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Abstract

Mission-critical target detection imposes stringent per-
formance requirements for wireless sensor networks, such
as high detection probabilities and low false alarm rates.
Data fusion has been shown as an effective technique for
improving system detection performance by enabling effi-
cient collaboration among sensors with limited sensing ca-
pability. Due to the high cost of network deployment, it is
desirable to place sensors at optimal locations to achieve
maximum detection performance. However, for sensor net-
works employing data fusion, optimal sensor placement is
a non-linear optimization problem with prohibitive compu-
tational complexity. In this paper, we present fast sensor
placement algorithms based on a probabilistic data fusion
model. Simulation results show that our algorithms can
meet the desired detection performance with a small num-
ber of sensors while achieving up to 7-fold speedup over the
optimal algorithm.

1 Introduction

Wireless sensor networks (WSNs) for mission-critical
applications (such as target detection [13], object track-
ing [24], and security surveillance [9]) often face the funda-
mental challenge of meeting stringent performance require-
ments imposed by users. For instance, a surveillance appli-
cation may require any intruder to be detected with a high
probability (e.g., > 90%) and a low false alarm rate (e.g.,
< 1%). Sensor placement plays an important role in the
achievable sensing performance of a sensor network. How-
ever, finding the optimal sensor placement is challenging
because the actual sensing quality of sensors is difficult to
predict due to the uncertainty in physical environments. For
instance, the measurements of sensors are often contami-
nated by noise, which renders the detection performance of
a network probabilistic.

Most existing works on sensor placement and coverage
maintenance are based on simplistic sensing models, such
as the disc model [1, 17, 21, 22]. In particular, the sensing

region of a sensor is modeled as a disc with a certain radius
centered at the position of the sensor. A sensor determin-
istically detects the targets/events within its sensing region.
Although such a model allows a geometric treatment to the
coverage provided by sensors, it fails to capture the stochas-
tic nature of sensing. Moreover, most works based on the
disc model do not take advantage of collaboration among
sensors.

Data fusion [18] has been proposed as an effective sig-
nal processing technique to improve the performance of
detection systems. The key advantage of data fusion is
to improve the sensing quality by jointly considering the
noisy measurements of multiple sensors. For example, real-
world experiments using MICA2 motes showed that the
false alarm rate of a network is as high as 60% when sensors
make their detection decisions independentlywhile the false
alarm rate can be reduced to near zero by adopting a data fu-
sion scheme [9]. In practice, many sensor network systems
designed for target detection, tracking and classification
have employed some kind of data fusion schemes [13, 9, 8].

A key challenge to exploit data fusion in sensor place-
ment is the increased computational cost. When data fu-
sion is employed, the probability of detecting a target is
dependent on the measurements of multiple sensors near
the target. Therefore, the system detection performance of
a fusion-based sensor network has a complex correlation
with the spatial distribution of sensors as well as the char-
acteristics of target and environmental noise. As a result,
the computational complexity of determining the optimal
sensor placement is prohibitively high in moderate to large-
scale fusion-based sensor networks.

This paper is focused on developing fast sensor place-
ment algorithms for target detection sensor networks that
are designed based on data fusion. In particular, we aim to
minimize the number of sensors that for achieving the spec-
ified level of sensing performance. The main contributions
of this paper are as follows:

• We formulate the sensor placement problem for
fusion-based target detection as a constrained opti-
mization problem. Our formulation is based on a prob-
abilistic data fusion model and captures several charac-



teristics of real-world target detection including target
signal decay, noisy sensor measurements, and sensors’
spatial distribution.

• We develop a global optimal algorithm and two
divide-and-conquer algorithms for our sensor place-
ment problem. The optimal algorithm minimizes the
number of sensors while meeting specified require-
ments on system detection probability and false alarm
rate. By exploiting the unique structure of the prob-
lem, the divide-and-conquer algorithms can find near-
optimal solutions at significantly lower computational
cost.

• We validate our approach through extensive numerical
results as well as simulations based on the real data
traces collected in a vehicle detection experiment [8].
Our best algorithm runs up to 7-fold faster than the
global optimal algorithm while using a comparable
number of sensors in the placement.

The rest of this paper is organized as follows. Section 2
reviews related work. Section 3 introduces the background
of data fusion. In Section 4, we formally formulate our
sensor placement problem for fusion-based target detection.
In Section 5, we present our sensor placement algorithms.
We evaluate our algorithms via numerical experiments and
trace-driven simulations in Section 6 and Section 7, respec-
tively. Section 8 concludes this paper.

2 Related Work

A number of prior works on sensor placement are fo-
cused on minimizing the number of sensors or maximizing
the sensing quality provided by a network [5, 1, 17, 21, 22,
3]. However, most of these works adopted the disc sens-
ing model [1, 17, 21, 22]. In contrast, we study the sensor
placement problem based on a data fusion model that cap-
tures stochastic characteristics of target detection.

Clouqueur et al. [3] formulate the sensor placement
problem for moving target surveillance based on path ex-
posure, which is computed based on a data fusion model.
Different from their work, this paper is focused on detect-
ing stationary targets that may appear at a set of locations.
Moreover, we develop both optimal and efficient heuristic
sensor placement algorithms. More recently, optimal or
approximate algorithms have been proposed to place sen-
sors for monitoring spatially correlated phenomena (such as
the temperature in a building) [11, 14, 15, 2]. The sensing
models adopted in these works quantify the mutual informa-
tion [11, 14, 15] and entropy [2] of a continuous phenomena
that is observed by sensors. Different from these works, our
problem is formulated based on the target detection model
that aggregates the noisy measurements of sensors.

There is vast literature on stochastic signal detection
based on multi-sensor data fusion. Early work [18] focuses
on analyzing optimal fusion strategies for small-scale wired
sensor networks (e.g., a handful of radars). Recent work on
data fusion [13, 8, 7] have considered the properties of wire-
less sensor networks such as sensor’ spatial distribution and
limited sensing capability. In practice, many sensor network
systems designed for target detection, tracking and classifi-
cation [13, 9, 8] have incorporated some kind of data fusion
schemes to improve the system performance.

3 Preliminaries

In this section, we describe the background of this work,
which includes a single-sensor sensing model and a multi-
sensor data fusion model.

3.1 Target and Sensing Model

For many physical signals (e.g., acoustic, seismic, and
electromagnetic signals), the energy attenuates with the dis-
tance from the signal source. Sensors detect targets by mea-
suring the energy of signals emitted by targets. Denote de-
creasing function W (d) as the signal energy measured by a
sensor which is d meters away from the target. We adopt a
signal decay model as follows1:

W (d) =

{
W0

(d/d0)k if d > d0

W0 if d ≤ d0

(1)

where W0 is the original energy emitted by the target, k
is a decaying factor which is typically from 2 to 5, d0 is a
constant determined by the size of the target and the sensor.
This signal attenuation model is widely adopted in the liter-
ature [12, 8, 18]. Figure 1 plots the signal energy measure-
ments of an acoustic sensor in the DARPA SensIT vehicle
detection experiments [8, 16]. From the figure, we can see
that the energy measurement increases linearly with 1/d2,
which matches the decay model in (1) with k = 2.

The measurements of a sensor are corrupted by noise.
Denote the noise strength measured by sensor i is Ni, which
follows the zero-mean normal distribution with a variance
of σ2, i.e., Ni ∼ N (0, σ2). Suppose sensor i is di meters
from the target, the signal energy it measures is given by

Ui = W (di) + N2
i (2)

In practice, the parameters of target and noise models are
often estimated using a training dataset before deployment.

1Our approach is not dependent on the specific form of W (d).
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Figure 1. Energy measurement vs. distance.
The x-axis is 1/d2 (d is the distance from the
target, in the unit of meters).

3.2 Multi-sensor Fusion Model

Data fusion [18, 3, 4] is a widely adopted technique for
improving the performance of detection systems. A sen-
sor network that employs data fusion is often organized into
clusters. Each cluster head is responsible for making a fi-
nal decision regarding the presence of target by fusing the
information gathered by member sensors in the cluster.

We adopt a data fusion scheme as follows. Sensors send
their energy measurements to the cluster head, which in turn
compares the average of all measurements against a thresh-
old η. If the average is greater than η, the cluster head de-
cides that a target is present. Otherwise, it decides there is
no target. The threshold η is referred to as the detection
threshold.

The performance of a detection system is usually charac-
terized by false alarm rate and detection probability. False
alarm rate (denoted by PF ) is the probability of making a
positive detection decision when no target is present. De-
tection probability (denoted by PD) is the probability that
a target is correctly detected. Suppose n sensors take part
in the data fusion. Under the aforementioned value fusion
scheme, the false alarm rate is given by:

PF = P

(
1
n

n∑
i=1

N2
i > η

)
= 1−P

(
n∑

i=1

(
Ni

σ

)2

≤ nη

σ2

)

As Ni/σ ∼ N (0, 1),
∑n

i=1(Ni/σ)2 follows the Chi-square
distribution with n degrees of freedom whose Cumulative
Distribution Function (CDF) is denoted as Xn(·). Hence,
PF can be calculated by:

PF = 1 −Xn

(nη

σ2

)
(3)

Similarly, the detection probability can be calculated by:

PD = P

(
1
n

n∑
i=1

(
W (di) + N2

i

)
> η

)

= 1 − P

(
n∑

i=1

(
Ni

σ

)2

≤ nη −∑n
i=1 W (di)
σ2

)

= 1 −Xn

(
nη −∑n

i=1 W (di)
σ2

)
(4)

4 Sensor Placement Problem for Fusion-
based Target Detection

In this section, we formulate the sensor placement prob-
lem for fusion-based target detection. In Section 4.1, we in-
troduce the network model and assumptions. In Section 4.2,
we formally formulate the problem. The complexity of
problem is reduced in Section 4.3.

4.1 Network Model and Assumptions

We assume that targets appear at a set of known physical
locations referred to as surveillance spots, or spots for brief.
We are only concerned with the sensor placement for sur-
veillance spots. Surveillance spots are often chosen before
network deployment according to application requirements.
For instance, in fire detection applications, the surveillance
spots can be chosen at the venues with inflammables. In in-
truder detection applications which require the surveillance
over a geographic region, the spots can be chosen densely
and uniformly in the region.

Due to the spatial decay of signal energy, the sensors far
away from the target experience low Signal-to-Noise Ratio
(SNR) and hence make little contribution to the detection.
Therefore, we assume that only the sensors close to a sur-
veillance spot participate in the data fusion. For any surveil-
lance spot, we define the fusion region as the disc of radius
R centered at the spot. The radius R is referred to as fu-
sion radius hereafter. Fusion radius plays an important role
in the detection performance of a network. On one hand, a
conservative fusion radius confines sensors’ detection capa-
bility despite they may contribute to the surveillance spots
outside the fusion radius. On the other hand, a large fusion
radius may result in poor detection performance by fusing
the irrelevant measurements from distant sensors. The opti-
mal fusion radius is dependent on network density and char-
acteristics of targets and noise. The detailed analysis of the
optimal fusion radius is omitted here due to the space limi-
tation and can be found in [23].

Sensors within the fusion region of each surveillance
spot forms a cluster to detect whether a target is present at
the surveillance spot by comparing the average of all energy
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Figure 2. Network model. Dotted circles rep-
resent the fusion regions of different surveil-
lance spots.

measurements of the sensors in the cluster with a threshold,
as described in Section 3.2. A cluster head is selected to
perform data fusion for each detection cluster. For instance,
the sensor closest to the surveillance spot may serve as the
cluster head. We introduce the following definition.

Definition 1 A sensor is a dedicated sensor if it is only
within the fusion region of a surveillance spot; a sensor is a
shared sensor if it is within the fusion regions of at least two
surveillance spots.

Figure 2 illustrates the network model. In the figure, the
dotted circles represent the fusion regions of different sur-
veillance spots. For example, the measurements of s1, s2

and s3 are fused to detect whether a target is present at spot
t1. Sensors s1, s3, s5, s7, s8 are shared sensors while s2, s4,
s6, s9, s10 are dedicated sensors. Note that a shared sensor
reports its measurements to multiple cluster heads.

4.2 Problem Formulation

We define the following notation before we formally for-
mulate the problem.

1. A represents the surveillance field where total K sur-
veillance spots are located. T = {tj|1 ≤ j ≤ K}
represents the set of surveillance spots, where tj =
(xj , yj) ∈ A is the coordinates of the jth surveillance
spot.

2. Cj , nj and ηj are the fusion region of tj , the number
of sensors within Cj , and the detection threshold for
tj , respectively.

3. S = {si|1 ≤ i ≤ N} represents the sensor placement,
where si = (xi, yi) ∈ A is the coordinates of the ith

sensor2 and N is the total number of sensors. |S| is the
cardinality of S, i.e., |S| = N .

4. PFj and PDj are the false alarm rate and detection
probability of tj , which can be calculated by (3) and
(4), respectively.

2As a slight abuse of the notation, si (ti) refers to both the ID and the
coordinate pair of the ith sensor (surveillance spot).

We quantify the performance of target detection by a new
metric called (α,β)-coverage, which is defined as follows.

Definition 2 ((α,β)-coverage) Given two real numbers,
α ∈ (0, 1) and β ∈ (0, 1), the surveillance spot tj is (α,β)-
covered if PFj ≤ α and PDj ≥ β.

The (α,β)-coverage defines the sensing quality provided
by the network at a surveillance spot. Our problem is to
place the fewest sensors to provide (α,β)-coverage at all
surveillance spots. Our problem is formulated as follows.

Problem 1 Given a surveillance field A and a set of sur-
veillance spots T, find a list of detection thresholds {ηj|1 ≤
j ≤ K} and a sensor placement S such that the number of
sensors |S| is minimized subject to the constraint that each
surveillance spot in T is (α,β)-covered.

A straightforward solution to the problem is to check
whether N (starting with N = 1) sensors are enough to
cover all surveillance spots. Besides N , the variables to be
determined include the sensor positions S = {(xi, yi)|1 ≤
i ≤ N} and the detection thresholds {ηj|1 ≤ j ≤ K}.
Hence, the total number of variables is 1+ 2N + K . More-
over, there exists a complex nonlinear relationship between
the detection performance (i.e., PFj and PDj , 1 ≤ j ≤ K)
and these variables. The exhaustive search to all the vari-
ables incurs prohibitively high computational cost even for
small-scale networks. As the first step to dealing with the
computational complexity, we seek to reduce the number of
variables in the problem formulation in the next section.

4.3 Problem Reduction

The number of variables in our problem formulation can
be reduced to 1 + 2N by exploiting the optimal detection
thresholds. For a certain sensor placement, PFj ≤ α is a
necessary condition of the (α,β)-coverage of surveillance
spot tj . From (3), this necessary condition becomes ηj ≥
σ2X−1

n (1−α)
nj

, whereX−1
n (·) is the inverse function of Xn(·).

Furthermore, according to (4), PDj decreases with ηj . In
other words, the detection threshold should be minimized
in order to maximize the detection probability of a sensor
placement. Therefore, the detection threshold of a sensor
placement can always be set to its lower bound as follows.

ηj =
σ2X−1

n (1 − α)
nj

(5)

We compute the optimal detection threshold of each surveil-
lance spot by (5). Using the optimal detection thresholds,
each surveillance spot is (α,β)-covered if and only if the de-
tection probability for each spot is greater than β, or equiv-
alently, min1≤j≤K{PDj} ≥ β. Hence, only 1 + 2N vari-
ables need to be determined, i.e., N and S = {(xi, yi)|1 ≤
i ≤ N}. Accordingly, Problem 1 is simplified as follows.



Algorithm 1 The procedure of finding global optimal solu-
tion
Input: α, β, surveillance field A, a set of surveillance spots T
Output: Sensor placement S where |S| is minimized

1: N = 1
2: repeat
3: use the CSA solver to find N sensor locations in A that

maximize min1≤j≤K{PDj}
4: compute ηj for each tj ∈ T by (5)
5: compute PDj for each tj ∈ T by (4)
6: N = N + 1
7: until min1≤j≤K{PDj } ≥ β
8: return S

Problem 2 Given a surveillance field A and a set of sur-
veillance spots T, find a sensor placement S such that the
number of sensors |S| is minimized subject to the following
constraint:

min
1≤j≤K

{PDj} ≥ β (6)

5 Sensor Placement Algorithms

In Section 5.1, we present an optimal sensor placement
algorithm for Problem 2. However, this algorithm cannot
handle large-scale problems due to high time complexity.
In Section 5.2 and 5.3, we propose an efficient divide-and-
conquer approach and a corresponding heuristic placement
algorithm, respectively. In Section 5.4, we discuss an ex-
tension to the divide-and-conquer algorithm by integrating
a clustering algorithm.

5.1 Global Optimal Placement

A straightforward optimal solution for Problem 2 is to in-
crementally search for the optimal sensor placements with
different number of sensors under constraint (6). The de-
tails are shown in Algorithm 1. It begins with N = 1
and iterates for incremental N . In each iteration, the min-
imum detection probability among all surveillance spots,
i.e., min1≤j≤K{PDj}, is maximized. Once constraint (6)
is satisfied, the global optimal solution is found.

The optimization step that maximizes the minimum de-
tection probability (Line 3 in Algorithm 1) is implemented
by a nonlinear programming solver based on the Con-
strained Simulated Annealing (CSA) algorithm [20]. CSA
extends conventional Simulated Annealing to look for the
global optimal solution of a constrained optimization prob-
lem with discrete variables. CSA allows the objective func-
tion and constraint functions to be specified in a procedure
instead of in a closed-form. Theoretically, CSA is a global
optimal algorithm that converges asymptotically to a con-
strained global optimum with probability one (Theorem 1
of [20]).

0
500

1000
1500
2000
2500
3000
3500
4000
4500

6 8 10 12 14 16 18

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

The number of required sensors N

e0.34N+2.56

Figure 3. The execution time vs. the number
of sensors in the optimal placement.

In theory, the complexity of CSA, like other stochastic
search algorithms, increases exponentially with respect to
the number of variables [20]. Therefore, the nonlinear pro-
gramming solver has an exponential time complexity with
respect to the number of sensors. Hence, for a large-scale
placement problem, Algorithm 1 becomes prohibitively ex-
pensive.

Figure 3 shows the execution time of Algorithm 1 versus
the number of sensors in the optimal solution. The dotted
curve is the linear regression of the execution times with
different numbers of sensors. We can see that the execu-
tion time increases drastically with the number of sensors.
For instance, if 100 sensors are to be placed, the projected
execution time of the global optimal algorithm is about e36

seconds, i.e., 5 × 1010 days.

5.2 Divide-and-Conquer Approach

As described in Section 5.1, all the surveillance spots are
processed at one optimization step (Line 3) of Algorithm
1. That is, the positions of sensors are optimized by the
CSA solver to cover all the surveillance spots. This strategy
significantly increases the computational cost of Algorithm
1 because the execution time of the CSA solver increases
exponentially with respect to the total number of sensors
that are placed.

In this section, we propose a divide-and-conquer ap-
proach to reduce the computational complexity of the global
optimal algorithm. A straightforward divide-and-conquer
approach is to cover surveillance spots one by one using
the CSA solver and then combine all local solutions into
a global solution. As the cost for finding each local solu-
tion is small, the overall time complexity will be polynomial
with respect to the number of surveillance spots. However,
a key challenge for implementing this approach is that the
local problems (i.e., sensor placements for individual sur-
veillance spots) are dependent. This is because the shared
sensors contribute to the detection performance of multiple
fusion regions. As a result, solving the local problems sepa-
rately without considering the interdependence between lo-
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Figure 4. An example of interdependence be-
tween local sensor placements (W0 = 0.65,
d0 =1, k=2, σ2 =0.1, α=0.01, β =0.9, R=1.6 m).

cal solutions may result in an inefficient global solution. We
now illustrate this issue using the following example.

In this example, we use the following parameters for the
target and sensing model (defined in Section 3.1): W0 =
0.65, d0 = 1, k = 2, σ2 = 0.1. We aim to achieve
(0.01, 0.9)-coverage for each surveillance spot, i.e., α =
0.01 and β = 0.9. If there exists only one spot t1, two sen-
sors are required, as shown in Figure 4(a). Similarly, if two
spots t1 and t2 far away from each other are to be covered,
we need to place two sensors to cover each of them. When
t1 and t2 are 1.2 meters apart, their fusion regions overlap.
In such a case, three sensors are found by the global opti-
mal solution to cover t1 and t2, as shown in Figure 4(b).
In the optimal placement, there are two dedicated sensors
(s2, s3) and one shared sensor (s1). This example shows
that the number of sensors can be reduced by exploiting the
overlaps between the fusion regions of nearby surveillance
spots. However, if the coverage of each surveillance spot is
treated separately, four sensors will be placed. Such ineffi-
ciency is the result of ignoring the interdependence between
local solutions.

We now describe the basic idea of our divide-and-
conquer approach. We define the impact region of a surveil-
lance spot as the disc of radius 2R centered at the spot, as
illustrated in Figure 5. We denote the impact region of tj as
Aj . Any surveillance spot that falls in the impact region of
tj shares part of the fusion region with it. In our approach,
the surveillance spots are covered one by one in iterations.
When tj is processed, we first check if the sensors that are
placed within Aj in previous iterations can cover tj and all
the surveillance spots within Aj , and additional sensors are
then placed if necessary. The key idea of this approach is to
reduce the total number of sensors in the global solution by
taking advantage of the shared sensors that appear in mul-
tiple local solutions. We now illustrate this approach using
the following example. Three surveillance spots need to be
covered in Figure 5. We first compute a local solution for
the impact region of t1 so that both t1 and t2 are covered.
In the second iteration, we compute a local solution for the
impact region of t2 to cover t2 and t3. As t2 has been cov-
ered by the previous local solution, we only need to place

t2

2R
R

t1
t3

s1

s2
s3

s4
surveillance spot
sensor

fusion range
impact region

Figure 5. An example of the divide-and-
conquer approach.

additional sensors in the fusion region of t3.

5.3 Divide-and-Conquer Sensor Place-
ment

In this section, we present our divide-and-conquer sensor
placement algorithm in detail. The pseudo code is given in
Algorithm 2. In the divide step, for each surveillance spot
tj , we find the set of spots within the impact region of tj ,
which is denoted as Tj . In the conquer step, we compute an
optimal local solution for each surveillance spot tj . In the
jth iteration (from Line 3 to 9), the algorithm ensures that
spot tj and all neighboring spots in Tj are covered using the
fewest additional sensors that are placed only in the fusion
region of tj . The optimization step in Line 5 is implemented
by the CSA solver discussed in Section 5.1.

Note that shared sensors are favored over dedicated sen-
sors by the optimization process as they can significantly
reduce the number of sensors required to cover multiple sur-
veillance spots (including tj and all spots within its impact
region). However, as these sensors are only placed in the
fusion region of tj (Line 5), the detection performance of
other surveillance spots outside of Aj will not be affected.
After K iterations, all surveillance spots are covered and the
algorithm terminates.

A key advantage of Algorithm 2 is that the sensors placed
in previous iterations can be reused by the current local
solution. Specifically, at Line 5 of Algorithm 2, a sensor
placement is computed to cover not only the current sur-
veillance spot but also those within its impact region. As
a result, the sensors that are already placed in the shared
fusion regions can be utilized for covering the current spot.
However, a shortcoming of this strategy is that the local sen-
sor placement of a surveillance spot may become less effi-
cient as more shared sensors are placed to cover neighbor-
ing spots in later iterations. In the extreme case, a dedicated
sensor may become redundant if the shared sensors placed
in later iterations are enough to cover the spot. The cause of
this issue is the interdependence between local solutions.

We now describe an improved algorithm to deal with this
issue. The pseudo code is given in Algorithm 3. In each



Algorithm 2 The divide-and-conquer sensor placement al-
gorithm
Input: α, β, impact region set {Aj |1 ≤ j ≤ K}, and the set of

surveillance spots in each impact region {Tj |1 ≤ j ≤ K}
Output: Local optimal sensor placement S

1: S = ∅
2: for j = 1 to K do
3: n = 0
4: repeat
5: place additional n sensors in Cj (denoted by set Δ) to

maximize minth∈Tj{PDh} under placement S ∪ Δ
6: compute ηh for each th ∈ Tj under placement S ∪ Δ
7: compute PDh for each th ∈ Tj under placement S∪Δ
8: n = n + 1
9: until minth∈Tj{PDh} ≥ β

10: S = S ∪ Δ
11: end for
12: return S

round of Algorithm 3 (from Line 2 to 20), all surveillance
spots are processed one by one. The algorithm terminates if
the current round cannot further reduce the number of sen-
sors in the placement. When the jth spot tj is processed
(from Line 4 to 19), the algorithm first removes all dedi-
cated sensors of tj , and computes a new local placement S′

using the CSA solver (from Line 8 to 15). If S′ uses fewer
sensors than the original placement S, we replace the origi-
nal placement with S′ (from Line 17 to 19). Note that we do
not remove any shared sensors in the placement computed
by Algorithm 2 as otherwise the coverage of neighboring
surveillance spots may be affected.

We now discuss the convergence of Algorithm 3. As
only the new placement with fewer sensors (from Line 17
to 19) in each iteration is acceptable, obviously, the size of
the placement computed in each round keeps decreasing.
Denote N∗ and N0 as the sizes of the global optimal so-
lution (i.e., the output of Algorithm 1) and the solution of
Algorithm 2, respectively. The upper bound of the number
of rounds of Algorithm 3 is thus N0 − N∗.

5.4 Cluster-based Divide-and-Conquer

In this section, we discuss a cluster-based divide-and-
conquer approach that improves the performance of Algo-
rithm 3 in large-scale dense sensor networks. In Algo-
rithm 3, the CSA solver may be invoked more than once
to optimize the sensor placement of each surveillance spot.
Specifically, suppose M represents the number of rounds
before the termination of Algorithm 3, the CSA solver is
invoked for total (1 + M) · K times, which incurs high
computational cost when the number of surveillance spots
(K) is large. Moreover, once a sensor is placed within the
shared fusion region between two spots, its position remains
unchanged. Although this property is key to ensure the con-

Algorithm 3 The improved divide-and-conquer sensor
placement algorithm
Input: α, β, impact region set {Aj |1 ≤ j ≤ K}, the set of

surveillance spots in each impact region {Tj |1 ≤ j ≤ K},
sensor placement S computed by Algorithm 2

Output: new sensor placement S
1: repeat
2: total sensor number N = |S|
3: for j = 1 to K do
4: find dedicated sensor set Dj of tj in S
5: if Dj = ∅ then
6: skip this iteration for tj and continue
7: else
8: S′ = S \ Dj /* remove dedicated sensors of tj */
9: n = 1

10: repeat
11: place additional n sensors in Cj (denoted by Δ) to

maximize minth∈Tj{PDh} under placement S′∪Δ
12: compute ηh and PDh for each th ∈ Tj under

placement S′ ∪ Δ
13: n = n + 1
14: until minth∈Tj{PDh} ≥ β
15: S′ = S′ ∪ Δ
16: end if
17: if |S′| < |S| then
18: S = S′

19: end if
20: end for
21: until |S| = N
22: return S

vergence of Algorithm 3, it may result in inefficient sensor
placement. This is because the sensor placement that is ini-
tially optimal for a spot may become suboptimal as more
shared sensors are placed within the fusion region of the
spot (Line 11).

We now describe a clustering scheme that not only re-
duces Algorithm 3’s overhead but also improves the qual-
ity of sensor placement. The surveillance spots are grouped
into clusters according to their proximity. The CSA solver is
then executed for each cluster of spots. We employ a greedy
clustering algorithm called the Quality Threshold (QT) al-
gorithm proposed by Heyer et al. [10]. The objective of
QT is to organize the surveillance spots into clusters whose
members are geographically close to each other while min-
imizing the total number of clusters. Specifically, in each
iteration, a candidate cluster is created to center at each un-
clustered spot t with the spots within the impact region of t
as members. The candidate with the most members is kept
as a real cluster. The clustering procedure continues until
there is no unclustered spot left. More details of QT can be
found in [10].

We define the impact region of each cluster as the disc
of radius 2R centered at the cluster head (which is identi-



0
20
40
60
80

100
120
140
160
180

16 25 64 225

T
he

nu
m

be
ro

fs
en

so
rs

N

The number of spots K

clustered
unclustered

(a) Regular spots

5
10
15
20
25
30
35
40
45
50

20 40 100 200
T

he
nu

m
be

ro
fs

en
so

rs
N

The number of spots K

clustered
unclustered

(b) Random spots

Figure 6. The number of sensors vs. the num-
ber of surveillance spots

fied by QT). Suppose QT yields total L clusters. Denote Al

as the impact region of the cluster whose cluster head is tl,
and Tl as the set of surveillance spots in Al. Accordingly,
{Ai|1 ≤ i ≤ K} and {Ti|1 ≤ i ≤ K} in Algorithm 2
and Algorithm 3 should be replaced with {Al|1 ≤ i ≤ L}
and {Tl|1 ≤ i ≤ L}, respectively. When the surveillance
spots are densely distributed, L is much smaller than K .
Hence, the number of invocations of the CSA solver is re-
duced from (1+M)·K to (1+M)·L. Moreover, the surveil-
lance spots close to each other are always clustered together
and their sensor placement is jointly optimized, which can
significantly reduce the total number of sensors.

6 Numerical Results

In this section, we conduct numerical experiments to
evaluate the performance of the sensor placement algo-
rithms proposed in Section 5. The impact of surveillance
spot clustering is evaluated in Section 6.1. We compare
the divide-and-conquer placement algorithm with the global
optimal algorithm and a greedy algorithm in Section 6.2.

The parameters of the signal decay and noise models are
set as follows: W0 = 400, d0 = 1, k = 2, σ2 = 1. The
surveillance field A is a 30×30 m2 square area. The surveil-
lance spots are chosen regularly (i.e., on regular grid points)
or randomly. The bounds of false alarm rate and detection
probability (i.e., α and β) are set to be 1% and 90%, respec-
tively. The data fusion range is set to 7.76 m, which is the
optimal value derived in our analysis [23].

6.1 Impact of Clustering

We first evaluate the impact of the spot clustering. We
run the divide-and-conquer algorithm with and without QT
clustering for total 4 regular and 4 random layouts, respec-
tively. The results are shown in Figure 6(a) and Figure 6(b).
Figure 6(a) plots the number of placed sensors versus the
number of surveillance spots regularly distributed.

The curve labeled with “clustered” and “unclustered”
represents the results computed by the divide-and-conquer
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placement algorithm with and without QT clustering, re-
spectively. Figure 6(b) shows the results for random sur-
veillance spots. We can see that the cluster-based place-
ment algorithm can effectively reduce the number of re-
quired sensors. For instance, in Figure 6(a), when there are
total 15 × 15 = 225 surveillance spots, 172 sensors are
needed without clustering while only 13 sensors are needed
when clustering is employed. Another interesting observa-
tion is that the number of sensors required does not increase
considerably with the number of surveillance spots. For in-
stance, in Figure 6(b), total 7 sensors are enough to cover
100 surveillance spots, and total 11 sensors are enough to
cover 200 surveillance spots.

6.2 Sensor Placement Performance

We now compare our divide-and-conquer algorithm
against the global optimal algorithm for small networks.
Figure 7 shows the execution time of different algorithms
versus the number of sensors placed for seven random sur-
veillance spot layouts. We can see that the divide-and-
conquer algorithm (labeled as D&C in Figure 7) is up to
7-fold faster than the global optimal algorithm. Mean-
while, Figure 8 shows that the divide-and-conquer algo-
rithm places a comparable number of sensors as the optimal
algorithm.

We also compare our divide-and-conquer algorithm
against a greedy algorithm in large-scale networks. In the
greedy algorithm, sensors are also organized into detection
clusters centered at surveillance spots. In each iteration, we
place a sensor randomly in the fusion region of the surveil-
lance spot that has the minimum detection probability. The
algorithm terminates when every surveillance spot is (α,β)-
covered. This algorithm is similar to several greedy sensor
placement algorithms employed in previous work [3, 6, 19].

In the first set of experiments, total 15 × 15 = 225 sur-
veillance spots are regularly distributed, as shown in Fig-
ure 9(a) and Figure 9(b). The sensor placements computed
by the cluster-based divide-and-conquer algorithm and the
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greedy algorithm are also shown. Total 13 and 15 sensors
are placed by the two algorithms, respectively. In the second
set of experiments, total 196 surveillance spots randomly
scatter in the field, as shown in Figure 9(c) and Figure 9(d).
Total 11 and 15 sensors are placed, respectively.

Figure 10(a) shows the results of 4 random layouts with
4×4, 5×5, 10×10, and 15×15 spots. Figure 10(b) shows
the results of four random layouts with 20, 40, 100 and 200
spots. We can see that our cluster-based divide-and-conquer
algorithm consistently outperforms the greedy algorithm in
all layouts. The average performance gain is about 30%.

7 Trace-driven Simulations

We conduct extensive simulations using the real data
traces collected in the DARPA SensIT vehicle detection ex-
periments [8]. In the experiments, 75 WINS NG 2.0 nodes
are deployed to detect military vehicles driving through sev-
eral intersecting roads. We refer to [8] for detailed setup of
the experiments. The dataset used in our simulations in-
cludes the ground truth data and the acoustic signal energy
measurements recorded by 17 nodes at a sampling period of
0.75 seconds, when an Assault Amphibian Vehicle (AAV)
drives through a road. The ground truth data include the po-

sitions of sensors and the track of the AAV recorded by a
GPS device.

The data traces used in our simulations include the time
series recorded for 9 vehicles (AAV3-11). We use the data
trace of AAV3 as the training dataset for estimating the en-
ergy decay model. The estimated parameters of the signal
decay and noise models are: W0 = 0.51 (after normaliza-
tion), d0 = 2.6 m, k = 2, σ2 = 0.05. In our simulations,
the surveillance field A is a 30 × 30 m2 square area. The
bounds of false alarm rate and detection probability (i.e., α
and β) are set to be 1% and 90%, respectively.

As the real data are collected for moving targets, they
can not be directly used in our simulations. For each en-
ergy measurement, we compute the distance between the
sensor and the AAV from the ground truth data. When a
sensor makes a measurement in simulation, the energy is
set to be the real measurement gathered at the same dis-
tance to the AAV. We note that our simulations account for
several realistic factors. For instance, there exists consid-
erable deviation between the measurements of sensors and
the theoretic signal decay model estimated by the training
data. This deviation is due to various reasons including the
changing noise levels caused by wind.

We evaluate the performance of the cluster-based sensor
placement algorithm in two sets of simulations. First, 67
sensor are placed to cover 196 surveillance spots regularly
distributed at 14 × 14 grid points. Second, 10 sensors are
placed to cover 25 surveillance spots randomly scattered in
the field. We evaluate the coverage of each surveillance spot
as follows. For each surveillance spot, a target appears for
1000 times and the detection probability is calculated as the
ratio of the number of successful detections to the number
of appearances of the target. Figure 11(a) and Figure 11(b)
show the Cumulative Distribution Function (CDF) of the
detection probability under the two sensor placements, re-
spectively. From the figures, we can see that over 90% sur-
veillance spots are covered in both two placements, which
satisfies the required lower bound of detection probability.
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8 Conclusion

Data fusion is an effective technique for improving sys-
tem sensing performance by enabling efficient collaboration
among sensors. In this paper, we present an optimal sensor
placement algorithm and two divide-and-conquer heuristics
for fusion-based target detection. Although the optimal al-
gorithm can minimize the number of sensors in a placement,
it incurs high computational complexity in large-scale net-
works. By exploiting the unique structure of the problem,
the divide-and-conqueralgorithms can find near-optimal so-
lutions at significantly lower cost. We validate our approach
through extensive numerical results as well as simulations
based on the real data traces collected in a vehicle detection
experiments. Our best algorithm runs up to 7-fold faster
than the optimal algorithm while using in a comparable
number of sensors in the placement.
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