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ABSTRACT

Wireless sensor networks (WSNs) have been increasingly
available for critical applications such as security surveil-
lance and environmental monitoring. An important per-
formance measure of such applications is sensing coverage
that characterizes how well a sensing field is monitored by
a network. Although advanced collaborative signal process-
ing algorithms have been adopted by many existing WSNs,
most previous analytical studies on sensing coverage are con-
ducted based on overly simplistic sensing models (e.g., the
disc model) that do not capture the stochastic nature of sens-
ing. In this paper, we attempt to bridge this gap by explor-
ing the fundamental limits of coverage based on stochastic
data fusion models that fuse noisy measurements of multi-
ple sensors. We derive the scaling laws between coverage,
network density, and signal-to-noise ratio (SNR). We show
that data fusion can significantly improve sensing coverage
by exploiting the collaboration among sensors. In particu-
lar, for signal path loss exponent of k (typically between 2.0

and 5.0), ρf = O(ρ
1−1/k
d ), where ρf and ρd are the densi-

ties of uniformly deployed sensors that achieve full coverage
under the fusion and disc models, respectively. Our results
help understand the limitations of the previous analytical re-
sults based on the disc model and provide key insights into
the design of WSNs that adopt data fusion algorithms. Our
analyses are verified through extensive simulations based on
both synthetic data sets and data traces collected in a real
deployment for vehicle detection.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network topology ; G.3 [Probability
and Statistics]: Stochastic processes
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1. INTRODUCTION
Recent years have witnessed the deployments of wireless

sensor networks (WSNs) for many critical applications such
as security surveillance [16], environmental monitoring [25],
and target detection/tracking [21]. Many of these applica-
tions involve a large number of sensors distributed in a vast
geographical area. As a result, the cost of deploying these
networks into the physical environment is high. A key chal-
lenge is thus to predict and understand the expected sensing
performance of these WSNs. A fundamental performance
measure of WSNs is sensing coverage that characterizes how
well a sensing field is monitored by a network. Many recent
studies are focused on analyzing the coverage performance
of large-scale WSNs [4,19,24,33,38,41,43].

Despite the significant progress, a key challenge faced by
the research on sensing coverage is the obvious discrepancy
between the advanced information processing schemes adopted
by existing sensor networks and the overly simplistic sens-
ing models widely assumed in the previous analytical stud-
ies. On the one hand, many WSN applications are designed
based on collaborative signal processing algorithms that im-
prove the sensing performance of a network by jointly pro-
cessing the noisy measurements of multiple sensors. In prac-
tice, various stochastic data fusion schemes have been em-
ployed by sensor network systems for event monitoring, de-
tection, localization, and classification [8, 10, 11, 16, 20, 21,
29, 34]. On the other hand, collaborative signal process-
ing algorithms such as data fusion often have complex com-
plications to the network-level sensing performance such as
coverage. As a result, most analytical studies1 on sensing
coverage are conducted based on overly simplistic sensing
models [3,4,14,18,19,23,24,33,38,39,43]. In particular, the

1Among the total six papers on the coverage problem of
WSNs that have been published at MobiCom since 2001,
five of them adopted the disc sensing model. Similarly, the
disc model is also assumed by seven out of nine relevant
papers published at MobiHoc since 2001.
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Figure 1: Detection
probability vs. the dis-
tance from the vehicle.
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Figure 2: False alarm
rate vs. detection thresh-
old.

sensing region of a sensor is often modeled as a disc with
radius r centered at the position of the sensor, where r is
referred to as the sensing range. A sensor deterministically
detects the targets (events) within its sensing range. Al-
though such a model allows a geometric treatment to the
coverage problem, it fails to capture the stochastic nature of
sensing.

To illustrate the inaccuracy of the disc sensing model, we
plot the sensing performance of an acoustic sensor in Fig. 1
and 2 using the data traces collected from a real vehicle de-
tection experiment [1]. In the experiment, the sensor detects
moving vehicles by comparing its signal energy measurement
against a threshold (denoted by t). Fig. 1 plots the probabil-
ity that the sensor detects a vehicle (denoted by PD) versus
the distance from the vehicle. No clear cut-off boundary be-
tween successful and unsuccessful sensing of the target can
be seen in Fig. 1. Similar result is observed for the rela-
tionship between the sensor’s false alarm rate (denoted by
PF ) and the detection threshold shown in Fig. 2. Note that
PF is the probability of making a positive decision when no
vehicle is present.

In this work, we develop an analytical framework to ex-
plore the fundamental limits of coverage of large-scale WSNs
based on stochastic data fusion models. To characterize the
inherent stochastic nature of sensing, we propose a new cov-
erage measure called (α, β)-coverage where α and β are the
upper and lower bounds on the system false alarm rate and
detection probability, respectively. Compared with the clas-
sical definition of coverage, (α, β)-coverage explicitly cap-
tures the performance requirements imposed by sensing ap-
plications. For instance, the full (0.05, 0.9)-coverage of a
region ensures that the probability of detecting any event
occurring in the region is no lower than 90% and no more
than 5% of the network reports are false alarms.

The main focus of this paper is to investigate the fun-
damental scaling laws between coverage, network density,
and signal-to-noise ratio (SNR). To the best of our knowl-
edge, this work is the first to study the coverage performance
of large-scale WSNs based on collaborative sensing models.
Our results not only help understand the limitations of the
existing analytical results based on the disc model but also
provide key insights into designing and analyzing the large-
scale WSNs that adopt stochastic fusion algorithms. The
main contributions of this paper are as follows.

• We derive the (α, β)-coverage of random networks un-
der both data fusion and probabilistic disc models.
Based on these results, we can compute the minimum
network density that is required to achieve a desired

level of sensing coverage. Moreover, the existing ana-
lytical results based on the disc model can be naturally
extended to the context of stochastic event detection.

• We study the fundamental scaling laws of (α, β)-coverage.
Let ρd and ρf denote the minimum network densities
for achieving full coverage under the disc and fusion

models, respectively. We prove that ρf = O( 2r2

R2 · ρd)
where r is the radius of sensing disc and R is the fu-
sion range within which the measurements of all sen-
sors are fused2. As fusion range can be much greater
than sensing range, ρf is much smaller than ρd. Fur-
thermore, when the optimal fusion range is adopted,

ρf = O(ρ
1−1/k
d ) where k is the signal’s path loss ex-

ponent that typically ranges from 2.0 to 5.0. In par-
ticular, when k = 2 (which typically holds for acoustic
signals), ρf = O(

√
ρd). This result shows that data

fusion can effectively reduce the network density com-
pared with the disc model. Furthermore, the existing
analytical results based on the disc model significantly
overestimate the network density required for achiev-
ing coverage.

• We study the impact of signal-to-noise ratio (SNR) on
the network density when full coverage is required. We
prove that ρf/ρd = O(SNR2/k). This result suggests
that data fusion is more effective in reducing the den-
sity of low-SNR network deployments, while the disc
model is suitable only when the SNR is sufficiently
high.

• To verify our analyses, we conduct extensive simula-
tions based on both synthetic data sets and real data
traces collected from 20 sensors. Our simulations show
that our analytical results can accurately predict the
stochastic coverage of WSNs under a variety of realis-
tic settings.

The rest of this paper is organized as follows. Section 2
reviews related work. Section 3 introduces the background
and problem definition. We study the (α, β)-coverage under
the disc and fusion models in Section 4 and 5, respectively.
In Section 6, we investigate the impact of data fusion on
asymptotic sensing coverage. Section 7 presents simulation
results and Section 8 concludes this paper.

2. RELATED WORK
Many sensor network systems have incorporated various

data fusion schemes to improve the system performance. In
the surveillance system based on MICA2 motes [16], the
system false alarm rate is reduced by fusing the detection
decisions made by multiple sensors. In the DARPA Sen-
sIT project [1], advanced data fusion techniques have been
employed in a number of algorithms and protocols designed
for target detection [8, 21], localization [20, 34], and classi-
fication [10, 11]. Despite the wide adoption of data fusion
in practice, the performance analysis of large-scale fusion-
based WSNs has received little attention.

There is a vast of literature on stochastic signal detec-
tion based on multi-sensor data fusion. Early works [5, 37]

2We adopt the following asymptotic notation: 1) f(x) =
O(g(x)) means that g(x) is the asymptotic upper bound of
f(x); 2) f(x) = Θ(g(x)) means that g(x) is the asymptotic
tight bound of f(x).
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focus on small-scale powerful sensor networks (e.g., several
radars). Recent studies on data fusion have considered the
specific properties of WSNs such as sensors’ spatial distri-
bution [10, 11, 29] and limited sensing/communication ca-
pability [8]. However, these studies focus on analyzing the
optimal fusion strategies that maximize the system perfor-
mance of a given network. In contrast, this paper explores
the fundamental limits of sensing coverage of WSNs that
are designed based on existing data fusion strategies. Re-
cently, irregular sampling theory has been applied for re-
constructing physical fields in WSNs [30,31]. Different from
these works that focus on developing sampling schemes to
improve the quality of signal reconstruction, we aim to ana-
lyze sensors’ spatial density for achieving the required level
of coverage.

As one of the most fundamental issues in WSNs, the cov-
erage problem has attracted significant research attention.
Previous works fall into two categories, namely, coverage
maintenance algorithms/protocols and theoretical analysis
of coverage performance. These two categories are reviewed
briefly as follows, respectively.

Early work [22, 26, 27] quantifies sensing coverage by the
length of target’s path where the accumulative observations
of sensors are maximum or minimum [22, 26, 27]. However,
these works focus on devising algorithms for finding the tar-
get’s paths with certain level of coverage. Several algorithms
and protocols [41,42] are designed to maintain sensing cov-
erage using the minimum number of sensors. However, the
effectiveness of these schemes largely relies on the assump-
tion that sensors have circular sensing regions and determin-
istic sensing capability. Several recent studies [2, 17, 32, 40]
on the coverage problem have adopted probabilistic sensing
models. The numerical results in [40] show that the coverage
of a network can be expanded by the cooperation of sensors
through data fusion. However, these studies do not quantify
the improvement of coverage due to data fusion techniques.
Different from our focus on analyzing the fundamental lim-
its of coverage in WSNs, all of these studies aim to devise
algorithms and protocols for coverage maintenance.

Theoretical studies of the coverage of large-scale WSNs
have been conducted in [4,14,18,19,23, 24,33, 38, 43]. Most
works [18,19,23,33,38,43] focus on deriving the asymptotic
coverage of WSNs. The critical conditions for full k-coverage
(i.e., any physical point is within the sensing range of at
least k sensors) over a bounded square area [19,33,38,43] or
barrier area [18,23] are derived for various sensor deployment
strategies. The coverage of randomly deployed networks is
studied in [24]. The existing theoretical results on coverage
for both static and mobile sensors/targets are surveyed in
[4]. However, all the above theoretical studies are based on
the deterministic disc model. In this paper, we compare
our results obtained under a data fusion model against the
results from [4,24].

3. BACKGROUND AND PROBLEM DEFI-

NITION
In this section, we first describe the preliminaries of our

work, which include sensor measurement, network, and data
fusion models. We then introduce the problem definition.

3.1 Sensor Measurement and Network Model
We assume that sensors perform detection by measuring

Table 1: Summary of Notation∗

Symbol Definition

S original signal energy emitted by the target

µ, σ2 mean and variance of noise energy

δ peak signal-to-noise ratio (PSNR), δ = S/σ

k path loss exponent

w(·) signal decay function, w(x) = Θ(x−k)

di distance from the target

si attenuated signal energy, si = S · w(di)

ni noise energy, ni ∼ N (µ, σ2)

yi signal energy measurement, yi = si + ni

PF / PD false alarm rate / detection probability

α / β upper / lower bound of PF / PD

H0 / H1 hypothesis that the target is absent / present

ρ network density

F(p) the set of sensors within fusion range of point p

N(p) the number of sensors in F(p)

ǫ upper bound of target localization error
∗ The symbols with subscript i refer to the notation of sensor i.

the energy of signals emitted by the target3. The energy
of most physical signals (e.g., acoustic and electromagnetic
signals) attenuates with the distance from the signal source.
Suppose sensor i is di meters away from the target that emits
a signal of energy S. The attenuated signal energy si at the
position of sensor i is given by

si = S · w(di), (1)

where w(·) is a decreasing function satisfying w(0) = 1,
w(∞) = 0, and w(x) = Θ(x−k). The w(·) is referred to as
the signal decay function. Depending on the environment,
e.g., atmosphere conditions, the signal’s path loss exponent
k typically ranges from 2.0 to 5.0 [15, 20]. We note that
the theoretical results derived in this paper do not depend
on the closed-form formula of w(·). We adopt the following
signal decay function in the simulations conducted in this
paper:

w(x) =
1

1 + xk
. (2)

The sensor measurements are contaminated by additive
random noises from sensor hardware or environment. De-
pending on the hypothesis that the target is absent (H0) or
present (H1), the measurement of sensor i, denoted by yi, is
given by

H0 : yi = ni, (3)

H1 : yi = si + ni, (4)

where ni is the energy of noise experienced by sensor i. We
assume that the noise ni at each sensor i follows the nor-
mal distribution, i.e., ni ∼ N (µ, σ2), where µ and σ2 are
the mean and variance of ni, respectively. We assume that
the noises, {ni|∀i}, are spatially independent across sensors.
Therefore, the noises at sensors are independent and iden-
tically distributed (i.i.d.) Gaussian noises. In the presence
of target, the measurement of sensor i follows the normal

3Several types of sensors (e.g., acoustic sensor) only sample
signal intensity at a given sampling rate. The signal energy
can be obtained by preprocessing the time series of a given
interval, which has been commonly adopted to avoid the
transmission of raw data [8,10,11,20,34].
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distribution, i.e., yi|H1 ∼ N (si + µ, σ2). Due to the inde-
pendence of noises, the sensors’ measurements, {yi|∀i, H1},
are spatially independent but not identically distributed as
sensors receive different signal energies from the target. We
define the peak signal-to-noise ratio (PSNR) as δ = S/σ
which quantifies the noise level. Table 1 summarizes the
notation used in this paper.

The above signal decay and additive i.i.d. Gaussian noise
models have been widely adopted in the literature of multi-
sensor signal detection [2, 5, 8, 20, 24, 27, 29, 34, 37, 40] and
also have been empirically verified [15, 20]. In practice, the
parameters of these models (i.e., S, w(·), µ, and σ2) can
be estimated using training data. The normal distribution
might be an approximation to the real noise distribution in
practice. As discussed in Section 5.1, the assumption of i.i.d.
Gaussian noises can be relaxed to any i.i.d. noises.

We consider a network deployed in a vast two-dimensional
geographical region. The positions of sensors are uniformly
and independently distributed in the region. Such a deploy-
ment scenario can be modeled as a stationary two-dimensional
Poisson point process. Let ρ denote the density of the under-
lying Poisson point process. The number of sensors located
in a region A, N(A), follows the Poisson distribution with
mean of ρ||A||, i.e., N(A) ∼ Poi(ρ||A||), where ||A|| repre-
sents the area of the region A. We note that the uniform
sensor distribution has been widely adopted in the perfor-
mance analysis of large-scale WSNs [4,19,24,33,38]. There-
fore, this assumption allows us to compare our results with
previous analytical results.

3.2 Data Fusion Model
Data fusion can improve the performance of detection sys-

tems by jointly considering the noisy measurements of mul-
tiple sensors. There exist two basic data fusion schemes,
namely, decision fusion and value fusion. In decision fusion,
each sensor makes a local decision based on its measurements
and sends its decision to the cluster head, which makes a sys-
tem decision according to the local decisions. The optimal
decision fusion rule has been obtained in [5]. In value fu-
sion, each sensor sends its measurements to the cluster head,
which makes the detection decision based on the received
measurements. In this paper, we focus on value fusion, as
it usually has better detection performance than decision
fusion [37]. Under the assumptions made in Section 3.1,
the optimal value fusion rule is to compare the following
weighted sum of sensors’ measurements to a threshold (the
derivation can be found in Appendix A):

Yopt =
X

i

si

σ
· yi.

However, as sensor measurements contain both noise and
signal energy (see (4)), the weight si

σ
, i.e., the SNR re-

ceived by sensor i, is unknown. A practical solution is
to adopt equal constant weights for all sensors’ measure-
ments [8,29,40]. Since the measurements from different sen-
sors are treated equally, the sensors far away from the target
should be excluded from data fusion as their measurements
suffer low SNRs. Therefore, we adopt a fusion scheme as
follows.

For any physical point p, the sensors within a distance of
R meters from p form a cluster and fuse their measurements
to detect whether a target is present at p. R is referred
to as the fusion range and F(p) denotes the set of sensors

within the fusion range of p. The number of sensors in F(p)
is represented by N(p). A cluster head is elected to make
the detection decision by comparing the sum of measure-
ments reported by member sensors in F(p) against a detec-
tion threshold T . Let Y denote the fusion statistics, i.e.,
Y =

P

i∈F(p) yi. If Y ≥ T , the cluster head decides H1;
otherwise, it decides H0.

We assume that the cluster head makes a detection based
on snapshot measurements from member sensors without us-
ing temporal samples to refine the detection decision. Note
that such a snapshot scheme is widely adopted in previous
works on target surveillance [8,20,29,34,40]. Fusion range R
is an important design parameter of our data fusion model.
As SNR received by sensor decays with distance from the
target, fusion range lower-bounds the quality of information
that is fused at the cluster head. In Section 5.2, we will dis-
cuss how to choose the optimal fusion range. The above data
fusion model is consistent with the fusion schemes adopted
in [8, 29, 40]. If more efficient fusion models are employed,
the scaling laws proved in this paper still hold as discussed
in Section 6.5.

We assume that the target keeps stationary after appear-
ance and the position of a possible target can be obtained
through a localization algorithm. For instance, the target
position can be estimated as the geometric center of a num-
ber of sensors with the largest measurements. Such a simple
localization algorithm is employed in the simulations con-
ducted in this paper. The localized position may not be
the exact target position and the distance between them is
referred to as localization error. We assume that the lo-
calization error is upper-bounded by a constant ǫ. The lo-
calization error is accounted for in the following analyses.
However, we show that it has no impact on the asymptotic
results derived in this paper.

The above data fusion model can be used for target detec-
tion as follows. The detection can be executed periodically
or triggered by user queries. In a detection process, each sen-
sor makes a snapshot measurement and a cluster is formed
by the sensors within the fusion range from the possible tar-
get to make a detection decision. The cluster formation may
be initiated by the sensor that has the largest measurement.
Such a scheme can be implemented by several dynamic clus-
tering algorithms [6]. The fusion range R can be used as an
input parameter of the clustering algorithm. The communi-
cation topology of the cluster can be a multi-hop tree rooted
at the cluster head. As the fusion statistics Y is an aggrega-
tion of sensors’ measurements, it can be computed efficiently
along the routing path to the cluster head. In this work, we
are interested in the fundamental performance limits of cov-
erage under the fusion model and the design of clustering
and data aggregation algorithms is beyond the scope of this
paper.

3.3 Problem Definition
The detection of a target is inherently stochastic due to

the noise in sensor measurements. The detection perfor-
mance is usually characterized by two metrics, namely, the
false alarm rate (denoted by PF ) and detection probability
(denoted by PD). PF is the probability of making a positive
decision when no target is present, and PD is the probabil-
ity that a present target is correctly detected. In stochastic
detection, positive detection decisions may be false alarms
caused by the noise in sensor measurements. In particular,
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Figure 3: Coverage un-
der the disc model.
Sensing range r = 17m,
which is computed by
(7).

Figure 4: Coverage
under the fusion mo-
del. Grayscale repre-
sents the value of PD.

although the detection probability can be improved by set-
ting lower detection thresholds, the fidelity of detection re-
sults may be unacceptable because of high false alarm rates.
Therefore, PF together with PD characterize the sensing
quality provided by the network. For a physical point p,
we denote the probability of successfully detecting a tar-
get located at p as PD(p). Note that PF is the probability
of making positive decision when no target is present, and
hence is location independent.

Our focus is to study the coverage of large-scale WSNs.
We introduce a concept called (α, β)-coverage that quantifies
the fraction of the surveillance region where PF and PD are
bounded by α and β, respectively.

Definition 1 ((α, β)-coverage). Given two constants
α ∈ (0, 0.5) and β ∈ (0.5, 1), a physical point p is (α, β)-
covered if the false alarm rate PF and detection probability
PD(p) satisfy

PF ≤ α, PD(p) ≥ β.

The (α, β)-coverage of a region is defined as the fraction of
points in the region that are (α, β)-covered.

The full coverage of a region refers to the case where
the (α, β)-coverage of the region approaches one, i.e., the
false alarm rate is below α and the probability of detect-
ing a target present at any location is above β. In practice,
mission-critical surveillance applications [11–13, 16] require
a low false alarm rate (α < 5%) and a high detection prob-
ability (β ≫ 50%).

We now illustrate the (α, β)-coverage by an example, where
δ = 1000 (i.e., 30 dB), α = 5%, β = 95%, and R = 50 m.
Fig. 3 and 4 illustrate the coverage under the disc and fusion
models, respectively. In Fig. 4, when a target (represented
by the triangle) is present, the sensors within the fusion
range from it fuse their measurements to make a detection.
The gray area is (α, β)-covered, where grayscale represents
the value of PD at each point. As shown in Fig. 3, the cov-
ered region under the disc model is simply the union of all
sensing discs. As a result, when a high level of coverage is
required, a large number of extra sensors must be deployed
to eliminate small uncovered areas surrounded by sensing
discs. In contrast, data fusion can effectively expand the
covered region by exploiting the collaboration among neigh-
boring sensors.

In the rest of this paper, we consider the following prob-
lems:

1. Although a number of analytical results on coverage
[4, 19, 24, 33, 38, 41–43] have been obtained under the
classical disc model, are they still applicable under the
definition of (α, β)-coverage which explicitly captures
the stochastic nature of sensing? To answer this ques-
tion, we propose a probabilistic disc model such that
the existing results can be naturally extended to the
context of stochastic detection (Section 4).

2. How to quantify the (α, β)-coverage when sensors can
collaborate through data fusion? Answering this ques-
tion enables us to evaluate the coverage performance of
a network and to deploy the fewest sensors for achiev-
ing a given level of coverage (Section 5).

3. What are the scaling laws between coverage, network
density, and signal-to-noise ratio (SNR) under both
the disc and fusion models? The results will provide
important insights into understanding the limitation
of analytical results based on the disc model and the
impact of data fusion on the coverage of large-scale
WSNs (Section 6).

4. COVERAGE UNDER PROBABILISTIC

DISC MODEL
As the classical disc model deterministically treats the de-

tection performance of sensors, existing results based on this
model [4, 19, 24, 33, 38, 41–43] cannot be readily applied to
analyze the performance or guide the design of real-world
WSNs. In this section, we extend the classical disc mo-
del based on the stochastic detection theory [37] to capture
several realistic sensing characteristics and study the (α, β)-
coverage under the extended model.

In the probabilistic disc model, we choose the sensing range
r such that 1) the probability of detecting any target within
the sensing range is no lower than β, and 2) the false alarm
rate is no greater than α. As we ignore the detection prob-
ability outside the sensing range of a sensor, the detection
capability of sensor under this model is lower than in reality.
However, this model preserves the boundary of sensing region
defined in the classical disc model. Hence, the existing re-
sults based on the classical disc model [4,19,24,33,38,41–43]
can be naturally extended to the context of stochastic de-
tection.

We now discuss how to choose the sensing range r under
the probabilistic disc model. The optimal Bayesian detec-
tion rule for a single sensor i is to compare its measurement
yi to a detection threshold t [37]. If yi exceeds t, sensor i
decides H1; otherwise, it decides H0. Therefore, the PF and
PD of sensor i are given by

PF = P(yi ≥ t|H0) = Q

„

t − µ

σ

«

, (5)

PD = P(yi ≥ t|H1) = Q

„

t − µ − si

σ

«

, (6)

where P(·) is the probability notation and Q(·) is the comple-
mentary cumulative distribution function (CDF) of the stan-

dard normal distribution, i.e., Q(x) = 1√
2π

R∞
x

e−t2/2d t.

As PD is non-decreasing function of PF [37], it is maxi-
mized when PF is set to be the upper bound α. Hence
the optimal detection threshold can be solved from (5) as
topt = µ + σQ−1(α), where Q−1(·) is the inverse function of
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Q(·). By replacing t = topt and si = S ·w(r) in (6), we have

r = w−1

„

Q−1(α) − Q−1(β)

δ

«

, (7)

where w−1(·) is the inverse function of w(·). If the target
is more than r meters from the sensor, the detection per-
formance requirements, i.e., α and β, cannot be satisfied
by setting any detection threshold. Note that a similar def-
inition of sensing range is proposed in [40] for stochastic
detection. From (7), the sensing range of a sensor varies
with the user requirements (i.e., α and β) and PSNR δ. For
instance, the sensing range r is 3.8 m if α = 5%, β = 95%,
δ = 50 (i.e., 17 dB)4 and w(·) is given by (2) with k = 2.
As w(·) is a decreasing function, w−1(·) is also a decreasing
function. Therefore, r increases with the PSNR δ according
to (7). This conforms to the intuition that a sensor can de-
tect a farther target if the noise level is lower (i.e., a greater
δ).

We now extend the coverage of random networks [4, 24]
derived under the classical disc model to (α, β)-coverage.
Under both the classical and probabilistic disc models, a lo-
cation is regarded as being covered if it is within at least one
sensor’s sensing range. Accordingly, the area of the union
of all sensors’ sensing ranges is regarded as being covered
by the network. The coverage of random networks under
the classical disc model has been extensively studied based
on the stochastic geometry theory [4, 24]. Specifically, the
coverage of a network deployed according to a Poisson point
process of density ρ is given by

c = 1 − e−ρπr2

. (8)

If the sensing range r is chosen by (7), Eq. (8) computes the
(α, β)-coverage of a random network under the probabilistic
disc model. This result will be used as the basis for studying
the impact of data fusion on network coverage in Section 6.

5. COVERAGE UNDER DATA FUSION MO-

DEL
Although the probabilistic disc model discussed in Sec-

tion 4 captures the stochastic nature of sensing, it does not
exploit the collaboration among sensors. In this section, we
first derive the (α, β)-coverage under the fusion model, then
illustrate the analytical results using numerical examples.

5.1 Deriving Coverage under Data Fusion Mo-
del

We have the following lemma regarding the (α, β)-coverage
of random networks.

Lemma 1. The (α, β)-coverage of a uniformly deployed
network under the data fusion model, denoted by c, is given
by

c = P

 

P

i∈F(p) si
p

N(p)
≥ σ

`

Q−1(α) − Q−1(β)
´

!

, (9)

where p is an arbitrary physical point in the network.

4The PSNR is set according to the measurements from the
vehicle detection experiments based on MICA2 [12] and
ExScal [13] motes.

Proof. We first discuss the necessary and sufficient con-
dition that p is (α, β)-covered. When no target is present, all
sensors measure i.i.d. noises and hence Y |H0 =

P

i∈F(p) ni ∼
N (µN(p), σ2N(p)). Therefore, the false alarm rate is PF =

P(Y ≥ T |H0) = Q

„

T−µN(p)

σ
√

N(p)

«

, where T is the detection

threshold. As PD is a non-decreasing function of PF [37], it
is maximized when PF is set to be the upper bound α. Such
a scheme is referred to as the Constant False Alarm Rate
detector [37]. Let PF = α, the optimal detection threshold

can be derived as Topt = µN(p) + σQ−1(α)
p

N(p).
When the target is present, Y |H1 =

P

i∈F(p) si + ni ∼
N (µN(p) +

P

i∈F(p) si, σ
2N(p)). Therefore, the detection

probability at p is given by

PD(p)=P(Y ≥T |H1)=Q

 

T−µN(p)−Pi∈F(p) si

σ
p

N(p)

!

By replacing T with Topt and solving PD(p) ≥ β, we have the
necessary and sufficient condition that p is (α, β)-covered:

P

i∈F(p) si
p

N(p)
≥ σ

`

Q−1(α) − Q−1(β)
´

. (10)

As the random network is stationary, the fraction of covered
area equals the probability that an arbitrary point is covered
by the network [24]. Therefore, the (α, β)-coverage of the
network is given by (9).

As p is an arbitrary point in the network, N(p) is a Pois-
son random variable, i.e., N(p) ∼ Poi(ρπR2). Moreover,
{si|i ∈ F(p)} are also random variables. However, we have
no closed-form formula for computing (9) due to the diffi-

culty of deriving the CDF of
P

i∈F(p) si√
N(p)

. We now give an

approximation to (9) in the following lemma. The proof is
given in Appendix B.

Lemma 2. Let µs and σ2
s denote the mean and variance

of si|i ∈ F(p) for arbitrary point p, respectively. The (α, β)-
coverage of a uniformly deployed network under the data fu-
sion model can be approximated by

c ≃ Q

 

γ(R) − ρπR2

p

ρπR2

!

, (11)

where γ(R) =

„

Q−1(α)σ−Q−1(β)
√

σ2
s+σ2

µs

«2

.

We note that the formulas of µs and σ2
s are given by (17)

and (18), respectively. As Central Limit Theorem (CLT) is
applied in the derivation of (11), this approximation is ac-
curate when N(p) ≥ 20 [28]. This condition can be easily
met in many applications. For example, it is shown in [12]
that the detection probability is only about 40% when four
MICA2 motes are deployed in a 10× 10 m2 region. Suppose
R = 20 m and the network density is the same as in [12],
N(p) will be about 50. With the approximate formula, we
can evaluate the coverage performance of an existing net-
work or compute the minimum network density to achieve
the desired level of coverage under the fusion model. Our
simulation results in Section 7 show that (11) can provide
accurate prediction of coverage under the fusion model. We
note that the localization error has little impact on the accu-
racy of the approximate formula when R ≫ ǫ. Recent sensor
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network localization protocols can achieve a precision within
0.5 m in large-scale outdoor deployments [36].

We now derive the lower bound of (α, β)-coverage under
the fusion model, which will be used in the derivations of
scaling laws in Section 6. We denote FPoi(·|λ) as the CDF
of the Poisson distribution Poi(λ), which is formally given

by FPoi(x|λ) =
P⌊x⌋

k=0
e−λλk

k!
.

Lemma 3. The lower bound of (α, β)-coverage of a uni-
formly deployed network under the data fusion model, de-
noted by cL, is given by

cL = 1 − FPoi(Γ(R)|ρπR2), (12)

where Γ(R) =
“

Q−1(α)−Q−1(β)
δ

”2

· 1
w2(R+ǫ)

. When ρπR2 is

large enough,

cL = Q

 

Γ(R) − ρπR2

p

ρπR2

!

. (13)

Proof. For any point p,
P

i∈F(p) si ≥ S · w(R + ǫ) ·
N(p), as si ≥ S · w(R + ǫ) for any sensor i in F(p). If
S·w(R+ǫ)·N(p)√

N(p)
≥ σ

`

Q−1(α) − Q−1(β)
´

, Eq. (10) must hold.

Therefore, by solving N(p), the sufficient condition that p
is (α, β)-covered is N(p) ≥ Γ(R). Moreover, as N(p) ∼
Poi(ρπR2), we have

c = P(point p is (α, β)-covered)

≥ P(N ≥ Γ(R))

= 1 − FPoi(Γ(R)|ρπR2).

Therefore, the lower bound of c is given by (12). When ρπR2

is large enough, the normal distribution N (ρπR2, ρπR2) ex-
cellently approximates the Poisson distribution Poi(ρπR2).
Therefore, Eq. (12) can be approximated by (13).

In the proofs of above lemmas, the fusion statistics Y
has a component

P

i∈F(p) ni. According to the CLT, this
component approximately follows the normal distribution if
{ni} are i.i.d.. Therefore, the assumption of i.i.d. Gaussian
noises made in Section 3.1 can be relaxed to i.i.d. noises that
follow any distribution, when the number of sensors taking
part in data fusion is large enough. In practice, the accuracy
of this approximation is satisfactory when N(p) ≥ 20 [28].
In particular, the distribution of noise will not affect the
asymptotic scaling laws in Section 6, as N(p) is large in the
asymptotic scenarios where c → 1.

5.2 Numerical Examples
In this section, we provide several numerical results to

help understand the coverage performance under the data
fusion model. We adopt the signal decay function given by
(2) with k = 2. Fig. 5 plots the approximate coverage com-
puted by (11). We can see from Fig. 5 that the coverage
initially increases with fusion range R, but decreases to zero
eventually. Intuitively, as the fusion range increases, more
sensors contribute to the data fusion resulting in better sens-
ing quality. However, as R becomes very large, the aggre-
gate noise starts to cancel out the benefit because the target
signal decreases quickly with the distance from the target.
In other words, the measurements of sensors far away from
the target contain low quality information and hence fusing
them leads to lower detection performance. An important
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question is thus how to choose the optimal fusion range (de-
noted by Ropt) that maximizes the coverage. First, the Ropt

can be obtained through numerical experiments. Fig. 6 plots
the optimal fusion ranges under different network densities,
which are obtained by numerically maximizing the coverage.
Second, it is possible to obtain the analytical Ropt by solving
dc
dR

= 0. For instance, when the signal decay function w(·)
is given by (2) with k = 2, Ropt satisfies

Ropt

ln Ropt
= Θ(

√
ρ)

and hence Ropt increases with network density ρ.

6. IMPACT OF DATA FUSION ON COVER-

AGE
Many mission-critical applications require a high level of

coverage over the surveillance region. As an asymptotic case,
full coverage is required, i.e., any target/event present in
the region can be detected with a probability of at least β
while the false alarm rate is below α. As a higher level of
coverage always requires more sensors, the network density
for achieving full coverage is an important cost metric for
mission-critical applications.

Under the disc model, the sensing regions of randomly
deployed sensors inevitably overlap with each other when a
high level coverage is required. According to (8), we have
dρ = 1

πr2 · 1
1−c

·dc. If c is close to 1, a large number of extra

sensors (i.e., dρ) are required to eliminate a small uncovered
area (i.e., dc). Moreover, the situation gets worse when c
increases. In this section, we are interested in how much
network density can be reduced by adopting data fusion.
Specifically, we study the asymptotic relationships between
the network densities for achieving full coverage under the
probabilistic disc and data fusion models. The results pro-
vide important insights into understanding the limitation of
the disc model and the impact of data fusion on coverage.

6.1 Full Coverage using Fixed Fusion Range
We first study the relationship between the network den-

sities for achieving full coverage under the disc and fusion
models when fusion range R is a constant. We have the
following theorem.

Theorem 1. Let ρd and ρf denote the minimum network
densities required to achieve the (α, β)-coverage of c under
the disc and fusion models, respectively. If the fusion range
R is fixed, we have

ρf = O
„

2r2

R2
· ρd

«

, c → 1. (14)
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Proof. As ρf is large to provide a high level of cov-
erage under the fusion model, the lower bound of (α, β)-
coverage, cL, is given by (13) according to Lemma 3. We

define h1(ρf ) = Γ(R)√
πR

· 1√
ρf

, h2(ρf ) =
√

πR · √ρf and hence

cL = Q(h1(ρf )−h2(ρf )). When ρf → ∞, h2(ρf ) dominates

h1(ρf ) as lim
ρf→∞

h1(ρf )

h2(ρf )
= 0. Hence, c ≥ cL = Q(−h2(ρf )) =

Q(−√
πR · √ρf ) when ρf → ∞. Define x = Q−1(c). We

have ρf ≤ 1
πR2 x2 when c → 1.

Under the disc model, by replacing c = Q(x) = 1−Φ(x) in
(8) and solving ρd, we have ρd = − 1

πr2 ln Φ(x), where Φ(x)
is the CDF of the standard normal distribution. Hence, we
have

lim
c→1

ρf

ρd
≤ lim

x→−∞

1
πR2 x2

− 1
πr2 ln Φ(x)

= − r2

R2
lim

x→−∞

x2

lnΦ(x)
.

As lim
x→−∞

x2

lnΦ(x)
= −2 (derived in Appendix C), we have

lim
c→1

ρf

ρd
≤ 2r2

R2 . Therefore, the asymptotic upper bound of ρf

is given by (14).

Theorem 1 shows that in order to achieve full coverage,
ρf is smaller than ρd if R >

√
2r. According to (7), sens-

ing range r is a constant independent of network density.
On the other hand, fusion range R is a design parameter of
the fusion model, which is mainly constrained by the com-
munication overhead. In practice, the condition R >

√
2r

can be easily satisfied. For instance, the acoustic sensor on
MICA2 motes has a sensing range of 3m to 5m if a high
performance (e.g., α = 5% and β = 95%) is required [12].
On the other hand, the fusion range can be set to be much
larger. For example, Fig. 6 shows that Ropt ranges from 5m
to 100m when network density increases from 1.5 × 10−3

to 0.1. Therefore, according to Theorem 1, the fusion mo-
del with the optimal fusion range can significantly reduce
network density for achieving a high level of coverage.

6.2 Full Coverage using Optimal Fusion Range
As discussed in Section 5.2, we can obtain the optimal

fusion range via numerical experiment or analysis. Data
fusion with the optimal fusion range allows the maximum
number of informative sensors to contribute to the detection.
The scaling law obtained with optimal fusion range will help
us understand the maximum performance gain by adopting
the data fusion model. The following theorem shows that

ρf further reduces to O(ρ
1−1/k
d ) as long as the fusion range

is optimal. The proof is given in Appendix D.

Theorem 2. Let ρd and ρf denote the minimum network
densities required to achieve the (α, β)-coverage of c under
the disc and fusion models, respectively. If the optimal fusion
range Ropt is adopted, we have

ρf = O
“

ρ
1−1/k
d

”

, c → 1. (15)

Theorem 2 shows that if the optimal fusion range is adopted,
the fusion model can significantly reduce the network den-
sity for achieving high coverage. In particular, from Theo-

rem 2, the density ratio
ρf

ρd
= O(ρ

−1/k
d ) = 0 when c → 1,

which means ρf is insignificant compared with ρd for achiev-
ing high coverage. Theorem 2 is applicable to the scenarios
where the physical signal follows the power law decay with

path loss exponent k, which are widely assumed and verified
in practice. We note that the path loss exponent k typically
ranges from 2.0 to 5.0 [15,20]. In particular, the propagation
of acoustic signals in free space follows the inverse-square
law, i.e., k = 2, and therefore ρf = O(

√
ρd).

6.3 Impact of Signal-to-Noise Ratio
In this section, we study the impact of PSNR on the re-

sults derived in the previous sections. PSNR is an impor-
tant system parameter which is determined by the property
of target, noise level, and sensitivity of sensors. We have the
following corollary.

Corollary 1. For fixed fusion range R, we have

ρf

ρd
= O(δ2/k), c → 1. (16)

Proof. As w(x) = Θ(x−k), w−1(x) = Θ(x−1/k). Ac-

cording to (7), the sensing range r = Θ(δ1/k). As lim
c→1

ρf

ρd
≤

2r2

R2 = Θ(δ2/k), we have (16).

Corollary 1 suggests that for a fixed R, the relative cost
between the fusion and disc models is affected by the PSNR
δ. Specifically, the fusion model requires fewer sensors to
achieve full coverage than the disc model if the PSNR is
low. On the other hand, the disc model suffices only if the
PSNR is sufficiently high. Intuitively, sensor collaboration
is more advantageous when the PSNR is low to moderate.
However, when the PSNR is sufficiently high, the detection
performance of a single sensor is satisfactory and the collab-
oration among multiple sensors may be unnecessary.

6.4 Implications of Results
We now summarize the implications of theoretical results

derived in this section.

6.4.1 The limitations of disc model

According to Theorem 2, when the required coverage ap-
proaches one, ρd increases significantly faster than ρf , espe-
cially for a small decay exponent. For instance, when k = 2
(which typically holds for acoustic signals), ρf = O(

√
ρd).

This result implies that the existing analytical results based
on the disc model (e.g., [4, 19, 24, 33, 38, 43]) significantly
overestimate the network density required for achieving full
coverage. On the other hand, Corollary 1 shows that the
disc model may lead to similar or even lower network density
than the fusion model if PSNR is sufficiently high. The noise
experienced by a sensor in real systems comes from various
sources, e.g., the random disturbances in the environment
and the electronic noise in sensor circuit. In practice, the
PSNRs in the applications based on low-cost sensors are usu-
ally low. For instance, the PSNRs in the vehicle detection
experiments based on MICA2 [12] and ExScal [13] motes are
about 50 (i.e., 17 dB). In such a case, ρd ≥ 2ρf for achieving
a high level of coverage if R is set to be greater than 8m.

6.4.2 Design of data fusion algorithms

Our results provide several important guidelines on the de-
sign of data fusion algorithms for large-scale WSNs. First,
data fusion is very effective in improving sensing coverage
and reducing network density. In particular, Theorem 2
suggests that the performance gain of data fusion increases
when the PSNR is lower. Therefore, data fusion should be
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achieved (α, β)-coverage.

employed for low-SNR deployments when a high level of cov-
erage is required. Second, Theorems 1 and 2 suggest that
fusion range plays an important role in the achievable per-
formance of data fusion. As discussed in Section 5.2, the op-
timal fusion range that maximizes coverage increases with
network density and can be numerically computed. How-
ever, a larger fusion range requires more sensors to fuse their
measurements resulting in higher communication overhead.
Investigating the optimal fusion range under both coverage
and communication constraints is left for future work.

6.5 Discussion
We now discuss several issues that have not been ad-

dressed in this paper.
The main objective of this paper is to explore the fun-

damental limits of coverage based on data fusion model in
target surveillance applications, in which sensors measure
the signals emitted by the target. The proofs of Lemma 1-3
and Theorem 1 are not dependent on the form of the sig-
nal decay function w(·). Therefore, these results hold under
arbitrary bounded decreasing function w(·). However, The-
orem 2 and Corollary 1 are only applicable for the applica-
tions where the target signal follows the power law decay,
i.e., w(x) = Θ(x−k). We acknowledge that most mechan-
ical and electromagnetic waves follow the power law decay
in propagation. In particular, in open space, inverse-square
law (i.e., k = 2) [9] applies to various physical signals such
as sound, light and radiation. In our future work, we will
extend our analyses to address other decay laws such as ex-
ponential decay in diffusion processes [35].

Theorem 1-2 and Corollary 1 give the upper bounds of
network density under the fusion model presented in Sec-
tion 3.2. If more efficient fusion models are employed, the
coverage performance will be further improved. In other
words, more efficient fusion model can reduce the network
density for achieving a certain level of coverage. As a re-
sult, the upper bounds of network density derived in this
paper still hold. Exploring the impact of efficiency of fusion
models on network density is left for future work.

7. SIMULATIONS
In this section, we conduct extensive simulations based

on real data traces as well as synthetic data to evaluate
the coverage performance in non-asymptotic and asymptotic
cases, respectively.

7.1 Trace-driven Simulations
We first conduct simulations using the data traces col-

lected in a real vehicle detection experiment [1]. In the
experiments, 75 WINS NG 2.0 nodes are deployed to de-
tect military vehicles driving through the surveillance region.
We refer to [11] for detailed setup of the experiments. The
dataset used in our simulations includes the ground truth
data and the acoustic time series recorded by 20 nodes when
a vehicle drives through. The ground truth data include the
positions of sensors and the trajectory of the vehicle.

Sensors’ sensing ranges under the probabilistic disc mo-
del are determined individually to meet the detection per-
formance requirements (α = 5% and β = 95%). The re-
sulted sensing ranges are from 22.5 m to 59.2 m with the
average of 43.2 m. Such a significant variation is due to sev-
eral issues including poor calibration and complex terrain.
In our simulation, we deploy random networks with size of
1000 × 1000 m2. Each sensor in the simulation is associ-
ated with a real sensor chosen at random. For each deploy-
ment, we evaluate the (α, β)-coverage under both the disc
and fusion models. We divide the region into 1000 × 1000
grids. Under the disc model, the coverage is estimated as
the ratio of grid points that are covered by discs. Under the
fusion model, the coverage is estimated as the ratio of (α, β)-
covered grid points. Specifically, for a target that appears
at a grid point, each sensor makes a measurement which is
set to be the energy gathered by the associated real sensor
at a similar distance to vehicle in the data trace. A cluster
is formed around the sensor with the highest reading, which
fuses sensor measurements for detection.

Fig. 7 plots the the number of deployed sensors versus the
achieved (α, β)-coverage under various settings. We can see
that the disc model suffices if a moderate level of coverage
is required. However, the fusion model is more effective for
achieving high coverage. In particular, the fusion model
with a fusion range of 200 m saves more than 50% sensors
when the coverage is greater than 0.75. Moreover, the trend

of density ratio also follows ρf = O( 2r2

R2 · ρd) derived in
Section 6.1. We note that the average number of sensors
taking part in data fusion is within 30 and hence will not
introduce high communication overhead.

7.2 Simulations based on Synthetic Data
7.2.1 Numerical Settings

In addition to trace-driven simulations, we also conduct
extensive simulations based on synthetic data. These simu-
lations allow us to evaluate the theoretical results in a wide
range of settings. We adopt the signal decay function in
(2) with k = 2. Both the mean and variance of the Gaus-
sian noise generator, µ and σ2, are set to be 1. We set the
orginal energy of target, S, to be 4, 50, and 5000, so that
the SNRs in the simulations are consistent with several real
experiments [7,11–13].

As proved in Lemma 1, it suffices to measure the probabil-
ity that a point is covered for evaluating the coverage of the
whole network. Hence, we let the target appear at a fixed
point p and deploy random networks with size of 4R × 4R
centered at p. For each deployment, PD(p) is estimated as
the fraction of succesful detections. The (α, β)-coverage is
estimated as the fraction of deployments whose PD(p) is
greater than β.

We also evaluate the impact of localization error by inte-
grating a simple localization algorithm. Specifically, for each
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detection, if a sensor’s reading exceeds S · w(R) + µ, it will
take part in the target localization. The target is localized
as the geometric center of the sensors participating in the
localization.

7.2.2 Simulation Results

We first evaluate the accuracy of the approximate formula
given in Lemma 2. Fig. 8 plots the analytical and measured
coverage versus network density. The curves labelled with
SIM-LOC and SIM represent the measured results with and
without accounting for localization error, respectively. We
can see that the simulation result matches well the analyti-
cal result given by (11). A network density of 0.8 is enough
to provide high coverage under the fusion model, where the
SNR is very low (δ = 4). When there is localization error, a
maximum deviation of about 0.2 from the analytical result
can be seen from Fig. 8. The coverage decreases in the pres-
ence of localization error as sensors received weaker signals
when the target cannot be accurately localized. However,
the impact of localization error diminishes when c → 1.

The second set of simulations evaluate the impact of SNR
on the asymptotic network densities. Fig. 9 plots the net-
work density ratio ρd

ρf
versus the achieved coverage under

various PSNRs, where ρd is computed by (8) and ρf is ob-
tained in simulations, respectively. The x-axis is plotted in
log10 scale. We can see that the density ratio increases with
the coverage, i.e., the fusion model becomes more effective
for achieving higher coverage. Moreover, the density ratio
decreases with the PSNR, which conforms to the result of
Corollary 1. For instance, to achieve a high coverage of 0.99,
the density ratio ρd

ρf
is about 8 when δ = 4. The density ra-

tio decreases to about 2 when δ = 50. This result shows
that data fusion is effective in the scenarios with low SNRs.
When δ = 5000, the disc model suffices. These results are
consistent with the analysis in Section 6.3.

The third set of simulations evaluate the asymptotic re-
lationship between ρd and ρf when the fusion range is op-
timized. In Fig. 10, the X- and Y -axis of each data point
represent the required network densities for achieving the
same coverage that approaches to one under the disc and
fusion models, respectively. Note that the Y -axis is plotted
in square root scale. The optimal fusion range Ropt plotted
in Fig. 10 is computed for each given ρf by numerically max-
imizing (11). We can see from Fig. 10 that the relationship
between

√
ρd and ρf is convex and therefore conforms to

the theoretical result ρf = O(
√

ρd) according to Theorem 2.

Moreover, Ropt increases with ρf , which is also consistent
with the analysis in Section 5.2.

8. CONCLUSION
Sensing coverage is an important performance require-

ment of many critical sensor network applications. In this
paper, we explore the fundamental limits of coverage based
on stochastic data fusion models that jointly process noisy
measurements of sensors. The scaling laws between cover-
age, network density, and signal-to-noise ratio (SNR) are de-
rived. Data fusion is shown to significantly improve sensing
coverage by exploiting the collaboration among sensors. Our
results help understand the limitations of the existing ana-
lytical results based on the disc model and provide key in-
sights into the design and analysis of WSNs that adopt data
fusion algorithms. Our analyses are verified through simu-
lations based on both synthetic data sets and data traces
collected in a real deployment for vehicle detection.
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APPENDIX

A. OPTIMAL VALUE FUSION RULE
Suppose there are N sensors taking part in the data fusion.

The optimal decision rule that minimizes the average cost
(i.e., Bayesian decision) is given by the likelihood ratio test:

p(y1, . . . , yN |H1)

p(y1, . . . , yN |H0)

H1

≷
H0

P0(C10 − C00)

P1(C01 − C11)
.

where P0 = P(H0), P1 = P(H1), and Cij is the cost that
we decide Hi when the ground truth is Hj . The left-hand
side is the likelihood ratio and the right-hand side is the
optimal Bayes threshold. As the sensors’ measurements are
independent Gaussians assumed in Section 3.1, we have

p(y1, . . . , yN |H1)

p(y1, . . . , yN |H0)
=

N
Y

i=1

p(yi|H1)

p(yi|H0)
= e

PN
i=1

2siyi−2µsi−s2
i

σ2 .
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Accordingly, the likelihood ratio test becomes

N
X

i=1

si

σ
· yi

H1

≷
H0

1

2

N
X

i=1

2µsi + s2
i

σ
+

σ

2
ln

P0(C10 − C00)

P1(C01 − C11)
.

Therefore, the optimal fusion statistics for Bayesian decision
is
PN

i=1
si

σ
· yi where si

σ
is the received SNR of sensor i.

B. PROOF OF LEMMA 2

Proof. We first prove that the {si|i ∈ F(p)} are i.i.d. for
given p and derive the formulas for µs and σ2

s . As sensors
are deployed uniformly and independently, {di|i ∈ F(p)} are
i.i.d. for given p, where di is the distance between sensor i
and point p. To simplify our discussion, we now temporarily
assume that there is no localization error, i.e., ǫ = 0. There-
fore, {si|i ∈ F(p)} are i.i.d. for given p, as si is a function of
di (defined by (1)). Suppose the coordinates of point p and
sensor i are (xp, yp) and (xi, yi), respectively. The posterior
probability density function of (xi, yi) is f(xi, yi) = 1

πR2

where (xi − xp)
2 + (yi − yp)

2 ≤ R2. Hence, the posterior

CDF of di is given by F (di) =
R 2π

0
dθ
R di

0
1

πR2 · xdx =
d2

i

R2

where di ∈ [0, R]. Therefore, we have

µs =

Z R

0

sidF (di) =
2S

R2
·
Z R

0

xw(x)dx, (17)

σ2
s =

Z R

0

s2
i dF (di) − µ2

s =
2S2

R2

Z R

0

xw2(x)dx − µ2
s. (18)

A straightforward approximation is to replace
P

i∈F(p) si

in (9) with its mean µsN(p). However, doing so ignores
the distribution of

P

i∈F(p) si. We approximate
P

i∈F(p) si

as a Gaussian random variable according to the CLT, i.e.,
P

i∈F(p) si ∼ N (µsN(p), σ2
sN(p)). Note that here we treat

N(p) as a constant. When the target is present, Y |H1 =
P

i∈F(p) si +
P

i∈F(p) ni. As the sum of two independent

Gaussians is also Gaussian, Y |H1 follows the normal distri-
bution, i.e., Y |H1 ∼ N (µsN(p)+µN(p), σ2

sN(p)+σ2N(p)).
Therefore, the detection probability at point p is given by

PD(p) = P(Y ≥ T |H1) ≃ Q

 

T − µsN(p) − µN(p)√
σ2

s + σ2 ·
p

N(p)

!

.

By replacing T with the optimal detection threshold Topt

(derived in the proof of Lemma 1) and solving PD(p) ≥ β,
the condition that p is (α, β)-covered is given by N(p) ≥
γ(R). The approximate formula of (α, β)-coverage is then
given by

c ≃ P(N(p) ≥ γ(R)) = 1 − FPoi(γ(R)|ρπR2), (19)

where FPoi(·|λ) is the CDF of the Poisson distribution Poi(λ).
When ρπR2 is large enough, the Poisson distribution Poi(ρπR2)
can be excellently approximated by the normal distribution
N (ρπR2, ρπR2). Therefore, Eq. (19) can be further approx-
imated by (11).

C. TWO LIMITS USED IN THE PROOFS

OF THEOREMS 1 AND 2
Denote φ(x) as the probability density function of the

standard normal distribution, i.e., φ(x) = 1√
2π

e−x2/2. Note

that Φ′(x) = φ(x) and φ′(x) = −xφ(x). For constant η < 0,
we have

lim
z→∞

z2

lnΦ(ηz)

(*)
= lim

z→∞

2z
1

Φ(ηz)
φ(ηz)η

=
2

η
lim

z→∞

Φ(ηz)z

φ(ηz)

(*)
=

2

η
lim

z→∞
φ(ηz)ηz+Φ(ηz)

−η2zφ(ηz)
= − 2

η3

„

η+ lim
z→∞

Φ(ηz)

zφ(ηz)

«

(*)
= − 2

η3

„

η + lim
z→∞

φ(ηz)η

φ(ηz) − η2z2φ(ηz)

«

= − 2

η3

„

η + lim
z→∞

η

1 − η2z2

«

= − 2

η2
,

where the steps marked by (*) follow from the l’Hôpital’s
rule. Note that for η <0, lim

z→∞
Φ(ηz)z =0 and lim

z→∞
zφ(ηz)=

0. By replacing z=−x and η=−1, we have

lim
x→−∞

x2

ln Φ(x)
= −2.

D. PROOF OF THEOREM 2

Proof. We choose R by

ξ

π
· Γ(R)

R2
= ρf , (20)

where ξ is a constant and ξ > 1. It is easy to verify that the
chosen R is order-optimal for the lower bound of coverage
(i.e., cL). Moreover, it is easy to verify that both the chosen
R and Γ(R) increase with ρf . By replacing ρf in (13) with
(20), cL is given by

cL = Q

„„

1√
ξ
−
p

ξ

«

·
p

Γ(R)

«

= 1 − Φ(ηz),

where η = 1√
ξ
− √

ξ is a constant and z =
p

Γ(R). Hence

we have c ≥ cL = 1 − Φ(ηz). According to (8), the network
density under the disc model satisfies ρd = − 1

πr2 ln(1− c) ≥
− 1

πr2 ln Φ(ηz). Hence, the ratio ρb
f/ρd where b is a positive

constant satisfies

lim
c→1

ρb
f

ρd
≤ lim

R→∞

`

ξ
π

´b · Γb(R)

R2b

− 1
πr2 ln Φ(ηz)

= − ξbr2

πb−1
· lim

z→∞

z2

ln Φ(ηz)
· lim

R→∞

Γb−1(R)

R2b

=
2ξbr2

πb−1η2
· lim

R→∞

Γb−1(R)

R2b
.

Note that lim
z→∞

z2

lnΦ(ηz)
= − 2

η2 (derived in Appendix C) in

the above derivation. As w(x) = Θ(x−k) and ǫ is constant,
Γ(R) = Θ(1/w2(R + ǫ)) = Θ((R + ǫ)2k) = Θ(R2k) and

hence Γb−1(R) = Θ(R2kb−2k). Therefore, lim
R→∞

Γb−1(R)

R2b =

lim
R→∞

R2kb−2k−2b. If b ≤ k
k−1

, lim
R→∞

Γb−1(R)

R2b is a constant

and hence lim
c→1

ρb
f

ρd
is upper-bounded by a constant. Hence,

we have (15). We note that although the chosen R is not
optimal for c, the upper bound given by (15) still holds if R
is optimal for c.
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