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ABSTRACT

The rapid proliferation of wireless video cameras has raised seri-

ous privacy concerns. In this paper, we propose a stimulating-and-

probing approach to detecting wireless spy cameras. The core idea

is to actively alter the light condition of a private space to manipu-

late the spy camera’s video scene, and then investigates the respon-

sive variations of a packet �ow to determine if it is produced by a

wireless camera. Following this approach, we develop Blink and

Flicker – two practical systems for detecting wireless spy cameras.

Blink is a lightweight app that can be deployed on o�-the-shelf mo-

bile devices. It asks the user to turn on/o� the light of her private

space, and then uses the light sensor and the wireless radio of the

mobile device to identify the response of wireless cameras. Flicker

is a robust and automated system that augments Blink to detect

wireless cameras in both live and o�ine streaming modes. Flicker

employs a cheap and portable circuit, which harnesses daily used

LEDs to stimulate wireless cameras using human-invisible �icker-

ing. The time series of stimuli is further encoded using FEC to com-

bat ambient light and uncontrollable packet �ow variations that

may degrade detection performance. Extensive experiments show

thatBlink and Flicker can accurately detect wireless cameras under

a wide range of network and environmental conditions.
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Figure 1: Examples of commodity wireless spy cameras. The

arrows point to the positions of camera lens. The labeled

prices are quoted from an online retailer in April, 2018 [4].

1 INTRODUCTION

With the rapid proliferation of wireless video cameras, the tech-

nical bar and the economical cost of invading privacy using spy

cameras have been signi�cantly reduced, which has raised serious

concerns. As an example of responses to such concerns, Airbnb

prohibits the use of surveillance devices in all of its rental apart-

ments [11]. Unfortunately, it is hard to enforce the compliance to

such rules because of the di�culties in detecting wireless spy cam-

eras [17]. In particular, without relying on cables for network con-

nectivity, wireless spy cameras can be easily installed anywhere in

a private space, or be implanted into daily used objects like smoke

detectors, USB chargers, clocks, or power outlets (as shown in Fig.

1). Today, wireless spy cameras are widely available on the mar-

ket and can be easily obtained from online retailers at around a

hundred dollars [4].

Despite the increasing privacy concerns, to date, detecting wire-

less spy cameras has been an open problem of signi�cant chal-

lenges. Traditional tra�c analysis tools [12, 21, 26, 30, 32] iden-

tify video/audio streams based on tra�c classi�cation. However,

considering the explosive growth and the ubiquitous existence of

video tra�c (e .д., the tra�cs of video chatting, smart TV, or le-

gal surveillance cameras deployed in neighborhood), the detection

of video tra�c does not reliably assert the presence of a wireless

spy camera [15]. Conventional camera detectors [6, 8] assist users

to search for the glint of camera lens or the RF signals emitted

from the camera’s wireless radio. However, the user has to scruti-

nize the entire private space, which requires a slow and meticulous

sweepwhile providing no assurance for detection. Lacking the abil-

ity of identifying the signal of the wireless spy camera, existing RF-

based camera countermeasures rely on indiscriminate jamming to

block the entire wireless medium [3, 7], which inevitably degrades

https://doi.org/10.1145/3210240.3210332
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the performance of legitimate network devices. To protect a scene

from photographing, LiShield [33] enforces visual privacy protec-

tion by jamming the visible light spectrum. It degrades video qual-

ity by imposing a striped watermark on the images captured by

the camera, but cannot black out the entire scene.

In this paper, we propose to detect wireless spy cameras by

identifying their packet �ows via stimulating-and-probing. This ap-

proach is motivated by two observations. First, in private spaces

like bedrooms and bathrooms, the user usually has complete con-

trol of the light condition. Second, as the de-facto standard, wire-

less cameras encode the video in variable bitrate (VBR), where the

sizes of produced pictures �uctuate with the variation of video

scenes. Therefore, it is possible to actively alter the light condition

of the user’s private space to manipulate the video scene, and then

investigates the responsive variation of a packet �ow to determine

if it is produced by a wireless camera that is spying on the user’s

space.

Realizing the stimulating-and-probing approach entails several

key technical challenges. First, during daytime, the e�ect of light

stimuli can be degraded in the presence of strong ambient light.

Moreover, because of IP fragmentation where a picture larger than

the maximum transmission unit (MTU) is split into multiple pack-

ets before transmission, it is di�cult tomeasure the picture sizes of

a video stream without inspecting the picture metadata, which is

typically encrypted. Although the detector may estimate the data

rate of a packet �ow to infer the variation of picture sizes, the rate

measurements are often highly noisy due to packet losses and jit-

ters, as well as uncontrollable environmental variations that may

cause picture sizes to �uctuate even without light stimuli.

In this paper, we tackle these challenges in the design and im-

plementation of Blink and Flicker – two practical systems that can

accurately identify the packet �ows of wireless spy cameras.

Blink is a lightweight app that can be deployed on o�-the-shelf

mobile devices to detectwireless spy cameras operated in live stream-

ing mode. Due to the lack of local storage, most miniature and im-

planted wireless spy cameras transfer pictures immediately once

they are captured, therefore will respond to light stimuli in real-

time. Motivated by this observation, Blink asks the user to turn

on/o� the light of her private space, and then uses the light sen-

sor and the wireless radio of the mobile device to examine the re-

sponses of packet �ows at the time instants of light stimuli. To im-

prove accuracy and robustness, Blink combines the probing results

using a statistical tool after multiple-rounds of detection.

Flicker is a robust and automated system that augments Blink

to detect wireless spy cameras operated in both live and o�ine

streaming modes. Flicker employs a cheap and portable circuit,

which harnesses daily used LEDs to stimulatewireless spy cameras

using human invisible light �ickering. By controlling the on/o� of

light stimuli, Flicker modulates the picture sizes of the wireless

spy camera to embed an identi�cation code. In the probing phase,

Flicker searches for the identi�cation code by decoding the data

rate variations of overheard packet �ows. To combat strong ambi-

ent light, Flicker protects the embedded identi�cation code using

forward error correction (FEC), and adapts the FEC coding rate

based on ambient light conditions. To further improve robustness,

Flicker employs a probabilistic detector, which computes a detec-

tion score based on probabilistic models to quantify how likely a

wireless spy camera exists even if some of the embedded identi�-

cation codes are erased by disruptive network or environmental

variations.

We present the prototype implementations of Blink and Flicker,

and conduct extensive experiments to evaluate their performance

using commodity wireless cameras. The results show that our sys-

tems can accurately detect wireless cameras in a wide range of set-

tings, including di�erent ambient light intensities, video streaming

modes and con�gurations (e .д., resolution, frame rates), wireless

interference conditions, and uncontrollable environmental varia-

tions.

2 SPY CAMERA MODEL

Our objective is to detect o�-the-shelf wireless cameras that are

compliant with existing wireless and video coding standards. We

note that specially customized spying tools that use proprietary

protocols or coding algorithms are often costly, di�cult to deploy,

and much less accessible. In this section, we specify the model

of target wireless spy cameras from four aspects, including video

streamingmode, video compression scheme, wireless standard, and

packet encryption.

Video streaming. Commodity wireless video cameras typically

support two streaming modes, i.e., live streaming and progressive

downloading. For most miniature and implanted wireless cameras

that have no local storage, the recorded video is live streamed to

the receiver (e.g., a remote video player or a cloud storage), where

each picture is transferred immediately once captured. In progres-

sive downloading, the recorded video is �rst stored locally, and

then transferred to the player upon request. During downloading,

the video is transferred block by block, which allows the client to

play the video before the download is complete.

Video compression. As the de-facto standard, wireless cameras

encode videos using variable bitrate (VBR), where the coding rate

is dynamically adjusted based on the complexity of scene. After

encoding, the video is further compressed to save bandwidth. One

of the most popular video compression scheme is motion compen-

sation [1, 2, 9], which compresses video based on the transforma-

tion of scene. For instance, in H.264 [2], pictures are classi�ed into

three categories including I-, P-, and B-pictures. Video data is com-

pressed based on group of pictures (GoP). Each GoP consists of

one I-picture and multiple P- and B-pictures. The I-picture inde-

pendently encodes a complete scene, which serves as the reference

point for other pictures in the same GoP. P- and B-pictures only en-

code the di�erence between scenes, such that their sizes are much

smaller than that of the I-picture.

Wireless standard. In this paper, we focus on detecting wireless

cameras that transfer videos using Wi-Fi [10] – one of the most

prevalent wireless access technologies. In general, our approach

works for cameras that use other wireless technologies, as long as

the detector has a compliant wireless radio to sni� the camera’s

tra�c.

Packet encryption. As a common practice, wireless cameras en-

crypt their packet payloads to prevent eavesdropping. Our approach

does not require the detector to decrypt and inspect video data. In-

stead, it only decodes the sender and receiver addresses from the
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Figure 2: Picture size measured at night (top) and day (bot-

tom). P- and B- picture sizes increase at the time instant of

light condition change.

MAC-layer header of each overheard packet, which allows the de-

tector to divide network tra�c into packet �ows and then measure

the data rate variation of each �ow. Fortunately, in all major wire-

less standards like 802.11 [10] and LTE [5], the MAC-layer header

is encryption-free.

3 UNDERSTANDING CAMERA TRAFFIC

In this section, we present a measurement-based study to charac-

terize the tra�c of wireless cameras that use H.264 [2] – a rep-

resentative motion compensation-based video compression algo-

rithm. To understand how wireless spy cameras respond to light

stimuli, we instrument a media player to measure the variation of

picture size when the light condition changes. Then, we investi-

gate the response behaviors from the perspective of a detector, by

measuring the data rate variation under di�erent video streaming

modes, and then understanding the probing challenges caused by

uncontrollable packet �ow variations.

3.1 Response to Light Stimuli

The measurements are conducted in a room both during daytime

and at night with signi�cantly di�erent ambient light conditions.

To generate light stimuli, the ceiling light of the room is turned on

and o� to change the camera’s video scene.

Fig. 2 shows the trace of picture size before and after changing

light condition. The video is streamed at about 15 frames per sec-

ond (fps), where each GoP contains 30 pictures. We observe that

the picture sizes are similar no matter the light is on or o� as long

as the video scene remains relatively stable. In contrast, at the ex-

act time instants of the light stimuli, the video encoder devotes

a large number of bits to encoding the transformation of scene,

which causes a signi�cant increase of the P- and B- picture sizes.

Fig. 3 compares the picture size under light stimuli with that of

stable scenes for video streams of di�erent resolutions. To identify

the pictures that are subject to light stimuli, we replay the recorded

video frame by frame to locate the pictures that record the light

condition change. As shown in Fig. 3, the impact of light stimuli on

P- and B- pictures are signi�cant even in daytime. For instance, for

the 640x480 video stream, the average size of P-pictures increases

by 6.3 times from 0.3KB to 1.9KB. This e�ect is even more pro-

nounced at night. For instance, for the 1280x728 video stream, the

size of P-pictures is only 1.1KB to 3.6KB when the scene is stable,

and is 5.3KB to 10.9KB at the time instants of light stimuli.
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Figure 3: The impact of light stimuli on the picture size of

video streams with di�erent resolutions.
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Figure 4: Data rate measurements of the camera’s tra�c un-

der di�erent streaming modes.

3.2 Data Rate Patterns

Because of IP fragmentation and packet encryption, it is often dif-

�cult to directly measure the picture sizes of a video stream with-

out inspecting application-layer video tra�c. Instead, the detector

may estimate the data rate of a packet �ow to infer the variation

of picture size. Fig. 4 plots the trace of data rates measured for

two video streams under di�erent streaming modes. We sni� the

wireless camera’s packet �ow and then estimate its data rate by

applying a moving window of 100ms. During live streaming, the

transmissions of I-pictures produce periodic peaks, where each pe-

riod corresponds to one GoP. Therefore, it is possible to estimate

the size of each picture by probing the internal structure of each

period. During progressive downloading, the video is transferred

block by block periodically, where each block contains a video seg-

ment that lasts for about 20 seconds. In practice, the duration of

each block is determined by the available memory space at the

video player, and is typically 20 to 30 seconds long in multimedia

applications. In comparison, the duration of GoP is typically one

to two seconds. Because one blockmay contain multiple GoPs, it is

impossible to use data rate measurements to estimate picture size.



MobiSys ’18, June 10–15, 2018, Munich, Germany Tian Liu, Ziyu Liu, Jun Huang, Rui Tan, and Zhen Tan

 0

 100

 200

 300

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20

P
ic

 S
iz

e 
(K

B
)

Ji
tte

r 
(m

s)
R

at
e 

( 
kb

ps
)

 

Time (s)

-100

 0

 100

                     

 

 

 0
 50

 100
 150
 200

                     

 

 

I P B

Figure 5: Picture size (top), jitter (middle), and rate (bottom)

measured for a live video stream. Rate measurements vary

in the presence of jitters evenwhen the scene remains stable.
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Figure 6: Picture size variation as people moving close to the

camera from a distance of �ve meters.

3.3 Probing Challenges

The key of detecting a wireless camera is to identify the data rate

variation of its packet �ow under light stimuli. One factor that

makes this challenging is the strong ambient light during daytime,

which may degrade the e�ect of light stimuli. In addition, the data

rate measurements might be interfered with packet �ow variations

caused by network and environmental factors.

First, in wireless networks, rate measurements can be polluted

by various noise sources such as packet losses and jitters. Fig. 5

shows the picture sizes, jitters, and data rates measured for a live

video stream. The jitter is calculated as the deviation of picture

interval from the true picture periodicity. In the presence of jit-

ters, packet transmissions su�er random dispersion and clumping,

leading to signi�cant data rate variation when measured at the de-

tector. For example, in Fig. 5, we observe a burst of jitters ranging

from −100ms to +100ms starting from the 2nd second to the 9th

second. During this interval, data rate measurements vary signif-

icantly despite that the video scene remains relatively stable (as

shown in the trace of picture size). This will cause strong interfer-

ence in the probing phase. Furthermore, When there exist uncon-

trollable scene variations, the picture size itself can be misleading.

For example, Fig. 6 plots the trace of picture size when a person

moves into the video scene at the 50th second from a distance of

about 5m. The size of P- and B-pictures increases as the person

moves close. In particular, when the person is moving at a distance

of about 2m, the average P-picture size increases to 2.9KB, which

is about 7.2 times of that when the scene keeps stable.

In the following sections, we will discuss how to address these

challenges in the design of Blink and Flicker.
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Figure 7: The power spectral density and rate pro�le for a

video streamwhere theGoP frequency is 1Hz. The error bars

in the rate pro�le indicate max and min.

4 BLINK: THE DETECTOR AS AN APP

Blink is a lightweight mobile app that can detect wireless spy cam-

eras operated under live streaming mode. During detection, Blink

�rst pro�les the data rate variations of packet �ows and then probes

their responses to user-triggered light stimuli. The detection re-

sults obtained in multiple rounds of light stimuli are combined to

improve accuracy and robustness. In this section, we present the

design of Blink in detail.

4.1 Packet Flow Pro�ling

In this stage, Blink �rst scans wireless channels to discover sur-

rounding wireless networks, and then pro�les the data rate vari-

ations for all overheard packet �ows. Based on pro�ling results,

it identi�es a set of suspicious packet �ows for further probing.

If a wireless spy camera exists, Blink will pro�le the camera’s re-

sponses to uncontrollable environmental stimuli such as curtain

blowing or plant movements in the wind. It also learns the cam-

era’s data rate variations caused by network factors like packet jit-

ters. The pro�led data rate variations will be treated as noise �oors

when examining the responses of packet �ows during probing.

Rate measurement. For each packet �ow, Blink applies a sliding

window to estimate its data rate. Because of IP fragmentation, a

picture that is larger than MTU will be divided into multiple pack-

ets. To avoid underestimating the picture size, the sliding window

must be large enough to accommodate all fragmented packets of

the same picture. In practice, the frame rate of commodity cameras

is typically higher than 10 fps to satisfy the �icker fusion threshold

of human eyes. Based on this observation, Blink sets the size of the

sliding window to 100 s.

Blinkmay underestimate the data rate in the presence of packet

losses. To address this issue, Blink keeps monitoring the packet se-

quence numbers in MAC headers. The estimated data rate is then

recti�ed using the number of lost packets identi�ed from the se-

quence numbers, multipliedwith the average packet size estimated

from a small set of recently received packets.

Rate pro�ling. In live streaming mode, the packet �ows of wire-

less spy cameras manifest strong periodicities, where each period

corresponds to one GoP. The goal of rate pro�ling is to learn the

periodic data rate patterns of each packet �ow, which allows Blink

to characterize the GoP structure of the wireless spy camera.
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To measure the period of a packet �ow, Blink computes the fast

Fourier transform (FFT) of its data rate series to obtain the normal-

ized power spectral density (PSD). The estimated PSD can be noisy

in the presence of jitters. For example, Fig. 7(a) shows the PSD of a

video stream with a GoP frequency of 1Hz. Because of noise, the

PSD peak occurs at the second harmonic of the trueGoP frequency,

leading to a wrong estimation of period. Blink addresses this issue

using a two-step heuristic. First, Blink identi�es the frequency f of

the PSD peak, and then computes its integer factorization to obtain

a list of candidate frequencies. Second, Blink evaluates all candi-

date frequencies in an ascending order. A candidate is identi�ed as

the fundamental frequency if the PSD values of all its harmonics

until f are larger than a pre-de�ned threshold. In Blink, the thresh-

old is set to 20 dB-to-average based on empirical measurements.

After obtaining the period of a packet �ow, Blink folds the data

rate measurements at the boundaries of the periods and then pro-

�les the periodic pattern. As an example, Fig. 7(b) plots the data

rate pro�le established based on data rate measurements of 20 s. As

shown in Fig. 7(b), the periodic transmission of I-pictures yields the

highest peak at the phase around 0.6 s. We can also observe lower

peaks corresponding to the P- and B- pictures.

Suspect �ow identi�cation. A packet �ow is considered suspi-

cious if it has a peak in its data rate pro�le, which resembles the

structure of a typical GoP where the data rate peak corresponds to

the I-picture. To characterize how salient the peak is, Blink com-

putes the Crest factor as follows,

CdB = 20 log10
rpeak

rrms
,

where rpeak is the peak data rate and rrms is the root mean square

of the data rate pro�le. Because the size of I-picture is always larger

than that of non-key pictures in the same GoP, the fewer the num-

ber of non-key pictures, the larger the Crest factor. When the GoP

contains only one non-key picture, we have the minimum of the

Crest factor, which can be derived as,

CdB = 20 log10
sI

√

1
2 (s

2
I
+ s2

non key
)
= 20 log10

4γ
√

1 + γ 2
, (1)

where sI and snon key are the sizes of I- and non key pictures, and γ

is the ratio between sI and snon key. During pro�ling, Blink requires

the user to avoid intensive environmental changes (e .д., people

moving or light condition change), which assures that the video

scene remains relatively stable. In this case, non key picture sizes

are small andγ is typically greater than 2. Taking it into Eq. (1), we

can derive a threshold of the Crest factor. A packet �ow is consid-

ered suspicious if the Crest factor of its data rate pro�le is greater

than the threshold.

4.2 Suspect Flow Probing

After pro�ling, Blink asks the user to turn on/o� the light to gen-

erate stimuli. To assure the e�ectiveness of stimuli, the user is sug-

gested to tune the ambient light level as low as possible. In day-

time, it is often enough to assure the sensitivity of Blink by simply

drawing the curtain to keep the sun o�. After applying a stimulus,

Blink uses the light sensor of the mobile device to identify the time

instant of stimulus, and then engineers statistical tests to probe sus-

pect packet �ows.

Input: Packet �ow periodT ; data rate pro�le {r1, ..., rT}; detec-

tion window Tdet; the time instant of stimulus ts ; the pro�ling

time Tpro�le;

Output: p-value;

1: Filter data rate series to remove periodic peaks;

2: for each rτ in the �ltered data rate series do

3: Use rτ and rτ mod T to compute a t-score sτ ;

4: end for

5: Find the max in sts , ..., sts+Tdet , denoted as smax;

6: Divide the data rate series measured in the pro�ling stage into

periods, assume there are K periods;

7: for k = 1 : K do

8: for t = (k − 1)Tdet : kTdet do

9: Use rt and rt mod T to compute a t-score s ′t ;

10: end for

11: Find the max in s ′
(k−1)Tdet

...s ′
kTdet

, denote it as s ′
max,k

;

12: end for

13: Compute p-value using smax and s ′max,1, ..., s
′

max,
Tpro�le
Tdet

.

Algorithm 1: The probing algorithm of Blink.

Sensing light stimuli.During pro�ling, Blink keeps sampling the

light sensor of the mobile device to learn the distribution of light

variation. In the probing phase, whenever a sample of light level is

obtained, Blink computes its di�erence with the previous sample,

and performs a statistical test to determine if the observed vari-

ation is di�erent with the pro�led distribution. To this end, Blink

employs the t-test, a statistical tool commonly used to assess the ef-

fect of a stimulus [14]. Given two distributions, the t-test computes

a t-score using the distributions’ means and standard deviations,

and then maps it to a p-value based on the degrees of freedom. If

the p-value is larger than a threshold chosen based on an alpha

level, the two sets of data generating the two distributions are con-

sidered statistically di�erent. To detect light stimuli, Blink uses an

alpha level of 0.05, typical for scienti�c and medical studies.

Statistical testing. Blink probes suspect packet �ows by examin-

ing whether their data rates have abnormal increases around the

time instants of stimuli. Algorithm 1 describes the probing process.

In the �rst step, Blink �lters data rate series for each packet

�ow using Algorithm 2 to remove data rate peaks yielded by the

transmissions of I-pictures. The reason to do this is two-fold. First,

I-pictures do not encode scene di�erences, thus do not response

to light stimuli. Second, because I-pictures are larger than others,

they havemuchhigher impacts when conducting statistical tests in

the presence of packet jitters. In particular, any small timing shift

of an I-picture transmission will be treated as an abnormal rate

increase. To address this issue, Blink identi�es the data rate peak in

each period and then removes the packet cluster corresponding to

the peak. Speci�cally, as shown from Line 4 to Line 11 in Algorithm

2, for each period of the packet �ow, Blink �rst initializes a small

packet cluster, denoted as Pdrop, in which the receiving times of

packets are closest to the time instant of the rate peak. Then it

analyzes the packet interval and gradually grows Pdrop to include

more packets belong to the same picture. Finally, it removes Pdrop
from packet �ow and then re-estimates the data rate.
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1: Divide the data rate series based on its period;

2: for each period do

3: Denote the packet set of this period as P;

4: Let Pdrop = ∅ and Θ = ∅;

5: Identify the time instant of the peak; denote it as tp;

6: Find four packets whose receiving times are closest to tp,

then insert them to Pdrop.

7: Compute their intervals and insert them to Θ;

8: while P is not empty do

9: Find the packet p whose receiving time is closest to tp,

denote its interval to the closest packet in Pdrop as θ ;

10: End the loop if θ is an outlier of Θ, otherwise insert p and

θ into Pdrop and Θ, respectively.

11: end while

12: Remove Pdrop from packet �ow.

13: end for

14: Re-estimate data rate.

Algorithm 2: Filter data rate series to remove periodic peaks.

In the second step, at the time instant of light stimulus, Blink

computes a t-score using t-test to characterize how di�erent the

data rate is from the pro�led rate distribution. Fig. 8 shows the light

level, rate series, and the computed t-scores for a live video stream

before and after removing the periodic rate peaks. As shown in

the �gure, because of packet jitters, the periodic transmission of

I-pictures results in substantial misleading t-scores. After the �l-

tering, the response of the video stream can be clearly observed,

as the t-score increases signi�cantly around the time instants of

light stimuli.

We note that it is often di�cult to accurately identify the exact

time instant at which the camera’s packet �ow starts to respond

to a stimulus. This is because of the unknown streaming delay

caused by picture bu�ering at the camera. To address this issue,

when evaluating the response at a time instant ts , Blink examines

the maximum t-score within a detection window of [ts , ts + Tdet ],

which is employed to tolerate the maximum streaming delay. In

Blink, the detection window size Tdet is set to 4 s based on an em-

pirical survey of commodity cameras’ bu�ering delays. Then, the

reference set of the statistical test is derived in a compliant way

from the pro�ling results (as shown from Line 6 to Line 12 in Algo-

rithm 1). Blink then performs the t-test to compare the maximum

t-score within the detection window with that of the reference set,

and evaluates the result against the threshold under a given alpha

level to determine if a wireless spy camera is detected.

4.3 Multiple Rounds of Stimuli

To improve detection accuracy and robustness, Blink combines the

probing results obtained after multiple rounds of stimuli to im-

prove detection performance. Following the Fisher’s method [18],

the results of the t-tests are combined by X 2
2k
= −2

∑k
i=1 ln(pi ),

where pi is the p-value computed in the ith round, k is the num-

ber of rounds, and X 2 follows a chi-squared distribution with 2k

degrees of freedom. A new p-value is then determined based on

the degrees of freedom and the chi-squared distribution. Then, the
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(c) Rate and t-scores after filtering
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Figure 8: The traces of light levels, rate measurements, and

t-scores when probing the packet �ow of a live video stream

during daylight.

p-value is compared with the threshold under a given alpha level

to determine the test result.

5 FLICKER: ROBUST & AUTOMATED
DETECTION

Flicker is a system that augments Blink to achieve robust and au-

tomated detection of spy cameras. Flicker can detect a spy camera

even if it does not stream the video in live mode. In this section,

we introduce the design of Flicker’s stimulator, and then discuss

how to identify the response pattern by examining the data rate

variation of a packet �ow. Finally, we present a probabilistic detec-

tor that further improves detection robustness in the presence of

strong ambient light and disruptive network variations.

5.1 Stimulator Design

To achieve the design objective of Flicker, the stimulatormust meet

the following requirements.

• Self-identi�able.When the recorded video is not lively streamed,

the spy camera will not respond to light stimuli in real-time. To

determine whether a �uctuation of data rate is a response to

stimuli, the stimulator of Flicker should produce a self-identi�able

response pattern.

• Human invisible.When the recorded video is streamed block by

block in progressive downloading mode, the light stimuli must

last for at least one block period in order to yield a measurable

response pattern. As a result, the stimuli must be human invisi-

ble to avoid being disruptive.
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Figure 9: Consecutive pictures captured by the camera and

the di�erence of their pixels without (the top row) and with

(the bottom row) the stimuli of Flicker.

• Error resistance. To improve detection accuracy and robustness,

the stimuli must be e�ective in the presence of strong ambient

light and disruptive network variations.

Next, we discuss how to engineer and encode light stimuli to meet

the above requirements.

Engineering�ickering. Flickerharnesses daily used LEDs to stim-

ulate spy cameras using high frequency �ickering, which is human-

invisible but can be captured spy cameras. Unlike LiShield [33]

that only works for rolling shutter cameras, Flicker is e�ective

against bot rolling shutter and global shutter cameras. Speci�cally,

for rolling shutter cameras that capture the di�erent parts of a im-

age at di�erent time instants, the �ickering e�ect will be observed

as the di�erence of brightness across pixels in di�erent rows or

columns, producing a striped pattern as long as the �ickering fre-

quency is higher than the video frame rate [33]. When the video

frame rate is not a harmonic of the �ickering frequency, the striped

pattern will keep sweeping across the scene. For global shutter

cameras that capture the entire image at the same time instant, the

�ickering e�ect will be observed as the di�erence of brightness be-

tween consecutive pictures, as long as the video frame rate is not

a harmonic of the �ickering frequency.

Flicker employs a cheap and portable circuit to harness daily

used LEDs as stimulators. The circuit regulates the power supply

of the LED, which �rst converts alternating current (AC) to direct

current (DC) using a recti�er, and then employs a power MOSFET

to switch the power supply at a high-frequency. We set the �icker-

ing frequency to 82.5 Hz, which is su�cient to avoid being disrup-

tive to human eyes [20, 29]. Fig. 9 illustrates the �ickering e�ect

captured by a rolling shutter camera. We observe that although

the striped pattern is of extremely low-contrast because of ambi-

ent light, the �ickering e�ect remains pronouncing when compar-

ing two consecutive pictures. In this case, the camera will devote

a higher number of bits to encoding the scene transformation, re-

sulting in a notable response pattern in the data rate of its packet

�ow.

Layered embedding of identi�cation code. By controlling the

on/o� of stimuli, Flickermodulates the picture size of a video stream

to embed an identi�cation code.Di�erent bit values are represented

using di�erent �ickering frequencies, which in turn lead to di�er-

ent response patterns. Speci�cally, the �ickering frequencies for

bit ‘1’ and ‘0’ are set to 82.5 Hz and 1000 Hz, respectively. We note

that an alternative is to represent bit ‘0’ or bit ‘1’ as �ickering free.

However, this will cause a varying light intensity of the LED due

to di�erent duty ratios, resulting in human visible disruptions.

Tomake stimuli e�ective across di�erent video streamingmodes,

Flicker employs a layered coding structure, where di�erent coding

layers have di�erent bit periods. Speci�cally, to detect a progres-

sive downloading stream where the video is transfered block by

block, the identi�cation code is embedded at the �rst layer, with a

relative long bit period of 1-minute to modulate block size. To de-

tect a live stream where the video is transfered picture by picture,

the identi�cation code is nested inside �rst-layer bits, with a short

bit period of 2s to modulate picture size while reducing detection

delay. As an example, Fig. 10 illustrates the e�ect of Flicker’s lay-

ered coding on the picture size and data rate of spy camera’s video

streams. The size and data rate peaks of I-picture are removed and

�ltered because they do not respond to light stimuli.

Adaptive FEC. To combat ambient light, Flicker protects the em-

bedded identi�cation code with adaptive FEC. Speci�cally, we set

the length of identi�cation code as 4-bit and 8-bit at layer-1 and

layer-2, respectively. At both layers, Flicker protects the embed-

ded identi�cation code using Reed-Solomon (RS) code. Based on

empirical experiments with daily used LEDs, Flicker sets the cod-

ing rate of RS code to 2/3 and 1/2 at night and during daytime, re-

spectively. At runtime, the stimulator reads the ambient light level

from a light meter, and then compares it with a pre-de�ned thresh-

old to determine which coding rate should be used. After encoding,

a three-bit rate header is appended at the beginning of the identi�-

cation code, where the �rst two bits are set as ‘01’ as a synchroniza-

tion word, and the third bit indicates RS coding rate. We note that

the coding rate of RS can be further optimized if Flicker can mea-

sure the intensity of the LED. In this case, it is possible to estimate

the worst-case signal-to-noise-ratio, by using a physical model to

estimate the degradation of stimuli intensity in a given detection

range. This is left for our future work.

5.2 Rate Variation Decoder

In the probing phase, Flicker �rst decodes the data rate variations

of a packet �ow, and then searches for the identi�cation code to

determine if the packet �ow is produced by a wireless spy camera.

Classifying streamingmodes.As the �rst step of probing, Flicker

needs to classify the streaming mode to determine at which layer

the decoding should be performed. To this end, Flicker leverages

the fact that the mute period of progressive downloading is typ-

ically much longer than that of live streaming. Therefore, the de-

tector classi�es streamingmodes by comparing themeasuredmute

period with a pre-de�ned threshold. Based on empirical measure-

ments, we set the threshold to 200ms.

Filtering rate series. For each bit period, Flicker estimates the

bit value based on the average data rate. When the rate measure-

ments corresponding to the I-pictures are included in the estima-

tion, the decoding sensitivity will degrade.For packet �ows of live

streaming, it is possible to eliminate I-pictures by reusing the �lter

described in Section 4.2. However, the �lter requires a pro�ling pro-

cess to learn packet �ow period. In Flicker, we use a lightweight,

aggressive �lter to relieve pro�ling overhead. For each bit period,
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(c) The zoom-in of a part of the 3rd layer-1 bit of Fig. 10(a).

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 140  142  144  146  148  150  152  154  156

D
at

a 
R

at
e 

(B
ps

)

Time (s)

(d) The data rate of a live video stream, which is embedded with a

layer-2 byte of ‘0xa9’.

 0
 500

 1000
 1500
 2000
 2500
 3000

 20  40  60  80  100  120  140  160  180  200  220  240  260

D
at

a 
R

at
e 

(k
bp

s)

Time (s)

(e) The data rate of a progressively downloaded video stream, which

is embedded with four layer-1 bits of ‘0101’.

Figure 10: The e�ect of Flicker’s layered coding on the picture sizes and data rates of spy camera’s video streams.

the �lter deletes all rate measurements that are larger than the me-

dian. This is assured to remove all data rate measurements cor-

responding to the I-pictures, because each GoP contains at least

one non-key picture. We note that the aggressive �lter may also

remove some data rate measurements corresponding to P- and B-

pictures, but this will not a�ect Flicker’s decoding, because all P-

and B-pictures within a bit period are under the stimuli of �icker-

ing.

Extracting identi�cation code. To extract identi�cation code,

Flicker attempts decoding at every time instants of the data rate

series. Speci�cally, at a speci�c time instant, Flicker �rst reads in a

segment of rate measurements of three bit periods, and then mea-

sures the average rate within each period. Denote the results as

r1, r2, and r3. The decoding process terminates if r1 is larger than

r2, which implies a mismatch of synchronization word. Otherwise,

the detector compares r3 with r1+r2
2 to estimate the value of the

third bit, and then sets the rate of the RS decoder accordingly.

After parsing the header, the detector reads in all data rate mea-

surements of the packet, and thenmeasures the average rateswithin

each bit period. To estimate bit values, a naive approach is to slice

bits based on the threshold of r1+r2
2 , which will lead to poor perfor-

mance when the synchronization word is subject to noise. Flicker

addresses the problem using the 2-means clustering. At the begin-

ning of decoding, the two bits in synchronization word are used

to set the initial centroids of each cluster. Then the clusters are

gradually re�ned until the assignment no longer change. Finally,

the cluster with higher average rate is assigned as ‘1’, the other is

assigned ‘0’.

With the decoded bit sequence, the detector calls the RS decoder

to recover the identi�cation code. In the following, we will discuss

how to derive the detection result based on the receiving rate of

identi�cation code.

5.3 Probabilistic Detector

When there exists uncontrollable network variations, identi�ca-

tion code can be erased if the number of �ipped bits exceeds the

error correcting capability of RS code. In addition, Flicker may

wrongly decode a sequence of noise bits as the identi�cation code,

leading to false alarms. Flicker addresses these problems using a

probabilistic detector.

Speci�cally, for an n-bit identi�cation code, the probability of

observing a false alarm, i.e., a sequence of noise bits that is wrongly

identi�ed as the identi�cation code, is ρ = 1
2n . In a given time pe-

riod T, the number of received fake identi�cation code follows

the Binomial distribution with a mean of
ρT
nTbit

and a variance of
Tρ (1−ρ )

nT , where T is the bit period. Based on this observation, Flicker

computes a detection score by evaluating if the number of received

identi�cation code is statistically higher than the one character-

ized by the corresponding Binomial model. The probability that

a packet �ow is produced by a spy camera can be expressed as

1 − F(x ≤ nrx), where F(·) is the cumulative distribution function

of the Binomial distribution, and nrx is the total number of received
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Figure 11: A prototype of the Flicker’s stimulator when inte-

grated with a portable LED.

identi�cation codes in a given time period. Finally, Flicker com-

pares the computed score with a pre-de�ned con�dence level to

determine detection result.

6 EVALUATION

We have implemented two prototypes of Blink and Flicker. Blink is

implemented as a user-space application on an o�-the-shelf Linux

tablet. The prototype of Flicker is implemented based on a Rasp-

berry Pi, which controls a portable circuit through GPIO to drive

the lighting source (as shown in Fig. 11). In our evaluation, a 20

Watt portable LED is employed as the stimulator. The detector

of Flicker is also implemented as a user-space application and de-

ployed on the same Linux tablet.

Our evaluation is based on nine commodity wireless IP cameras

and four wireless spy cameras of di�erent models and manufactur-

ers (as shown in Fig. 1). All of these cameras encode video in H.264

– the most popular formats for recording and wirelessly distribut-

ing video content. Our experiments are conducted in four rooms

including a bedroom, a bathroom, a conference room, and an of-

�ce room, which di�er in sizes, wireless network conditions, and

ambient light levels during daytime. Fig. 12 shows the snapshots

of the four rooms captured by one wireless camera.

6.1 Blink Performance

We �rst evaluate the performance of Blink. During experiments,

we turn on/o� the ceiling lights of the rooms to stimulate wireless

cameras. We conduct experiments under di�erent video streaming

settings. Speci�cally, three combinations of video resolution and

frame rate are studied, including 1280x720 30 fps, 640x480 20 fps,

and 352x288 10 fps. The bitrates of the produced video streams are

approximately 512 kbps, 196 kbps, and 128 kbps, respectively. In

each room and for each setting, we conduct a total of 40 stimuli

to study the performance of Blink both in daytime and at night.

The detection rates and false alarm rates are calculated under 95%

con�dence level.

6.1.1 Detection rate. Fig. 13 shows the detection rate of Blink

after one round of stimulus. The error bars show standard devi-

ations calculated for di�erent cameras. We observe that the �rst

round detection rate ranges from 18% to 72% across di�erent set-

tings and rooms. The detection rate is better for video streams of

lower bitrates. For example, for video streams of 128 kbps and 512

kbps, the detection rates at night are from 54% to 72% and 18% to

31%, respectively. This is because video streams of higher bitrates

typically involve in more frequent contentions with other network

tra�cs, therefore their packet transmissions are subject to higher

packet jitters, which makes rate measurements more noisy than
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Figure 12: Snapshots of the experimental sites captured by

the wireless spy camera.

those of video streams with lower bitrates. Surprisingly, we ob-

serve that the detection rate in daytime is slightly better that that

at night. This is particularly obvious for video streams of higher

bitrates. The reason is that, at night, the response of video stream

is much more intensive than that during daytime, which results

in higher bitrates and more noisy rate measurements at the time

instants of stimuli.

We further study the detection rates after multiple rounds of

stimuli. Fig. 14 shows the experimental results for video streams

of di�erent bitrates. The error bars show standard deviation cal-

culated from the experimental results across di�erent rooms and

cameras. We observe that the detection rate improves quickly as

the number of applied stimuli increases. For example, the detec-

tion rate for the 128 kbps video stream increases to 100% after only

three rounds of stimuli. Even for the worst case when detecting

the 512 kbps video stream at night, the detection rate increases to

above 90% after seven rounds of stimuli. We note that the detec-

tion rate can be further improved by conducting more rounds of

stimuli.

6.1.2 False alarm rate. Because of the explosive growth and the

ubiquitous existence of video tra�cs, it is important for Blink to

reduce the false alarm rate when probing live video streams other

than that of the wireless spy camera. To this end, we study the false

alarm rate of Blink when probing four representative live video

streams, including a �lm (Fantastic Four), a cartoon (The Simpons

Movie), a soccer game (2014 World Cup Final), and an interview

program (Bill O’Reilly’s Super Bowl interview with Trump). The

results are shown in Fig. 15. We observe that the false alarm rate

is the worst for the video stream of Fantastic Four because of the

more frequent video scene variations, which causes intensive bi-

trate �uctuations that might be wrongly identi�ed by Blink as re-

sponses to light stimuli. In comparison, the false alarm rate is much

lower for the interview program because the video scene remains

relatively stable throughout the program. In addition, we observe

that the false alarm rate decreases quickly as the number of prob-

ing rounds increases. Speci�cally, for the video stream of Fantastic

Four, the false alarm rate reduces to below 0.8% after only eight

rounds of probing.
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Figure 13: Single round detection rate of Blink.
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Figure 14: Multiple rounds detection rates of Blink for video streams of 128 kbps (left), 192 kbps (middle), and 512 kbps (right).
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Figure 15: The false alarm rates of Blink when probing di�erent live video streams.

6.2 Flicker Performance

To evaluate the performance of Flicker, we conduct experiments in

the conference room, which is the largest room, has the strongest

ambient light condition, and su�er the worst network condition

among the four experimental sites. During experiments, we ob-

serve that a total of 34 active Wi-Fi access points are deployed

around the experimental site, working on �ve di�erent channels

in the 2.4 GHz and 5 GHz band. The wireless cameras are deployed

on three top corners of the room. The snapshots of the experimen-

tal site captured by one of the wireless cameras are shown in Fig.

16. To test the robustness of Flicker against ambient light, we in-

tentionally keep one of the room’s three ceiling lights on when

conducting experiments at night. The strong ambient light condi-

tion forces Flicker to protect embedded identi�cation codes using

the RS code of rate- 12 . In addition, we tune the cameras’ angles to

avoid directly shooting the LED stimulator in the video scene.

6.2.1 Di�erent video se�ings. We �rst evaluate the detection

performance of Flicker across di�erent video settings and deploy-

ment scenarios. The results are shown in Fig. 17. The error bars

show standard deviations calculated for di�erent cameras. Fig. 17a

and Fig. 17c show the detection rate of identi�cation code after cor-

recting bit decoding errors using the RS code. We observe that the

average detection rates are maintained above 80% and 73% for live

and progressively downloading video streams, respectively. The

Figure 16: Video scenes captured by one of the wireless cam-

eras when deployed in three di�erent corners of the confer-

ence room.

detection rate is the best when the cameras are deployed on corner-

3, where the angle of the cameras is the closest to the direction of

the stimulator.

We further evaluate the detection scores calculated by the prob-

abilistic detector described in Section 5.3. Fig. 17b and Fig. 17d plot

the worst case detection score among all settings (i .e ., 192 kbps at

Corner-2 for live streaming and 512 kbps at Corner-1 for progres-

sive downloading). When measuring the detection score for live

video streams, we embed random identi�cation codes at layer-1.

The detection score is then averaged across 100 layer-1 codes and

all cameras. We observe that the worst case detection scores in-

crease quickly after multiple rounds of detection. Speci�cally, for
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(a) ID code detection rate for live

streaming.

 0
 20
 40
 60
 80

 100

 0  1  2  3  4  5  6  7  8  9  10

D
et

. S
co

re
 (

%
)

Round

47%

68%
81%89%91%94%96%98%99%99%

(b) Worst case detection score for

live streaming.
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(c) ID code detection rate for pro-

gressive downloading.
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(d) Worst case detection score for

progressive downloading.

Figure 17: The detection performance of Flicker for di�erent video streaming settings and deployment scenarios.
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(a) ID code detection rate.
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(b) Det. scores, 1.024 Mbps.
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(c) Det. scores, 2.048 Mbps.
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(d) Det. scores, 2.560 Mbps.
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(e) Det. scores, 3.143 Mbps.

Figure 18: The identi�cation code detection rates and detection scores of Flickerunder di�erent volumes of contending network

tra�cs.
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Figure 19: The detection scores of

Flicker in the presence of scene

variations.
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Figure 20: Bit error rate when us-

ing Flicker to probe the live video

stream of Fantastic Four.
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Figure 21: The picture size varia-

tions of a MJPEG video stream un-

der light stimuli.

the live and progressively downloading video streams, the detec-

tion scores increase to above 91.6% and 91.9% after only �ve and

two rounds of detection, respectively.

6.2.2 Impact of network contentions. To study the robustness of

Flicker against network variations, we evaluate the performance of

Flicker when probing a 512 kbps video stream under di�erent vol-

umes of contending network tra�cs. We intentionally inject ping

packets into the channel of the wireless camera, and control the

volume of contending tra�c by tuning the lengths and time in-

tervals of ping packets. The detection rates and scores are shown

in Fig. 18, where the error bars show standard deviations calcu-

lated for di�erent cameras. As expected, Flickerperforms better un-

der less network contentions. Speci�cally, the detection rate drops

from 83% to 39% when the volume of contending tra�cs increases

from 0.512 Mbps to 3.143 Mbps. As a result, the �rst round detec-

tion score drops from 48% to 16%. However, the detection score

increases quickly after multiple rounds of detection even in the

presence of strong network contentions. For example, when the

volumes of contending tra�cs are 1.024 Mbps and 3.143 Mbps, the

detection scores of Flicker increase to above 90% after 4 and 12

rounds of detection, respectively.

6.2.3 Impact of scene variations. In the presence of uncontrol-

lable environmental variations, the bitrate of the video stream may

�uctuate even without light stimuli. The impact is equivalent to an

increased noise �oor, which may increase error rate when decod-

ing rate variations. To study the impact of scene variations, we

intentionally place one LCD display into the scene of the wireless

camera, and then play a clip of �lm on the display. The display

takes about 20% pixels of the video scene. Fig. 19 shows the de-

tection scores when probing a 512 kbps live video stream. We ob-

serve that, although the detection scores are slightly lower than the

worst case we observed in Fig. 17, Flicker remains robust against

uncontrollable scene variations after multiple rounds of detection.

Speci�cally, the detection score increases to above 90% after only

�ve rounds of detection.

6.2.4 False alarm rate. Finally, we evaluate the false alarm rate

of Flicker. To this end, we use Flicker to decode the bitrate varia-

tions when streaming Fantastic Four in progressive downloading

mode. Fig. 20 shows the histogram of bit error rate. We observe

that the bit error rate is around 46.7% to 53.3% in 83.5% cases. Be-

cause of the high bit error rate, the detection rate of identi�cation

code is maintained at 0% consistently throughout our experiment

that involves 217 packets.

7 DISCUSSION

Wireless scanning. In real deployment, the detector does not know

the channel of the wireless spy camera a priori. A scan of wireless

spectrum is therefore needed before stimulating and probing. Our
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measurement shows that a 20s of pro�ling is often enough to iden-

tify suspect packet �ows. This process can be further accelerated

by �rst scanning the channel 1, 6, and 11 of Wi-Fi, which are the

common options to deploy Wi-Fi in practice.

Other video codecs. The design of Blink and Flicker can be easily

extended to detect wireless spy cameras that use other VBR-based

video codecs. For example, Fig. 21 plots the picture size variations

for a video stream encoded using MJPEG. During measurement,

the light condition is changed at the time instants of the 330th, the

450th, the 550th, and the 660th pictures.We can clearly observe the

response of MJPEG to light stimuli. Di�erent frommotion compen-

sation based compression algorithms that encode the transforma-

tion of scene, MJPEG compresses each picture separately and inde-

pendently. As a result, the produced pictures have di�erent sizes

under di�erent light conditions.

Detecting non-wireless spy cameras. Even if the spy camera

does not stream the recorded video wirelessly (e .д., streams via

wired networks or stores recorded videos locally in a SD card),

Flicker can be employed as a countermeasure to limit the distri-

bution of privacy-intrusive videos. Speci�cally, the identi�cation

code embedded by Flicker allows an authenticated cloud server

to identify videos recorded by spy cameras by simply analyzing

the picture sizes of the video stream. This approach is inspired by

LiShield [33]. However, LiShield requires the cloud server to in-

spect each picture of the video stream to search for a watermark,

which is privacy-intrusive and infeasible when the video content

is encrypted. In comparison, Flicker is more practical as it avoids

the decryption and inspection of video content.

Countermeasure. Blink and Flicker are designed to detect wire-

less cameras that use standard-compliant wireless and video cod-

ing chips, which have been the most frequently used tools for spy-

ing due to their low cost, wide availability, and easy deployabil-

ity. We note that the attacker may design countermeasures against

Blink and Flicker by developing proprietarywireless protocols, video

encoding and processing algorithms, which will however substan-

tially increase the manufacturing and deployment cost. From this

perspective, Blink and Flicker will signi�cantly rise the bar of vi-

sual privacy invasion.

8 RELATED WORK

Tra�c analysis. Prior studies exploit the statistical features of

network tra�c to infer application protocols [31], �ngerprint users

[16, 25, 27] or websites [13, 19], detect drones [23, 24], and identify

the type of wireless radios [28]. Our work is most closely related

to prior studies that classify audio/video tra�cs [12, 21, 26, 30, 32].

However, considering the explosive growth and the ubiquitous ex-

istence of video tra�c (e .д., the tra�cs ofvideo chatting, smart TV,

or legal surveillance cameras deployed in neighborhood), the de-

tection of video tra�c doe not reliably assert the presence of a

wireless spy camera [15]. To address this issue, the stimulating-

and-probing approach proposed in this paper exploits the associ-

ation between the variations of network tra�c and the user’s pri-

vate space. The focus is on designing the pattern of stimuli and

decoding the response of the spy camera, which go beyond the

scope of traditional tra�c analysis.

Camera detectors.Prior camera detectors are cumbersome to use

and require signi�cant user involvement. A common approach is

to �rst illuminate a suspicious place using laser or �ashlight, and

then ask the user to search for the tiny glint of the camera lens

[6]. The user has to scrutinize the entire private space, which typ-

ically requires a slow and meticulous sweep while providing no

assurance for detection. Other detectors assist the user to localize

wireless sensors by tracking or analyzing the pattern of RF sig-

nals [8, 22]. However, these approaches cannot associate the sensor

with the user’s context to determine whether the sensor is spying

on the user’s private space.

Camera countermeasures. Existing RF-based countermeasures

against wireless cameras rely on indiscriminate jamming to block

the entire wireless medium [3, 7], which inevitably causes severe

performance degradation of legitimate network devices. By accu-

rately identifying the packet �ow of the wireless spy camera, Blink

and Flicker can be integrated with existing RF-based countermea-

sures, enabling smart jamming that corrupts the spy camera’s packet

�ow while minimizing the interference with other devices.

LiShield [33] protects a physical scene (e .д., a document or a

paint) from photographing by jamming the visible light spectrum.

It interferes with the rolling-shutter image sensor by modulating

a lighting source with high-frequency �ickering, which imposes

a striped watermark on the images captured by the camera. How-

ever, LiShield cannot black out the entire video scene, and may

require a customized lighting source with high intensity when pro-

tecting a large space. When the e�ect of �ickering is overwhelmed

by ambient light, LiShield relies on an authorized server to detect

the embedded watermark when the video is uploaded to the cloud.

However, the server must inspect the image content to search for

the watermark, which is privacy-intrusive, and is impossible when

the video is encrypted. In comparison, Blink and Flicker can detect

the wireless spy camera’s packet �owwithout inspecting the video

content.

9 CONCLUSION

In this paper, we propose a stimulate and probe approach to detect-

ing wireless spy cameras. Following this approach, we design and

implement two practical systems, namely Blink and Flicker. Blink

is a lightweight mobile app that leverages user-triggered light stim-

uli to detect wireless spy cameras in live streaming mode. Flicker

augments the design of Blink by using commodity LEDs to gener-

ate human invisible light �ickering as the stimuli. Flicker can de-

tectwireless spy cameras across di�erent streamingmodes, and im-

proves detection robustness by encoding light �ickering to combat

disruptive network variations. Extensive experiments show that

our systems can accurately detect wireless spy cameras under a

wide range of settings, including di�erent ambient light intensi-

ties, video streaming modes and con�gurations (e .д., resolution,

frame rates), wireless interference conditions, and uncontrollable

environmental variations.
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