
move step. Moreover, the move step length should be set
to be the minimum length which can be achieved by the
motion control of mobile sensors.

7.4 Multiphase and Multitarget Detection

We now evaluate the performance of our multiphase
detection. We simulate multiphase detection algorithm (as
described in Section 6) with five static and five mobile
sensors. The objective of the multiphase detection approach
is to improve the system detection performance by reducing
the false alarm rate in the first phase, such that the expected
total moving distance is reduced. In this section, we
evaluate the system detection performance characterized
by the ROC curves under various numbers of phases.
The ROC curves of four different multiphase detectors are
plotted in Fig. 13. In the figure, MD-x represents the x-phase
detection algorithm. From the figure, we can see that
the performance of detection increases with the number of
phases of the detector.

Fig. 14 plots the maximum PD that can be achieved by
different multiphase detectors when the number of mobile

XING ET AL.: MOBILE SCHEDULING FOR SPATIOTEMPORAL DETECTION IN WIRELESS SENSOR NETWORKS 1861

Fig. 9. PD versus localization error.

Fig. 10. (a) The sensor distribution in the initial deployment. (b) The
sensor distribution in the end of a detection process. Vehicles drive
through the four road sections. Mobile sensors moved toward the center
of the bottom road section after a target is detected. Void and solid
circles represent static and mobile sensors, respectively. Triangles
represent the surveillance locations.

Fig. 11. Number of moves versus requested PD. PF ¼ 1 percent.

Fig. 12. Moving distance versus step length.

Fig. 13. ROC curves of multiphase detectors.



sensors varies from 2 to 6. PF of all simulations is set to 0.01.
We can see that PD increases linearly with the number of
detection phases. However, Fig. 14 also shows that the
number of mobile sensors plays a more important role in
the performance of detection.

To evaluate the performance of the movement schedul-
ing of multiphase detectors, we plot in Fig. 15 the number of
sensor moves for detectors with different number of phases
when the requested PD varies from 80 to 99 percent. PF is
set to be 0.01. Fig. 15 shows that the performance with more
detection phases is superior. For example, when the
requested PD is 90 percent, sensors move 17 steps when
six phases are used, and 23 steps when only three phases
are used. Moreover, we can also see that the number of
steps is not significantly reduced until the requested PD is
above 90 percent. This is because, when the number of
moves needed increases significantly, an additional detec-
tion phases can effectively filter out more false alarms and
reduce unnecessary movements.

We now evaluate the performance of detecting multiple
targets at different surveillance locations, as discussed in
Section 6.2. The probability that a vehicle may appear at any
time instance varies from 5 to 40 percent. Once a vehicle
appears on a road, the minimum interval before the next
vehicle appears on the same road is set to be 30 seconds.
That is, we enforce that only one target may appear within a
detection window on any road. However, multiple vehicles
may drive on different roads at the same time. We plot PD
versus the probability a target appears in Fig. 16. When
multiple targets appear in the same time window D, the
four cluster heads in the sensing field employ the coordina-
tion mechanism discussed in Section 6.2. When a mobile
sensor is requested to move by a cluster head, it notifies all

other cluster heads, which update their detection thresholds
and movement schedules. For performance comparison, we
implement a baseline algorithm referred to as MD-unsync,
which does not update detection parameters when mobile
sensors move away. Fig. 16 shows PD versus different
target appearance rates. Each algorithm is labeled by the
name and the number of sensors used. We note that all
sensors are mobile except for the all-static case. We can see
that MD yields considerably higher detection probabilities
than MD-unsync. The performance of MD and MD-unsync
degrades when more targets appear concurrently. In such a
case, moving sensors toward a particular target often lowers
the performance of detecting other targets. In contrast, the
performance of static deployments remains unaffected.
Nevertheless, MD always yields the best performance in
all settings.

7.5 Impact of Mobile Sensor Speed

We now evaluate the impact of movement speed on the
system detection performance. Fig. 17 shows the probabil-
ities of detecting multiple targets. We can see that the
detection performance increases considerably when the
speed of movement becomes higher because mobile sensors
can move closer to targets within the given delay bound. This
result also shows that our movement scheduling algorithm
can effectively take advantage of the increase of movement
speed. In reality, the speed of a mobile sensor may suffer
from variations because of complex terrains or temporal
mechanical problems. We now evaluate system PD when the
movement speed has different variations. At the beginning of
simulations, the average speed of each mobile sensor, v, is
randomly chosen between 0:5-1 m=s. The actual speed of the
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Fig. 14. PD versus number of phases.

Fig. 15. Average moving steps versus requested PD.

Fig. 16. PD versus target appearance rate.

Fig. 17. PD versus speed of movement.



sensor in each move (that takes 0.75 s) is randomly chosen
within ½ð1� �Þv; ð1þ �Þv�. As shown in Fig. 18, PD yields a
higher variation when � is larger. However, the average PD
remains similar even � increases to 50 percent. This is because
our algorithm always schedules multiple sensors to move in
order to achieve the maximum PD. As a result, the variation
in each individual sensor’s speed does not have a significant
impact on the overall system PD.

7.6 Network Costs

In this section, we evaluate the number of sensors and energy
consumption, which are important cost metrics of WSNs,
required by static, hybrid, and mobile networks. Fig. 19 plots
the number of sensors required for achieving the requested
PD. The requested PF is 1 percent. We note that for the all
mobile and one-half mobile networks, the mobile sensors are
scheduled to move as far as possible to maximize the PD. We
can see from the figure that the static network needs about
seven times more sensors than the all mobile network, and
the one-half mobile network needs about twice more sensors
than the all mobile network. Therefore, the use of mobile
sensors can significantly reduce the number of sensors
needed in a deployment.

We also evaluate the corresponding energy consump-
tions of various networks. In our simulations, we account
for the energy consumed in locomotion of mobile sensors,
transmission, and idle listening of radios. We assume that
the mobile nodes are wheeled robots such as Robomote [14].
The energy consumed in locomotion by a wheeled robot,
denoted by EMðdÞ, can be approximated by EMðdÞ ¼ k � d
[38], where d is the moving distance and k ¼ 2 J=m if the
mobile node moves at optimal speed. For typical low-power
transceivers such as CC2420, the energy consumed in

wireless communication, denoted by ECðdÞ, can be modeled
as ECðdÞ ¼ m � ðaþ b � d2Þ [32], [18], where d is the transmis-
sion distance, m is the number of bits transmitted, and a
and b are constants. In our simulations, a and b are set to be
0:6� 10�7 J=bit and 4� 10�10 J=m2 � bit according to the
real experiments in [32]. The power consumption of an idle
node is set to be 21 mW, which is consistent with that of
TelosB mote [13]. We ignore the power consumption of a
sleeping node, as it is much less than the idle state power
consumption. For instance, a TelosB mote consumes 1 �W
in sleeping mode [13].

Fig. 20 plots the total energy consumption over 24 hours
versus the number of target appearances per hour. The
requested detection delay D is set to be 30 s. Therefore, the
sensors are woken up in every 30 s to make measurements.
We can see from the figure that all mobile and one-half mobile
networks outperform the static network in terms of energy
consumption when the target appearance rate is low and the
static network becomes superior when target appearance rate
is high. This is because the frequent movement cancels out the
benefit of energy consumption reduction in wireless com-
munication due to the reduction of sensors.

7.7 Performance with Realistic Target Mobility

This section presents the simulation results under realistic
sensor deployment and target mobility model. In the
simulations, 17 sensors are deployed and their initial
positions are set according to the deployment in the SensIT
vehicle experiments [17]. The targets in our simulation follow
the trajectories of the AAV runs in the SensIT experiments.
Fig. 23 plots the initial deployment, the trajectory of an AAV
run, and the chosen surveillance location.

Fig. 21 shows PD when the number of mobile sensors
varies from 1 to 6 under various requested PF. In each setting,
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Fig. 18. PD versus variation of movement speed.

Fig. 19. The number of sensors required versus requested PD. PF ¼
1 percent.

Fig. 20. Energy consumption versus target appearances per hour.

Fig. 21. PD versus number of mobile sensors.



the sensors closest to the surveillance location are chosen to

be the mobile sensors and a solution is computed using the

algorithm in Fig. 4. We then conduct a number of runs to

estimate the PD. We can see that PD is close to 100 percent

when only five sensors are mobile. We note that as the

requested PF is very low (�1%), the PD is low when few

mobile sensors are available. We can conclude from Fig. 21

that a small number of mobile sensors can boost the detection

performance of the network.
Fig. 22 plots the total moving distance in the solution

computed by our movement scheduling algorithm versus

the requested PD under various requested PF. Only three

mobile sensors are used. We can see that the average

moving distance for a mobile sensor is about 3-12 m if the

requested PF is 1 percent. Such a moving distance is

acceptable for resource-constrained mobile sensors.

8 CONCLUSION

This paper explores the use of mobile sensors to address the

limitation of static WSNs for target detection. In our

approach, mobile sensors initially stationary are triggered

to move toward possible target locations by a detection

consensus arrived at by all sensors. The fidelity of final

detection decision is then improved by a second-phase

detection that fuses the measurements of both static and

mobile sensors. We develop an optimal sensor movement

scheduling algorithm that enables mobile sensors to gather

the maximum amount of target energy under a given

moving distance bound. The effectiveness of our approach is

validated by extensive simulations based on real data traces.
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