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ABSTRACT

Owing to the rich processing, multi-modal sensing, and versatile
networking capabilities, smartphones are increasingly used to build
data-intensive embedded sensing applications. However, various
challenges must be systematically addressed before smartphones
can be used as a generic embedded sensing platform, including
high power consumption, lack of real-time functionality and user-
friendly embedded programming support. This paper presents OR-
BIT, a smartphone-based platform for data-intensive embedded se-
nsing applications. ORBIT features a tiered architecture, in which
a smartphone can interface to an energy-efficient peripheral board
and/or a cloud service. ORBIT as a platform addresses the short-
comings of current smartphones while utilizing their strengths. OR-
BIT provides a profile-based task partitioning allowing it to intel-
ligently dispatch the processing tasks among the tiers to minimize
the system power consumption. ORBIT also provides a data pro-
cessing library that includes two mechanisms namely adaptive de-
lay/quality trade-off and data partitioning via multi-threading to op-
timize resource usage. Moreover, ORBIT supplies an annotation
based programming API for developers that significantly simplifies
the application development and provides programming flexibility.
Extensive microbenchmark evaluation and two case studies includ-
ing seismic sensing and multi-camera 3D reconstruction, validate
the generic design of ORBIT.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems, signal processing systems
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1. INTRODUCTION
The ubiquity of smartphones and their multi-modal sensing ca-

pabilities have enabled a wide spectrum of mobile sensing appli-
cations. These applications are usually human-centric in that the
smartphone utilizes on-board sensors to sense people and character-
istics of their contexts. Different from these human-centric sensing
applications, this paper considers an emerging class of smartphone-
based data-intensive embedded sensing applications. In contrast to
the people-centric nature of participatory sensing, smartphones in
these applications are embedded into environments to sense and
interact with the physical world autonomously over long periods
of time. For instance, in the Floating Sensor Network project [9],
smartphone-equipped drifters are rapidly deployed to collect real-
time data about the flow of water through a river. The smartphone’s
GPS allows the drifter to measure volume and direction of wa-
ter flow based on its real-time location and transmit the data back
to the server through cellular networks. Smartphones have also
been employed for monitoring earthquakes [7], volcanoes [13], and
even operating miniature satellites [22]. Another important class of
smartphone-based embedded systems is cloud robots [11] [4]. By
integrating smartphones, these robots can leverage a plethora of
phone sensors to realize complex sensing and navigation capabil-
ities and offload compute-intensive cognitive tasks like image and
voice recognition to the cloud.

Compared with the traditional mote-class sensing platforms, sm-
artphones have several salient advantages that make them promis-
ing system platforms for the aforementioned embedded applica-
tions. These features include high-speed multi-core processors that
are capable of executing advanced data processing algorithms, mul-
tiple network interfaces, various integrated sensors, friendly user
interfaces and advanced programming languages. Moreover, the
price of smartphones has been dropping significantly in the last
decade. Many Android phones with reasonable configurations (up
to 800MHz CPU and 2GB memory) cost less than US$50 [18].

However, several challenges must be addressed before smart-
phones can be used as a system platform for embedded sensing
applications. First, the smartphones, which are designed to provide
several days of battery life, are ill-suited for many embedded sens-
ing applications that must operate unattended for long periods of
time. Many of today’s embedded applications are inherently data-

intensive in that sensors must sample at high rates (e.g., 100 Hz
in seismic sensing [29]). The continuous sensor sampling can pre-
vent the smartphone from entering sleep state, leading to battery
depletion in a few hours. Moreover, the current major smartphone
operating systems (OSes) do not provide real-time functionalities,
such as constant sampling rate, precise timestamping, and program-
ming interfaces for expressing timing requirements, which are cru-
cial to many embedded sensing applications. For instance, our



measurements show that the USB hardware interrupt of Android
phones suffers an unpredictable delay of up to 5 ms, which makes
it impossible to achieve a high constant sampling rate. Lastly, the
smartphone programming environment, although simplifying many
programming tasks in the life cycle of embedded systems such as
debugging, remote data logging, visualization, and software main-
tenance, lacks important embedded programming support such as
resource-efficient signal processing libraries and communication/-
control primitives for peripheral sensors.

In this paper, we take the first step toward addressing these chal-
lenges collectively. We present ORBIT, a smartphone-based plat-
form for embedded sensing systems. In particular, ORBIT lever-
ages off-the-shelf smartphones to meet the energy-efficiency and
timeliness requirements of data-intensive embedded sensing appli-
cations. ORBIT is based on a tiered architecture that comprises up
to three tiers: the cloud, the smartphone, and one or more energy-
efficient peripheral boards (referred to as extBoard) that are inter-
faced with the smartphone. A number of extBoard platforms are
currently available, such as Arduino [1] and IOIO [14]. There-
fore, if the built-in sensors on the smartphones are not suitable
for sensing applications, these boards can readily integrate vari-
ous accessories, such as external sensors, to an Android phone via
USB or bluetooth interface. We conduct a measurement study on
the latency and power consumption of Android smartphones and
extBoard platforms. Our results show that the two platforms have
highly heterogeneous but complementary power/latency profiles:
smartphone features higher energy efficiency due to its faster pro-
cessing capability while yielding poor timing accuracy due to the
overhead of OS. These results have important implication for ef-
ficient task partitioning. In particular, while the smartphone and
cloud should handle long-running compute-intensive tasks, time-
critical functions such as high-rate sensor sampling and precise
event timestamping must be shifted to the extBoard owing to its
hardware timers and efficient interrupt handling.

Motivated by the above observations, we propose a task par-
titioning framework that assigns tasks to different tiers based on
their time-criticality, compute-intensity, and heterogenous laten-
cy/power consumption profiles. Furthermore, to take advantage
of the increasing availability of multiple cores on smartphones,
ORBIT implements a data partitioning scheme that decomposes
matrix-based computation into multiple threads. ORBIT also in-
tegrates a data processing library that supports high-level Java an-
notated application programming. The design of this library fa-
cilitates the resource management of the embedded applications by
promoting a delay/quality trade-off mechanism. To enable dynamic
task dispatch and runtime task profiling, we develop an ORBIT
runtime environment consisting of task controllers running on each
tier. These controllers coordinate task execution through a unified
messaging protocol. Owing to these features, ORBIT is a powerful
system toolkit to build a wide spectrum of data-intensive embedded
sensing applications.

This paper makes the following contributions. First, we con-
duct systematic measurement and modeling to understand the op-
portunities as well as the challenges for using smartphones for data-
intensive embedded sensing applications. Our measurement results
are also useful for the design of a broad class of smartphone-based
sensing systems. Second, we provide an implementation of several
data processing algorithms as a library as well as several mecha-
nisms that improve the efficiency of data processing algorithms for
both the smartphone and the extension board. Several components
of ORBIT bear some similarity with existing embedded system
platforms [5, 10, 23, 28]. However, to our best knowledge, OR-
BIT is the first general-purpose, extensible, application-aware, and

end-to-end sensing and processing platform for smartphones-based
data-intensive embedded applications 1. Lastly, we demonstrate
the generality and flexibility of ORBIT as a platform by presenting
our experience in prototyping two applications upon ORBIT: seis-
mic sensing and multi-camera 3D reconstruction. The flexible task
partitioning and dispatching framework allows ORBIT to adapt to
different task structures, application deadlines, and communication
delays. The experiments show ORBIT reduces energy consump-
tion by up to 50% compared to baseline approaches.

2. RELATED WORK
Mobile sensing based on smartphones has recently received sig-

nificant interests. Most studies focus on the issues related to human-
centric context, including coordination among multiple concurrent
sensing applications [16, 17, 15] and sensing algorithms such as
context classifiers [3]. Recently, smartphones have been used in
a number of embedded sensing applications. In [7], smartphones
are used to build an earthquake early warning system using an on-
board accelerometer. In the Floating Sensor Network project [9],
smartphone-equipped drifters are deployed to monitor waterways
and collect real-time volume and direction of water flow based on
the phone’s GPS. The NASA PhoneSat project [22] has launched
low-cost satellites equipped with Android smartphones. Controlled
by a smartphone, such small satellites could perform various tasks
such as earth observation and space debris tracking. Several re-
cent efforts focus on building cloud robots [11] that integrate smart-
phones with robots. The phone’s built-in sensors are used for sens-
ing and navigation, while compute-intensive tasks like image and
voice recognition are offloaded to the cloud.

Various task offloading schemes for smartphones have been de-
veloped recently. Spectra [8] allows programmers to specify task
partitioning plans given application-specific service requirements.
Chroma [2] aims to reduce the burden on manually defining the
detailed partitioning plans. Medusa [25] features a distributed run-
time system to coordinate the execution of tasks between smart-
phones and cloud. Turducken [28] adopts a hierarchical power
management architecture, in which a laptop can offload lightweight
tasks to tethered PDAs and sensors. While Turducken provides a
tiered hardware architecture for partitioning, it relies on the appli-
cation developer to design a partitioned application across the tiers
to achieve energy efficiency.

Different from these task partitioning schemes, ORBIT dispatches
the execution of sensing and processing tasks in a smartphone-
based multi-tier architecture to achieve data-intensive applications
requirements. ORBIT maximizes the battery lifetime subject to
the application-specific latency constraints. Moreover, in order to
support fine-grained task partitioning across the tiers, the devel-
oper specifies the application’s task structure as well as real-time
requirements via either Java annotations or an XML-based applica-
tion model provided by ORBIT. ORBIT also provides a messaging
interface to support unified data passing mechanism between het-
erogenous tiers and between different application components.

The MAUI system [5] enables a fine-grained offloading mecha-
nism to prolong the smartphone’s battery lifetime. However, MAUI
relies on the properties of the Microsoft .NET managed code envi-
ronment to identify the functions that can be executed remotely.
When a function is executed remotely, MAUI assumes the energy
associated with its local execution is saved. In contrast, ORBIT
does not rely on any language specific environment and its measure-
ment-based power profiles account for many realistic power char-
acteristics such as CPU sleep, wake up and tail time.

1
The source code of ORBIT is available at https://github.com/msu-sensing/ORBIT



The Wishbone system [23] also features a task dispatch scheme.
Unlike Turducken, Wishbone uses a profile-based approach to find
the optimal partition. It only considers two tiers: in-network and
on-server. Unlike MAUI, Wishbone relies on the timing profile
only and does not account for the power consumption. ORBIT
differs from Wishbone in several ways. Wishbone uses the CPU
and network timing profiles only to find the optimal task partition,
while ORBIT considers the measured latency and power consump-
tion, which leads to more energy-efficient task partitions. More-
over, Wishbone depends on the timing profiles based on sample
data under the assumption that the sample data can represent actual
runtime data. However, our measurement study shows that the sig-
nal processing timing profiles can exhibit significantly variations
in real scenarios. To address this, ORBIT measures the statistical
timing profiles at runtime, and periodically refines the partitioning
results. Moreover, Wishbone formulates the partitioning problem
as a 0/1 integer linear programming problem and thus supports two
tiers only. In contrast, ORBIT formulates the problem as a non-
linear optimization problem and supports three or more tiers.

RTDroid [30] tackles the lack of hard real-time capability of An-
droid system and addresses the problem by redesigning and replac-
ing several Android components in Dalvik, e.g., Looper-Handler
and Alarm-Manager. In contrast, ORBIT requires no changes to the
Android system. ORBIT accounts for statistical properties of task
execution, and finds the best execution assignment by its task parti-
tioning mechanism. Hence, although RTDroid and ORBIT address
different sets of issues, they are complementary. In fact, ORBIT
can run on RTDroid and the ORBIT-based sensing applications can
benefit from both.

Similar to ORBIT, EmStar [10] provides an environment to im-
plement distributed embedded systems for sensing applications based
on Linux-class Microservers. However ORBIT takes one major
step further and proposes a design based on smartphones for the
purpose they are not originally designed for, which is embedded
systems. This difference in underlying technology leads to totally
different design and implementation. Although EmStar and ORBIT
have similar modular designs, unlike ORBIT, EmStar does not have
any partitioning mechanism and it is not strictly tiered. More im-
portantly, ORBIT provides a library of data processing algorithms
that are efficient on the resource-constrained smartphone and ex-
tension board. This is not a design goal of EmStar.

3. MOTIVATION AND SYSTEM OVERVIEW
In this section, we discuss the motivation of using smartphone

as a system platform for data-intensive embedded sensing applica-
tions and the design objectives of ORBIT.

3.1 Motivation and Challenges
Mote-class sensing platforms such as TelosB have been widely

adopted by embedded sensing applications in the past decade. How-
ever, due to the limited processing and storage capabilities, they
are ill-suited for high-sampling-rate sensing applications. Recently,
several single-board computers such as Gumstix [12], SheevaPlug
[20], and Raspberry Pi [26], which are equipped with rich process-
ing and storage capabilities, have been increasingly used in embed-
ded applications. However, their designs are not particularly opti-
mized for low-power sensing. Moreover, without on-board sensors
and wireless interfaces, they need to be equipped with various pe-
ripherals for different applications.

Different from the above platforms, commercial off-the-shelf sm-
artphones offer several salient advantages that make them a promis-
ing system platform for data-intensive embedded sensing applica-
tions. The advantages include rich computation and storage re-

(a) Seismic ORBIT node (b) Robotic ORBIT node

Figure 1: ORBIT nodes for seismic sensing and robots.

sources, multiple network interfaces and sensing modalities, in-
creasing available multi-core architecture and low cost. Moreover,
smartphones come with advanced programming languages and frie-
ndly user interfaces, such as touch screen to enable rich and inter-
active display, unlike the limited user interfaces of motes and em-
bedded computers (e.g., LED and buttons).

However, we still face the following major challenges in building
an embedded sensing platform based on COTS smartphones:

(1) High power consumption: The smartphone power manage-
ment schemes are designed to adapt to user activities to extend bat-
tery time. However, they are not suitable for untethered embedded
sensing systems. If the smartphone samples sensors continually, its
CPU cannot enter a deep sleep state to save energy. Low-power co-
processors (e.g., M7 in iPhone5s) can handle continuous sampling,
but are available on a few high-end models only.

(2) Lack of real-time functionalities: Many sensing applications
have stringent real-time requirements, such as constant sampling
rate and precise timestamping. However, modern smartphone OSes
are not designed for meeting these real-time requirements. For in-
stance, sensor sampling can be delayed by high-priority CPU tasks
such as Android system services or user interface drawing. Our
measurements show that the software timer provided by Android
may be blocked by Android core system services by up to 110 mil-
liseconds. Moreover, Android programming library does not pro-
vide the native interfaces that allow developers to express timing
requirements.

(3) Lack of embedded programming support: The program-
ming environment of smartphone is designed to facilitate the devel-
opment of networked, human-centric mobile applications. How-
ever, it lacks important embedded programming support such as
resource-efficient signal processing libraries and unified primitives
for controlling and communicating with peripheral accessories such
as external sensors.

3.2 System Overview
In this paper, we present ORBIT, which is designed to address

the above three major challenges. An ORBIT node comprises an
Android smartphone, an extBoard (e.g., IOIO [14] and Arduino
[1]), and possibly a runtime system on the cloud. The extBoard
is connected to the smartphone through a USB cable or bluetooth
for communication. It is equipped with a low-power MCU, e.g.,
ATmega2560 with 16 MHz frequency, 8 KB RAM, and an analog-
to-digital (A/D) convertor that can integrate various analog sensors.
Fig. 1 shows two ORBIT prototypes, a seismic monitoring node
and a robot sensing node that are used in the evaluation (cf. Section



Figure 2: System Architecture of ORBIT.

6). Fig. 2 shows the overall system architecture of ORBIT.
ORBIT is designed to meet the following three requirements.

(1) Energy-efficiency and while taking into account the timeliness
requirements: ORBIT leverages the heterogeneous power/latency
characteristics of multiple tiers (e.g., extBoard, smartphone and
cloud server) to minimize the overall energy consumption. It also
models the timing latency of the application statistically and ap-
plies these models in task partitioning and execution. We note that
ORBIT cannot achieve hard real-time guarantees. However, the
statistical task timing model allows the task deadlines to be met
with higher probability. (2) Programmability: ORBIT provides a
component-based programming environment that allows develop-
ers to build sensing applications without the need to deal with low-
level issues of the system design. (3) Compatibility: ORBIT relies
solely on the out of the box functionality of COTS smartphones,
without requiring kernel-level customization or device rooting. This
not only minimizes the burden on the application developers, but
also ensures the compatibility with diverse smartphone models. In
the following, the major ORBIT components are described.

ORBIT Library and Application Model: ORBIT provides a li-
brary of signal processing algorithms with unified interfaces. They
can be easily composed into various advanced sensing applications.
The library provides a programming primitive, referred to as con-

nection, allowing programmers to specify application composition
in an XML file or through Java annotations. In particular, each
algorithm can be executed on any tier, enabling flexible task dis-
patching.

Task/Data Partitioner and Execution Time Profiler: To meet the
deadlines of sensing applications, time-critical tasks should be exe-
cuted on the extBoard while the compute-intensive tasks should be
executed on the smartphone and/or the cloud. We formally formu-
late a task partitioning problem that aims to minimize the energy
usage of the smartphone subject to a processing delay bound on
time-critical tasks. Task Partitioner solves this problem and obtains
the optimal task dispatch plan. A challenge presented by this design
is that the signal processing tasks may have highly variable execu-
tion time. We design an online profiler that measures task execution
time at runtime and runs the task partitioner dynamically. More-
over, ORBIT adopts a data partitioning scheme that decomposes
matrix-based computation into multiple threads to take advantage
of the increasing availability of multiple cores on smartphones.

Task Controllers and Unified Messaging Protocol: At runtime,
the Task Controllers on different tiers collaboratively instantiate
the tasks and execute them by following the task dispatch plan.
The extBoard runs low-level and real-time functions such as sensor
sampling and lightweight signal processing tasks. The smartphone
and cloud run compute-intensive tasks that require data from a sin-
gle and multiple ORBIT nodes, respectively. To facilitate such
flexible task dispatching and control, we develop a unified messag-

ing protocol for the communication across different tiers on top of
native communication channels such as USB (between phone and
extBoard) and HTTP (between phone and cloud server).

4. MEASUREMENT-BASED LATENCY AND

POWER PROFILING
To use smartphones as a system platform for data-intensive sens-

ing applications, it is important to understand the characteristics of
their latency and power consumption. This section presents a mea-
surement study of the latency and power consumption on different
smartphones. The measurement study provides insights into the
limitations of smartphones and motivates several key design deci-
sions in ORBIT. For instance, the design of the task partitioner,
execution time profiler, adaptive delay/quality trade off in the li-
brary or ORBIT messaging protocol are based on the findings of
the measurement study discussed in this section.

4.1 Timing Accuracy and Latency Profiling
Timing accuracy is critical for many sensing applications. For

instance, acoustic or seismic source localization [19] typically re-
quires millisecond level precision for the timestamps of sensor sam-
ples. In this section, we measure the accuracy of software timer

and event timestamping of Android smartphones and discuss the
impact on the design of ORBIT. First, an event timer is commonly
used to implement constant-rate sensor sampling and its accuracy
determines the sampling rate precision that can be supported. Sec-
ond, timestamping an external event, which may be triggered by
a GPS receiver or a sensor connected to the smartphone through
USB, is also essential for many embedded applications. Our mea-
surements are conducted using an LG GT540, a Nexus S, and a
Galaxy Nexus, representing three typical low- to medium-end sm-
artphone models. They run three versions of Android distribution,
2.1, 4.0.4, and 4.2.2. The LG GT540 results discussed here are rep-
resentative of these phones measured in terms of the level of timing
variability.

Software Timer: Fig. 3 plots the distribution of the intervals be-
tween two interrupts generated by a software periodic timer with
an desired interval of 10ms, while only Android core system ser-
vices are running. Although most intervals are close to 10ms, the
distribution has a long tail with a maximum interval above 110ms.

Event timestamping: We then measure the delay between the
time instance when a pulse signal is received by a digital pin of
an extBoard (which triggers a USB interrupt to Android) and when
the USB interrupt is received in an Android application. Our mea-
surement shows that this delay is highly variable and can be up to
5ms.

Due to the Android’s poor timing accuracy suggested by these
results, it is difficult to implement high-constant-rate sensor sam-
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Figure 5: Execution time of signal processing algorithms (error

bar represents standard deviation).

pling or precise event timestamping. In contrast, our measurement
shows that the timing error of an Arduino extBoard is no greater
than 12µs, due to the availability of hardware timers and efficient
interrupt handling.

We then investigate the execution time of the signal processing
algorithms. We find that most algorithms have relatively constant
execution times for fixed input sizes. However, the execution time
of a few algorithms depends on the input data. Fig. 4 shows the dis-
tribution of the execution time of the scale-invariant feature trans-
form (SIFT) used for detecting features of different 640x480 pixel
images on a Nexus S. This example suggests that the statistical
properties of the signal processing delays must be accounted for
at runtime to ensure the real-time performance of the application.

The execution times of the tasks determine their energy con-
sumption and highly affect the real-time performance of the ap-
plication. Fig. 5 plots the execution times of four signal processing
algorithms on an Arduino extBoard and a Nexus S smartphone ver-
sus the length of the input signal. It can be seen that extBoard’s and
smartphone’s latencies are in the order of seconds and milliseconds,
respectively. However, they have comparable power consumption
as will be shown in Section 4.2. Therefore, the smartphone can
process the signals with less energy and shorter delays.

4.2 Power Profiling
As computation is typically the dominant source of power con-

sumption in data-intensive sensing applications, we focus on profil-
ing the CPU of smartphones. Power consumption of other compo-
nents (e.g., radio) can be easily integrated with the measured CPU
power profiles. We measure the current draw of several Android
smartphones using an Agilent 34411A Multimeter. Fig. 6(a) shows
the current draw of a Samsung Nexus S in different processing
states. We observed similar CPU state transitions and power con-
sumption characteristics across multiple smartphone models. Ini-
tially, the smartphone is in the sleep state, and hence draws little
current (less than 5mA). At the 5th second, the extBoard requests
the smartphone to execute an FFT algorithm. Upon receiving the
request, the phone first acquires a wake-lock, the Android mecha-
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Figure 6: Nexus S current draw profiles.

nism to prevent the phone from going to sleep. At the 25th second,
FFT completes and releases the wake-lock. Before the phone fully
wakes up or goes to the sleep state, there is a transitional phase with
a few power spikes. Fig. 6(b) shows the expanded view of these two
transitional phases. We refer to them as wake-up and tail phases,
lasting approximately 200 ms and 755 ms, respectively. There are
also two spikes in Fig. 6(a), caused by the communications between
the phone and the extBoard. Since these spikes are very short and
have limited current draw, their energy consumption is negligible.
Based on these results, we define four CPU states: sleep, wake-up,
active and tail.

The Arduino extBoard has three states, active, idle, and sleep.
Its average current draw in these states are 90mA, 66mA, and near
zero, respectively. In contrast to the smartphones, the transitional
states for Arduino are very short (in the order of µs) and hence their
energy consumption is negligible.

4.3 Summary
The above profiling results show the significant heterogeneity

in the power and latency profiles of different tiers (extBoard and
smartphone). Although similar measurement studies have been re-
ported in literature [23, 5], we collectively report our measurement
results and show how these findings provide important implications
for both challenges and opportunities in the design of ORBIT. First,
as the Android system has poor timing accuracy, time-critical func-
tions such as high-rate sensor sampling and precise sensor event
timestamping must be shifted to the extBoard owing to its hardware
timers and efficient interrupt handling. Second, signal processing
algorithms may have dynamic execution times, which need online
profiling to ensure that the critical time deadlines of the application
are met. Third, smartphones have much lower latency and higher
energy efficiency than the extBoard. However, if the extBoard must
stay active to continually sample sensors, it is desirable to utilize its
spare time to process signals, such that the smartphone can sleep to
save energy. Lastly, the transitional phases (wake-up and tail) and
the data transfers among the tiers incur non-negligible overhead in
both energy consumption and latencies. When dispatching signal
processing tasks to different tiers, these important characteristics
must be carefully considered in order to minimize the total system
energy consumption while meeting application latency constraints.
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sents the set it belongs to in the task partitioning solution.)

5. DESIGN AND IMPLEMENTATION
This section presents the design of ORBIT to achieve the objec-

tives discussed in Section 3.1.

5.1 Application Pipeline
An ORBIT application pipeline can be represented by a graph,

where the nodes are the processing tasks and the edges are the data
flows. The application pipeline, which defines the sequence of ex-
ecuting the tasks, is used by the component-based programming
model and task partitioning module of ORBIT. Each task imple-
ments an elementary sensing or processing operation, such as com-
puting mean, FFT or converting an image to grayscale. For exam-
ple, an application pipeline can be:

sample the sensor (camera) → low pass filter→ face recognition

→ write into file.
Each task itself can be made of a few smaller tasks. Such an ap-

plication model offers two benefits. First, by the notion of task, we
can build the latency profile of each task (as explained in section
4.1) and use it for task partitioning (as described in the next sec-
tion). Second, ORBIT application model can significantly simplify
the application development and reduce the user effort to create
an application, especially for those who are not familiar with em-
bedded system design. In particular, ORBIT presents application
developers with a single programming abstraction without burden-
ing them with low-level details such as where and how the tasks are
executed and how they communicate across different tiers.

ORBIT supports two methods for specifying an application. An
application developer can either write Java code using the ORBIT
API or write an XML file. In either way the application pipeline
specifies what tasks are used, what parameters for each task are set,
and how the task are connected to form the pipeline. From this
point forward, we will use a running example, shown in Fig. 7, to
illustrate how tasks are connected to build an application, as well
as the automatic execution optimization and manipulation in later
sections. The sample application has 12 tasks (i.e., T1 to T12).

The major way to define an application is to use the ORBIT API.
ORBIT provides the application developer an API, using Java an-
notations [24]. By using this API, an application developer imple-
ments the application pipeline as a Java class specifying each task
in the pipeline as a field and uses ORBIT-provided annotations to
annotate each task. By annotations, the developer indicates which
task is connected to another task(s) as well as which outputs data
pins in the source task are connected to which input data pins in
the destination task. For instance, a Java class generating the ap-
plication pipeline in Fig. 7 can simply be implemented as shown
in Listing. 1, where Taski is an algorithm in the ORBIT library,
the paramis specify the input and output parameters for each task

Listing 1: pseudo-code for generating an application pipeline
/** import ORBIT API **/

public class Sample_application_pipeline

extends ORBIT_pipeline_model {

@Source

@Next{T_2, T_3}

private Task T_1 = new Task_1(param_1,param_2,...,param_N);

@Next{T_4, T_5{2}, T_6{1}}

private Task T_2 = new Task_2(param_1,param_2, ...,param_N);

@Next{T_7,T_8}

private Task T_3 = new Task_3(param_1,param_2,...,param_N);

. . .

@Sink

private Task T_10 = new Task_10(param_1,param_2,...,param_N);

}

including the input, output data and data sizes (number of samples)
and other algorithms’ specific parameters, e.g., threshold, window
size and etc. The @Next annotation is defined by ORBIT API and
used by application developer to connect the tasks and form the
pipeline. The annotations @source and @sink are used to indi-
cate the source and sink tasks in the pipeline.

A key advantage of the annotation-based ORBIT programming
model is that the developers use the advanced features of Java sup-
ported by Android and take advantage of the ease of use of Java
language to set up the application pipeline without being burdened
with error-prone embedded programming using low-level languages.

5.2 Data Processing Library
ORBIT provides a library of data processing algorithms ranging

from common learning algorithms and utilities (e.g., classification,
regression, clustering, filtering, and dimensionality reduction), to
primitives like gradient decent optimizations. Using these well
tested functions and provided APIs, developers can quickly con-
struct sensing applications by simply connecting different building
blocks via the ORBIT application pipeline model. This library has
two main design objectives. Firstly, it is extensible so that devel-
opers can easily add more algorithms or port legacy signal process-
ing libraries. Secondly, it is designed to be resource-friendly with
smartphone and extBoard (if utilized by the application). Several
algorithms are implemented in Java while others are written in C++
and connected with the rest of ORBIT components via a Java Na-
tive Interface (JNI) bridge.

A key challenge in the design of ORBIT programming library is
that many ORBIT applications have stringent requirements on tim-
ing/overhead. ORBIT library includes two mechanisms to optimize
resource usage while providing programming flexibility at the same
time, namely adaptive delay/quality trade-off and data partitioning
via multi-threading. These mechanisms allow programmers to de-
velop resource-friendly applications on the smartphone platforms.

5.2.1 Adaptive Delay/Quality Trade-off

The goal of this feature is to shorten the execution time of many
tasks without substantially impeding the quality of their output.
ORBIT achieves this by taking advantage of a property common
to many algorithms. That is, many algorithms are iterative and
based on an optimization function. The most commonly used meth-
ods to solve optimization problems, including the gradient descent
method and Newton’s method, are implemented as low-level prim-
itives in the ORBIT library. Gradient descent is an iterative process
moving in the direction of the negative derivative in each step (or
iteration) to decrease the loss. Once the loss is less than a threshold,
the algorithm stops. Similarly, Newton’s method uses the second
derivative to take a better route. Thus, a task that goes through
more iterations to find the optimum solution for an objective func-
tion experiences a longer execution time, consequently causing the
application to consume more energy on the smartphone. One way



to shorten this latency and thus decrease the energy consumption
is to simply stop the algorithm earlier, e.g., when the solution at
step t is satisfactory. This approach is motivated by the principles
of anytime algorithms [31]. This early-stopping mechanism for
these iterative-optimization tasks in ORBIT is controlled by three
parameters: stepSize, numOfIterations, samplingFraction, where
samplingFraction is the fraction of the total data sampled in each
iteration to compute the gradient direction. In the ORBIT library,
these parameters are used as input parameters to the quality con-
troller for each task while still satisfying the quality level of the
entire application pipeline.

5.2.2 Data Partitioning via Multi-threading

One of the key advantages of the smartphone, in comparison to
the mote-class platforms, is the availability of high-speed multi-
core processors. Many smartphones today have two or more cores.
For instance, Moto G costs less than $110 and has 4 cores. How-
ever, in spite of the availability of multi-core CPUs, multi-thread
programming remains challenging. ORBIT can automatically par-
tition long-running and compute-intensive tasks into different threads
and run them on different cores. This allows users to focus on the
domain specific aspects when designing the task structure for their
sensing applications.

There are two different approaches to transforming an applica-
tion into multiple threads. First, we can schedule different tasks of
the application to execute on a pool of worker threads. In particular,
ORBIT can parse the task structure and schedule tasks to different
threads accordingly. However, many embedded applications con-
tain a small number of "bottleneck" tasks in the signal processing
pipeline, whose execution time dominates the total latency. As a
result, such a task-level multi-threading strategy would not signifi-
cantly reduce the end-to-end latency. ORBIT adopts a data-driven
multi-threading approach to partition these tasks. We now use the
matrix-vector multiplication operation as an example to illustrate
this approach.

Many signal processing algorithms (e.g., various transforms and
compressive sampling) are based on matrix multiplication. The
output y is the matrix multiplication expressed as y = Ax, where
A ∈ Z

m×l is the computation to be applied on the input x ∈
Z

l×1. Suppose matrix A is evenly split into sub matrices, i.e.,
A = [A1,A2, . . . ,AK ], where Ak ∈ Z

m/k×l. The kth sub-task
computes yk = Akx, and the final result is y = [y1,y2, . . . ,yk].
The kth sub-task also performs matrix-vector multiplication. OR-
BIT picks the value of k based on the number of cores available on
the phone (which can be queried through an Android API). ORBIT
creates the computation threads on-the-fly and assigns the maxi-
mum priority to them to ensure they will not compete for resources
with other threads running on the device. In this manner, ORBIT
splits all matrix-based signal processing tasks assigned to the sm-
artphone.

A number of signal processing algorithms based on matrix op-
erations can benefit from ORBIT’s data partitioning scheme. Ex-
amples include Singular Value Decomposition (SVD), Eigenvalue
Decomposition, Principal Component Analysis (PCA), mean and
average. These fundamental algorithms are often used in the de-
sign of other more advanced algorithms. Since extBoard does not
support multi-threading, these versions are implemented in C++
without the use of any matrix libraries.

A key design consideration of multi-threading is to minimize the
overhead of inter-thread communication. In ORBIT, the matrices
are passed to the threads by reference and each thread computes the
partial and non-overlapping (disjoint) part of the result. In other
words, different threads access the same data structure but disjoint

extBoard

phone state

time

Ta Ts

...
Td

activation

Figure 8: Power management scheme.

parts of it. For example, thread k computes yk = Akx, and
sub-matrices yk are not overlapping. Matrix y = [y1,y2, . . .yk]
is also accessed by the main thread similarly without conflicts or
memory copy between threads. The avoidance of inter-thread com-
munication in ORBIT is important for data-intensive tasks that deal
with large matrices.

5.3 Task Partitioning and Energy Management
A key design objective of ORBIT is to provide an energy effi-

cient smartphone-based platform. For this purpose, ORBIT adopts
a task partitioning framework that exploits the heterogeneity in
power consumption and latency profiles of different tiers. The
task partitioning algorithm minimizes system energy consumption
while meeting the processing deadlines of sensing applications.
In addition, to reduce application delays, ORBIT implements a
data partitioning scheme that decomposes matrix-based computa-
tion into multiple threads which are scheduled to execute on differ-
ent CPU cores.

5.3.1 Power Management Model

From the key observations obtained from the measurement-based
study in Section 4, ORBIT employs different power management
strategies for different tiers. Specifically, the extBoard operates in
a duty cycle where it remains active for Ta seconds and sleeps for
Ts seconds in a cycle. During the active period, the extBoard sam-
ples the sensors at constant rates. The time duration for sampling a
signal segment is referred to as sampling duration, and denoted as
Td. The active period contains multiple sampling periods. A sig-
nal segment collected during the current sampling period will be
processed by the ORBIT application (e.g., the one shown in Fig. 7)
in the next sampling period. The values of Ta, Ts, and Td are
determined based on the expected system lifetime and timeliness
requirements of the sensing application. Moreover, the sampling
and processing on the extBoard are often subjected to stringent de-
lay bounds. Modern microprocessors also offer low power sleep
states with wake on interrupt which can be utilized to further reduce
the extBoard power consumption during the sampling period. Dif-
ferent from extBoard, the smartphone adopts an on-demand sleep
strategy in which it remains asleep unless activated by extBoard or
by the cloud messages. Fig. 8 illustrates the extBoard’s duty cycle
and the smartphone on-demand sleep schedule.

5.3.2 Execution Time Profiler

The extBoard and smartphone power profiles are unlikely to sub-
stantially change during the lifetime of the application. However,
the latency profile of a task may contain errors and be subject to
change after deployment, as shown in the Fig. 4 example. To ad-
dress this issue, ORBIT continuously measures the latency of each
task at runtime and periodically re-runs the task partitioner to up-
date the task partitioning scheme. Specifically, we designed an Ex-
ecution Time Profiler that can build the statistical latency models
for all tasks based on the run-time measurements. It measures the
execution time of each task by using the system time before and af-
ter execution of the task. It also maintains a Gaussian distribution
model for each task’s execution time, Ti ∼ N (µi, σ

2
i ). The param-

eters of this distribution are updated by each new measurement t as:



µ′
i = µi+

1

n
.(t−µi) and σ

′2
i = 1

n
((n−1)σ2

i +(t−µi)(t−µ′
i)).

Based on these models, the percentiles with a high rank are used to
set the execution times (i.e., t

p

i , tbi , and tci ). Under this approach,
ORBIT can achieve optimal partitioning solution while meeting the
timing requirements statistically.

5.3.3 Partitioning with Sequential Execution

As discussed in Section 5.3.1, the extBoard has a fixed duty cycle
and hence consumes relatively constant energy. Therefore, ORBIT
aims to minimize the total energy consumption of smartphone, sub-
ject to the processing delay upper bound for each tier. Consider a
sensing application consisting of n tasks (denoted by T1, . . . , Tn),
with an execution pipeline expressed as a sequential set of tasks:
T = T1 → T2 → . . . → Tn. Let Ii denote the execution tier of Ti,
where: Ii ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} represent the extBoard,
smartphone, and cloud, respectively. Let τb, τp, τc, τA denote the
execution times of the extBoard, smartphone, cloud, and the end-
to-end delay of the whole application (or the delay-critical portion
of the application), respectively, in a sampling period. We now for-
mulate the task partitioning problem for sequential execution. The
case of branching execution is discussed in a technical report [21].

Task Partitioning Problem. For the sequential execution T =
T1 → T2 → . . . → Tn, the Task Partitioner finds an execution

assignment set S = {I1, I2, . . . , In} to minimize the total sm-

artphone energy consumption in a sampling duration (denoted by

E) subject to τb ≤ Db, τp ≤ Dp, τc ≤ Dc, and τA ≤ DA.

The processing delay upper bounds Db, Dp, Dc, and DA are
typically set according to the timeliness requirements of the appli-
cation, e.g., the constant rate of sensor sampling, the time period to
detect a moving object before it moves away, etc.

As it is shown in [23] and [6] this partitioning problem is mod-
eled as an integer linear program (ILP) that minimizes a linear com-
bination of network bandwidth and CPU consumption subject to
the upper bounds for these resources. It is important to note that
under the conventional ILP partitioning, the model only takes the
execution time latency (i.e., CPU consumption) and data copy la-
tency between tiers (e.g., network bandwidth) into account. In con-
trast, ORBIT extends this model by adding two additional terms to
the partitioning model. These terms are wake-up and tail time of
smartphone and the (instant) power consumption of each tier. Also,
with the help of the execution time profiler, ORBIT considers one
more factor, the uncertainty of execution times. Thus, ORBIT pro-
vides a more realistic partitioning model.

5.4 Task Controllers
Task Controllers (TCs) on the smartphone, the extBoard, and

the cloud execute the entire sensing application according to the
assignment computed by the Task Partitioner. Fig. 2 shows the
interaction of the TCs with other components in ORBIT.

5.4.1 Smartphone Task Controller

The smartphone TC is designed as an Android background ser-
vice, which manipulates the execution of the tasks and communi-
cates with the extBoard and the cloud. When the ORBIT appli-
cation is launched, the smartphone TC creates the instances of the
tasks in T, and allocates the buffers for all inputs and outputs. After
this initialization phase, the TC checks the partitioning assignments
and begins execution of the first task. When the smartphone is not
executing a task, it switches to the sleep state to conserve energy.
When task execution needs to return to the smartphone, a notifica-
tion message is sent waking the smartphone and activating its TC to
execute the next tasks assigned to it. The smartphone TC also con-
tinuously updates the task meta information (e.g., execution times)

as well as branch priorities.
Our measurement study shows that the smartphone consumes

considerable energy during wake-up and tail phases (cf. Section
4.2). We optimize the design of TC to start a task as soon as the
smartphone wakes up or to let the smartphone sleep as soon as no
more tasks need to run. After the TC executes a task T on the sm-
artphone, it checks if there is any task assigned to the other two tiers
that takes T ’s output as input. If there are, TC will send T ’s output
data to the other tier using ORBIT’s messaging protocol (cf. sec-
tion 5.5). This allows the other tiers to run the tasks with input data
from smartphone without re-activating it, avoiding extra wake-up
and tail energy consumption. However, a side effect of this de-
sign is that, if the application has branches the data transmitted to
another tier may not be used. However, typical signal processing
pipelines likely contain a limited number of branches.

5.4.2 extBoard and Cloud Task Controllers

The extBoard TC continually checks for the arrival of messages
from the smartphone. When it receives a start task execution mes-
sage from the smartphone, it begins executing the first task in its
assignment. In the case of starting a sampling task, the extBoard
creates a periodic timer to control the sampling. The timer interrupt
handling routine reads a sensor sample from the ADC, time-stamps
it, and then inserts it into a circular buffer. This process involves
only a few instructions, and is optimized to reduce the interrupt
handling delay. Once the sampling task has obtained the number of
samples specified in its input parameter, task execution continues
with the task following the sampling task according to the execu-
tion tree T.

The cloud TC is implemented as a Linux daemon that checks for
the arrival messages from one or multiple smartphones. There are
two types of tasks running on the cloud; tasks that are computa-
tionally intensive that are assigned by the Task Partitioner and the
tasks that take input data from multiple ORBIT nodes. Upon the
completion of task T in the cloud, the cloud TC sends T ’s output
to all the smartphones that require the output. If any of the smart-
phones are in the sleep mode, they wake up when a cloud message
is received. The cloud TC, like the smartphone TC, continuously
updates the task meta information (e.g., execution times) as well as
branch priorities. This ensures fresh meta information is used for
the task partitioning.

5.5 ORBIT Messaging Protocol
ORBIT supports sensing applications connecting to a variety of

external sensors over wired and wireless channels as well as many
built-in smartphone sensors. However, ensuring proper device in-
teraction can be burdensome, especially when a single application
needs to integrate a number of sensors using different communi-
cation channels and data formats. This is even more tedious when
the application has to transfer the data between different tiers in a
multi-tier architecture. This section presents ORBIT Messaging
Protocol (OMP) which simplifies data transfer with abstractions
separating responsibilities between the extBoard, the smartphone,
and the cloud platform.

Smartphones communicate with peripherals through two USB
modes (USB accessory and USB host) and Bluetooth. Android
Bluetooth and USB communications only provide a byte stream
communication channel. This channel neither provides delivery
guarantees, nor supports the concept of messages. On the other
hand, as it is discussed in Section 5.1, the communication unit be-
tween different tasks in a sensing application formed as a task struc-
ture is a message. To achieve this, ORBIT Messaging Protocol im-
plements simple message framing along with message checksums
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Figure 9: Execution time of Task Partitioner.

to provide a more robust communication channel. Also, ORBIT
provides message segmenting and queuing mechanism for long mes-
sages. In order to have homogeneity between communication with
tiers, ORBIT implements the same messaging protocol for the cloud
communication on top of the HTTP protocol. This facilitates a
modular framework that allows developers to focus on writing min-
imal pieces of data transfer and sensor specific code.

6. MICROBENCHMARK
In this section, we evaluate overall memory and CPU usage of

ORBIT as well as the overhead introduced by online task partition-
ing. We also evaluate the effect of multi-threading on reducing the
task processing delays.

CPU and memory footprint on smartphone: We measure the
CPU and memory footprints of ORBIT. We use the Android util-
ity application, System Monitor, to measure the CPU and memory
usages. We select different applications that run with ORBIT. OR-
BIT runs as an app and its CPU utilization may vary based on the
smartphone hardware, Android version and other apps running on
the smartphone. We measure the CPU footprint of ORBIT by the
increased CPU utilization when it runs tasks. Our measurements
show that ORBIT’s CPU footprint ranges from 10% up to 15%.
The memory usage is about 22.5 MB during silence, but reaching
33.8 MB for a sensing application as heap space is dynamically al-
located for the processing tasks. The total size of the ORBIT binary
is only 2.84 MB.

Overhead of online partitioning: As discussed in Section 5.3, the
Task Partitioner runs online to adapt to the variable execution time
of tasks. Fig. 9 shows the execution delay of the Task Partitioner on
various smartphones versus the number of tasks. We can see that
the Task Partitioner takes less than 10 milliseconds when there are
20 tasks. In addition, the Task Partitioner is called only when there
is substantial change of task execution time. Therefore, the online
task partitioning does not introduce significant runtime overhead
on the smartphone.

Delay/quality trade-off: In section 5.2.1 we discussed how algo-
rithms are tuned for desirable trade-offs between quality and delay.
Fig. 10 shows the convergence of the Gradient Descent algorithm
for different step sizes r and number of iterations. As it is ex-
pected and is illustrated in the figure the gradient value decreases
as the number of iterations increases until finally converges to the
solution. Larger step sizes result in the gradient converging faster.
However the rate of decrease slows after a certain iteration for each
step size, meaning the task does not benefit from more iterations.
Thus, gradient descent can often find a good enough solution in
fewer iterations than the number of iterations provided as an input
parameter, allowing ORBIT to stop it earlier without loosing a sig-
nificant accuracy. Examples of algorithms that can benefit from this
feature are SVM, linear regression and K-mean clustering. This
feature not only provides insights for choosing better parameter val-
ues for each task in the application pipeline, but also gives ORBIT
the power and a systematic mechanism to terminate the tasks while
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Figure 11: Smartphone multi-threading reduces processing de-

lay of compute-intensive tasks.

still maintaining the results within an expected accuracy range.

Effect of data partitioning and multi-threading: As discussed
in Section 5.2.2, smartphone TC can partition compute-intensive
tasks into multiple threads to reduce the processing delays. Fig. 11
shows the performance gain of a matrix vector multiplication task,
y = Ax, on two different smartphones, Moto-G with a quad-core
processor and Galaxy Nexus with a dual-core processor. In this ex-
ample, vector x ∈ Z

l×1 is the input signal and matrix A ∈ Z
m×l

is the computation matrix. l has a fixed value of 2000 data samples
and m varies for different operations (the horizontal axis in the fig-
ure). Larger values of m indicate more data-intense computation.
The results show that the computation delay reduces by 44.7%, on
average, for Mote-G and reduces by 36.2% for Galaxy Nexus when
the task is partitioned into 2 threads. It also reduces by 56.1% for
Mote-G when the computation is partitioned into 4 threads.

As we can see from the figure, multi-threading reduces the com-
putation delay more for larger matrices (more data-intensive com-
putation) that agrees with our design objectives. Another important
result from this figure is that 4 threads in Moto-G does not pro-
vide significant improvement over 2 threads. This is because, once
the computation is partitioned into 2 threads the problem size is
reduced by half. Consequently when each thread is further split
into 2 new threads, it only affects a smaller problem and thus the
reduction in computation delay is smaller. This agrees with the in-
tuition that multi-threading provides less improvement for smaller
problems.

Effect of data dependency: A salient feature of ORBIT is that it
takes input data size and input data content into account in mod-
eling the task energy consumption and partitioning. In contrast, in
conventional task modeling and partitioning schemes, the time la-
tency is measured offline and the average value is often assumed
as the time latency without considering the observed variance in
the execution time. However, our measurement study shows that
the execution time can vary significantly for a data-dependant al-
gorithm with different input sizes and input content. We now use
several examples to illustrate the effect of data dependency on the
system energy consumption. Fig. 12(a) shows the distribution of
the execution time for the SIFT algorithm for input images with dif-
ferent dimensions and number of SIFT features. Fig. 12(b) shows
the difference between the energy consumption estimation of SIFT
algorithm under the Wishbone approach and the approach adopted
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by ORBIT. Since Wishbone does not consider the differences be-
tween input data, the average value of offline measurements will
be used as the execution time. Therefore, when the execution time
of SIFT for an image is close to the average value, e.g., for the
house image, the energy estimated by both approaches are simi-
lar. However when the execution time of the image is less than
the average, e.g., for the ET, kermit and the animal images, the es-
timated energy by ORBIT outperforms Wishbone. On the other
hand, if the execution time is longer than the average execution
time, e.g., the chair image, although the energy estimated by OR-
BIT is larger than Wishbone, ORBIT provides a closer estimation
to the true value. Thus, ORBIT provides a more realistic approach
to model the execution times and the energy consumption of data-
intensive algorithms.

7. CASE STUDIES
To demonstrate the expressivity of ORBIT application script-

ing as well as the generality and flexibility of ORBIT as a plat-
form, we have prototyped three different embedded sensing yet
data-intensive applications (cf. Table 1). Each application demon-
strates different facets of ORBIT varying the number of tasks in the
task-structure, the use of different sensors, the number of tiers the
application is partitioned between, and the data fidelity requirement
of the application. Our goal is to demonstrate the capabilities and
effectiveness of the platform rather than present novel applications.
Due to space limitations only the Event Timing and Multi Camera
3D Reconstruction case studies are presented here. The Robotic
Sensing case study can be found a technical report [21].

Table 1: ORBIT based applications.
Application Event Multi Camera Robotic

Timing 3D Reconstruction Sensing
Script Length 27 20 35
Number of Tasks 7 10 11
Sensors GPS, Camera IR, Camera,

Geophone GPS Ultrasound
Tiers extBoard, extBoard, extBoard,

smartphone smartphone, cloud smartphone
Data Fidelity 100Hz 640*480px 5fps

7.1 Event Timing
This application estimates the arrival time of an acoustic/seismic

event. This is an building block of many acoustic/seismic monitor-
ing applications such as distributed event timing [19] and source lo-
calization. Seismic event source localization requires events timed
to sub millisecond precision and time synchronization between nodes
to be within a few microseconds. The incoming signal is first pre-
processed by mean removal and bandpass filtering. Wavelet trans-
form is then applied to the filtered signal. Signal sparsity and coarse
arrival time are computed based on the wavelet coefficients. This
application requires a sampling rate of 100 Hz. In the context of
early earthquake detection, the system must have a response time
in the order of a few seconds. The following section presents the
evaluation results.
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assigned to the extBoard versus delay bound. Bottom: Total
energy consumption versus delay bound.

Effectiveness of Task Partitioner: We first evaluate the effective-
ness of the task partitioning algorithm presented in Section 5.3.3,
by comparing the following partitioning approaches: extBoard only,
phone-only, and greedy. The greedy approach assigns as many
processing tasks to the extBoard as can be supported by the delay
bound. Fig. 13 shows the task partitioning results of the partitioning
approaches using a delay bound D of 1.8 s. The extBoard process-
ing delay meets this bound except for the extBoard-only approach.
Fig. 13(a) and Fig. 13(b) plot the estimated total energy consump-
tion and total execution time (i.e., phone + extBoard) of a ORBIT
node in one execution cycle under different partition approaches.
As the extBoard is slow and power-inefficient for intensive com-
putation, it cannot meet the delay bound and consumes the most
energy. Our partitioning approach (“ORBIT”) achieves the lowest
energy consumption on the smartphones tested.

The impact of the delay bound D on the task assignment and
smartphone energy consumption was next evaluated. The top por-
tion of Fig. 14 shows the number of tasks assigned to the extBoard
versus D. We can see that the Task Partitioner generally assigns
more tasks to the extBoard for larger D. This is consistent with our
analysis in Section 5.3.3. However, we can see a number of drops
in the top portion of Fig. 14. For instance, when D increases from
1.37 s to 1.38 s, the number of extBoard tasks drops from 4 to 1.
This is due to a compute-intensive task replacing the previous four
lightweight tasks to increase the CPU utilization of extBoard and
reduce the smartphone energy consumption. The bottom portion of
Fig. 14 shows the total energy consumption versus D. This shows
the total energy consumption decreases with D, which is consistent
with our analysis.

Measured execution time and energy consumption: Based on
the obtained task partitioning results, we use a Nexus ORBIT node
to run the application over real-time sensor readings. Fig. 15 plots
the measured extBoard processing delay and the smartphone en-
ergy consumption versus the specified delay bound. Note the sm-
artphone processing delay is less than 5ms for all settings of de-
lay bound. Therefore, the extBoard processing delay dominates.
From Fig. 15(a) we can see that the specified delay bound is al-
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Figure 15: The measured extBoard processing delay and sm-

artphone energy consumption versus delay bound.

ways met. Moreover, the extBoard processing delay increases with
the delay bound, proving the effective utilization of the allowed
extBoard CPU time. From Fig. 15(b), the smartphone energy con-
sumption decreases with the delay bound, which is consistent with
our analysis.

Duty cycle of extBoard and lifetime: Based on the measured en-
ergy consumption, we calculate the projected node lifetime over
four D-cell batteries (capacity: 1.2 × 104 mAh) versus duty cy-
cle of extBoard under various settings of delay bound. When the
duty cycle is 100%, the projected lifetime is 5.8 days and when the
duty cycle is 20%, the node can live for up to 2 months. As shown
in Fig. 15(b), the smartphone energy consumption is tens of milli-
joules, while the extBoard energy consumption is about one joule
when duty cycle is 100%. Since the active powers of extBoard
and smartphone are comparable (cf. Section 4), the extBoard en-
ergy consumption dominates when its duty cycle is large. In such
cases, the major role of the smartphone is to help meet the tight
delay bound, and the node lifetimes are similar for different delay
bounds. However, when duty cycle is 20%, the lifetime can be ex-
tended by 18.4% if the delay bound increases from 0.1 s to 2.0 s.
Nevertheless, with the help of the smartphone, the ORBIT node can
meet tight delay bounds, which is critical to the success of many
sensing applications that requires continuous sensor sampling.

7.2 Multi-camera 3D reconstruction
The final case study is inspired by Phototourism [27] and in-

volves opportunistic sensing wherein smartphone-equipped robots
capture location-based images to collaboratively reconstruct a 3D
structure. Compared to previous two case studies, this application
is partitioned cross over three tiers. The captured image is partially
processed on the phone and the remainder of the processing as well
as the distributed tasks are offloaded to the cloud server. Once an
image has been processed, the robot is directed to move to a new
spot to capture a new image. In addition to CPU, we also account
for radio power consumption in this case study. Fig. 16 shows the
task structure of this application. The cloud server is emulated by
a Sun Ultra 20 workstation.

Figure 16: The block diagram of the Multi-camera 3D recon-

struction application.

Effectiveness of Task Partitioner: For this case study, with the
addition of the cloud tier and more complex input data to the sens-
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Figure 17: The results of various partition schemes.
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Figure 18: Impact of data rate on the task assignment and total

energy consumption.

ing application, the communication delay between the smartphone
and the cloud server and the complexity of input data impact the
partitioning result. We evaluate the effectiveness of the task parti-
tioning algorithm by comparing ORBIT with the phone-only and
cloud-only baselines. In Fig. 17(a) and Fig. 17(b) two cases with
different input images are compared: a) house image: a bigger im-
age (in terms of number of pixels) with less complexity (in terms
of number of SIFT features), and b) kermit image: a smaller im-
age with higher complexity. The difference between the partition-
ing assignments between these two cases is the assignment of the
SIFT task. For the house image the results show that it is more
energy efficient to run SIFT on the phone, because: 1) the image
is less complex and thus SIFT runs faster and consequently causes
the application to consume less energy, and 2) it would consume
more energy to transmit the large image to the cloud for the SIFT
processing. For the kermit image, it is more energy efficient to run
SIFT in the cloud because it is a smaller image with more SIFT fea-
tures. Thus, in both cases ORBIT comes up with the most energy
efficient partition. In addition, this result demonstrates that ORBIT
considers the execution time of data processing tasks not only as a
function of input size but also as a function of input content. Ex-
isting task partitioning approaches [23, 5] often do not address the
two affecting factors.

Impact of network throughput: We then evaluate the impact of
the communication data rate, R, on the task partitioning. Fig. 18
shows the smartphone energy consumption for Nexus S. We can
see that for both images the energy consumption decreases when
R increases. The reason is that, when ORBIT is connected to the
cloud via a faster link the amount of time the smartphone needs
to stay active is shorter. This figure also shows that the energy
consumption of ORBIT converges to that of the cloud-only. This
is due to the fact that as the data rates increases it becomes more
energy-efficient to offload tasks to the cloud. Fig. 18(a) and Fig.
18(b) show that the convergence to the cloud-only scheme occurs at
different rates due to the difference in image size results in different
upload delays. Overall, these results show that ORBIT can exploit
the different characteristics of network latency and task workload
to minimize the system energy consumption.



7.3 Discussion
These case studies demonstrate the generality of ORBIT’s de-

sign. In particular, the two example applications differ significantly
in the task structure, computation intensity of tasks, delay require-
ments, input data and the tiers involved in task partitioning. Over-
all, ORBIT can achieve energy saving of up to 50% compared to
baseline approaches.

An interesting observation from both case studies is the system
power consumption is highly probabilistic. However, such runtime
dynamics are unknown to ORBIT at the design time. As a result,
ORBIT partitions the tasks according to the worst-case scenario. A
possible improvement would be to provide ORBIT runtime feed-
back regarding system performance. This would allow ORBIT to
optimize the wiring of tasks and priorities of tasks to reduce power
consumption. Such runtime adaptation is readily supported by OR-
BIT due to its flexible task partition and dispatch framework.

Case study 2 suggests the communication delay between tiers
and the input data play important roles in the partitioning result.
For example, when the 3G or Wi-Fi network condition is of poor
quality the tasks may not be offloaded to the cloud if the application
imposes a tight delay bound. Moreover, advanced sensing tasks like
image processing often have highly variable execution time which
validates the online task partition framework adopted by ORBIT.

8. CONCLUSION AND FUTURE WORK
This paper presents ORBIT, a smartphone-based platform for

data-intensive, embedded sensing applications. ORBIT features
a tiered architecture, in which a smartphone is optionally inter-
faced with an energy efficient peripheral board, and a cloud server.
By fully exploiting the heterogeneity in the power/latency char-
acteristics of multiple tiers, ORBIT minimizes the system energy
consumption, subject to upper bounded processing delays. OR-
BIT also integrates a data processing library that supports high-
level Java annotated application programming. The design of this
library facilitates the resource management of the embedded ap-
plications and provides programming flexibility through adaptive
delay/quality trade-off and multi-threaded data partitioning mech-
anisms. ORBIT is evaluated through several benchmarks and three
case studies: seismic sensing, multi-camera 3D reconstruction and
visual tracking using an ORBIT robot. The results of the first two
case studies are presented in the paper and the result of the last one
can be found in a technical report [21]. This extensive evaluation
demonstrates the generality of ORBIT’s design. Moreover, our re-
sults show that ORBIT can save up to 50% energy consumption
compared to baseline approaches. Future plans include evaluating
ORBIT with additional embedded sensing applications, extending
its data processing library and using it in large-scale deployments.
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