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Appliance-level power usage monitoring may help conserve electricity in homes. Several existing systems
achieve this goal by exploiting appliances’ power usage signatures identified in labor-intensive in situ train-
ing processes. Recent work shows that autonomous power usage monitoring can be achieved by supplement-
ing a smart meter with distributed sensors that detect the working states of appliances. However, sensors
must be carefully installed for each appliance, resulting in high installation cost. This paper presents Su-

pero – the first ad hoc sensor system that can monitor appliance power usage without supervised training.
By exploiting multi-sensor fusion and unsupervised machine learning algorithms, Supero can classify the
appliance events of interest and autonomously associate measured power usage with the respective appli-
ances. Our extensive evaluation in five real homes shows that Supero can estimate the energy consumption
with errors less than 7.5%. Moreover, non-professional users can quickly deploy Supero with considerable
flexibility.
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1. INTRODUCTION

Appliance-level power usage monitoring can improve the efficiency of electricity use in
homes. Research [McMakin et al. 2002] has shown that giving users detailed informa-
tion about their energy usage fosters conservation. Moreover, the information enables
utility companies to assess the electrical efficiency of homes by data mining. For in-
stance, by comparing the power usage of appliances across different homes, we can
rank the efficiency of the appliances and inform their owners to guide the replacement
or repairs of dated and inefficient appliances.

Previous systems for appliance-level power usage monitoring can be broadly clas-
sified into two categories. The first category, direct sensing, measures per-appliance
power usage by smart plugs [Jiang et al. 2009a] and smart switches [Insteon 2015].
As smart plugs are placed between the appliances and power outlets, they cannot be
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used for appliances hardwired to power lines, such as ceiling lights. Replacing nor-
mal wall switches with smart switches needs cumbersome hardwiring and possibly
expensive modifications to walls. In light of the installation overhead, direct sensing is
suitable only when permanent monitoring is desired. The permanent appliance-level
monitoring capability may be widely available in future smart homes due to adoption
of smart switches, plugs, and appliances. However, the complete realization of this vi-
sion may take a considerable time period (up to decades). At present and in the near
future, a system for swift one-off deployments for identifying power wastage and di-
agnosing inefficient appliances is still desirable. The second category, indirect sensing,
is less intrusive as it infers the working states and energy consumption of individual
appliances by detecting their power usage patterns [Hart 1992; Patel et al. 2007] or
ambient signals they emit during operation [Gupta et al. 2010; Kim et al. 2009]. How-
ever, these techniques require either labor-intensive in situ supervised training, due
to their dependency on the appliance characteristics [Hart 1992] and electrical wiring
[Patel et al. 2007; Gupta et al. 2010], or careful sensor installation for each appliance
[Kim et al. 2009], leading to high installation cost and reduced usability.

In this work, we aim to design a residential power usage monitoring system that
(i) uses only inexpensive and easy-to-install sensing devices, (ii) can be deployed by
non-professional users with straightforward instructions, and yet (iii) can work effec-
tively based on a small amount of easily obtained prior information without resorting
to supervised in situ training. Such a system must automatically detect the events of
interest, autonomously associate the events with the correct appliances, and finally
infer the power usage of each appliance. This brings three key challenges. First, in-
expensive sensors typically have limited sensing capabilities; hence, they can produce
false alarms or miss important events of monitored appliances. Second, when sensors
are installed in an ad hoc manner, multiple sensors may detect the same event, and
it becomes difficult to associate the event with the appliance that is the source of the
event. Lastly, to make the system practical, we must minimize the amount of prior
information that users will need to collect.

This paper presents the design and implementation of Supero – a system for
unsupervised power monitoring. Supero utilizes a smart meter to measure real-time
total household power consumption and inexpensive light and acoustic sensors that
are deployed in an ad hoc manner to detect interesting events of appliances. It uses
multi-sensor fusion to correlate data collected by power, light, and acoustic sensors and
reduce possible sensing errors. By using advanced unsupervised clustering algorithms,
Supero analyzes the signal signatures of different appliances and identifies the events
generated by the same appliance. Moreover, Supero autonomously associates the clas-
sified events with the appliances through an optimization framework that accounts
for environmental factors such as light signal propagation. Given a small amount of
easily obtained prior information such as sensor-appliance distances and rated pow-
ers of a small subset of the appliances, our unsupervised algorithms work together
to disaggregate the total household energy consumption into usage by the individual
appliances. To the best of our knowledge, Supero is the first practical ad hoc sensor
system that can accurately monitor appliance power usage without supervised train-
ing. Supero aims at swift one-off deployments for power usage diagnosis over short
time periods (e.g., a few days to weeks). As such, there should be little concern about
user privacy or any negative visual impact of the sensor installation.

We prototyped Supero using a network of TelosB/Iris motes [Memsic Corp. 2011] and
a smart meter, and evaluated it in five real homes of different sizes and with different
characteristics of electricity consumption. A 10-day evaluation in an apartment shows
that Supero can estimate the energy consumption with errors less than 7.5%. Our
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results also demonstrate that Supero can be quickly deployed by non-professionals
with considerable flexibility.

The major contribution of this paper is the application of advanced signal process-
ing and unsupervised learning algorithms to address various practical challenges and
realize a novel ad hoc sensor system for appliance-level power usage monitoring. As a
scientific value of this paper, the evaluation results extend our understanding on the
strategy and flexibility in sensor installation beyond the state-of-the-art strategy of
installing sensors dedicated to specific appliances.

The rest of this paper is organized as follows. Section 2 reviews related work. Sec-
tion 3 presents the overview of Supero. Section 4 presents the event detection and
multi-sensor fusion algorithms. Section 5 and Section 6 present the unsupervised
event clustering and autonomous appliance association algorithms, respectively. Sec-
tion 7 discusses estimating the power consumption of a class of high-power heating
appliances. Section 8 and Section 9 present our system implementation and evalua-
tion results, respectively. Section 10 concludes this paper.

2. RELATED WORK

This section discusses representative indirect sensing approaches for appliance power
usage monitoring, and identifies their differences from Supero. Early work in this area
[Hart 1992; Drenker and Kader 1999; Farinaccio and Zmeureanu 1999] utilizes per-
appliance power operating characteristics, measured at power panels, to disaggregate
the total energy consumption. These approaches need either in situ training [Hart
1992; Farinaccio and Zmeureanu 1999] or a comprehensive database of a priori power
characteristics of appliances [Hart 1992; Drenker and Kader 1999]. Jiang et al. [Jiang
et al. 2009b] present the experience of monitoring the power usage of a laboratory us-
ing smart plugs [Jiang et al. 2009a] and light sensors. In [Jung and Savvides 2010],
binary sensors are used to help deploy power meters to estimate energy breakdowns
in a building. Both of the studies [Jiang et al. 2009b; Jung and Savvides 2010] exploit
the tree topology of the subject power supply system. Patel et al. [Patel et al. 2007]
detect and classify electrical events based on transient noises generated by the appli-
ances. Their transient signatures are heavily influenced by the electrical wiring, which
results in the need for in situ training. In [Gupta et al. 2010; Taysi et al. 2010], appli-
ances are recognized based on their electromagnetic interference and acoustic signals.
Similarly, their work requires labor-intensive in situ training. A typical training pro-
cess involves switching on/off appliances, and collecting and labeling signals. Recently,
Ho et al. [Ho et al. 2011] use a thermal camera to detect the on/off states of appliances
and infer the per-appliance energy consumption. The thermal camera can be hard to
install and can raise privacy concerns in residential environments.

ViridiScope [Kim et al. 2009] is an appliance-level power usage monitoring system
closest in design to Supero. It features an autonomous regression framework that can
calculate per-appliance energy consumption based on the appliances’ working states
and the total household power trace. ViridiScope detects the working states by care-
fully installed sensors. For instance, light and magnetic sensors are placed in close
proximity to or attached to each appliance, and must not be triggered by other appli-
ances to ensure correct power estimation. Such an installation of the sensors is hard
for difficult-to-access appliances such as ceiling lights. In Supero, due to the use of
unsupervised learning and novel sensor fusion/association techniques, sensors are not
dedicated to specific appliances, and so can be deployed in an ad hoc manner, leading to
significantly lower installation costs. ViridiScope uses two acoustic sensors to monitor
a refrigerator compressor and reject ambient noises. In this paper, we propose a sys-
tematic approach for monitoring a range of acoustic appliances, which jointly processes
the data from all acoustic sensors to detect the appliances’ working states.
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3. OVERVIEW OF SUPERO

3.1. Design Objectives and Challenges

The goal of Supero is to produce appliance-level electricity usage reports over specific
time durations (e.g., a specified week) in a household. A report includes the energy
consumption of particular appliances, as well as when they were turned on/off. Supero
aims at achieving the following design objectives:

— It should be possible to deploy the sensors in an ad hoc and non-intrusive manner.
A non-professional should be able to deploy battery-powered wireless sensors with
intuitive instructions such as “place a light sensor with unobstructed view of the
light” and “place an acoustic sensor on top of the microwave.”

— We aim to reduce needed efforts for system configuration by avoiding the use of labor-
intensive training and extensive user inputs.

— Supero should be able to operate for a long enough time period (e.g., a few weeks)
without changing the sensors’ batteries, such that the generated report is meaning-
ful and informative enough for identifying wasteful energy usage and diagnosing
efficiency problems in appliances.

Four major challenges are brought by the above design objectives:

— In an ad hoc deployment, a sensor may pick up signals emitted by multiple appli-
ances, which can make it difficult to pinpoint the appliance that is consuming power.
For instance, a light sensor can sense light emitted by various sources, and an acous-
tic sensor in the kitchen can hear sounds from the exhaust fan, waste disposer, mi-
crowave, etc.

— Without careful installation, sensors typically suffer from sensing errors caused by
ambient noises and human activities. For instance, light sensors can report false
alarms when nearby window blinds are opened, and acoustic sensors may pick up
sounds such as human conversations that are unrelated to power consumption.

— Without in situ system training, unsupervised learning often requires more prior
information than supervised learning. In Supero, we strive to reduce the burden on
users to obtain the prior information required, while maintaining good monitoring
accuracy.

— To extend the system lifetime, wireless sensors should adopt lightweight sensing
algorithms and minimize the data transmissions, which, however, raises challenges
for accurate monitoring of appliance working states.

3.2. Motivating Observations

To meet the aforementioned objectives, Supero utilizes a household power meter and a
small number of inexpensive light and acoustic sensors that are deployed in the home
in an ad hoc manner. Based on an unsupervised approach, it does not require any in
situ system training. Rather, it leverages a small amount of prior information that
can be easily obtained by non-professional users. We now discuss several important
observations that motivate our approach.

Real-time total household power metering. Nowadays, the real-time total household
power consumption can be easily measured by installing a commercial off-the-shelf
smart meter (e.g., TED [Detective 2015] and AlertMe [Alertme 2015]) on the main
circuit panel. These meters are inexpensive and most of them can be easily installed
without hardwiring with the power lines. Moreover, as the coverage of smart grid
increases, the real-time total household power readings are increasingly available
to the homeowners, without resorting to a personal smart meter.
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Fig. 1. The Supero architecture.

Sensing modalities. According to a survey of U.S. Department of Energy [U.S. DoE
2006], the average distribution of electricity consumption in household is: heating
24%, lights 24%, air conditioners 20%, refrigerators 15%, dryers 9%, and electron-
ics 9%. As most heating appliances consume substantially more power than other
appliances, their consumption trace often can be identified from the real-time total
household power readings. Most lights, air conditioners, refrigerators and dryers
emit light and acoustic signals. As a result, on average, more than 90% power con-
sumption of a typical household can be captured by a combination of a smart meter
and a set of light and acoustic sensors.

Useful prior information. To avoid expensive in situ system training, Supero lever-
ages unsupervised learning techniques and a small amount of prior knowledge in-
cluding rough sensor-appliance distances and the rated powers of a small subset
of appliances. As the light/acoustic signal decays with the distance from the source
appliance, the distances between sensors and appliances provide important hints
for associating the detected events to the right appliances. Moreover, although the
rated power of an appliance often has small discrepancy with the actual power con-
sumption, it helps identifying the consumption trace of a small number of difficult-
to-detect appliances from the household power readings. Rated powers are often
available from the labels on the appliances or the user manuals. Moreover, there
exist a few publicly available databases (e.g., [TPCDB 2015]), which provide rated
power based on the appliance brand and model.

3.3. System Architecture

Supero consists of a number of wireless sensors distributed in the home being moni-
tored, a smart meter, and a base station for receiving information from the sensors and
the smart meter. In this work, we only consider light and acoustic sensors while other
sensing modalities such as infrared can be easily incorporated by Supero. Fig. 1 illus-
trates the two-tiered architecture of Supero. In the first tier, sensors sample signals
and detect events that are possibly caused by switching appliances on/off. On the de-
tection of an event, a sensor extracts various features of the event and sends an event
message to the base station. Further details of the first tier will be presented in Sec-
tion 4. The base station provides a graphic configuration interface that allows user to
input prior information such as sensor-appliance distances and appliances’ rated pow-
ers. Based on the collected data and the prior information input by the user, the base
station executes the following second-tier algorithms periodically (e.g., every week) or
upon an electricity usage report request:
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Multi-modal data correlation. The base station correlates sensor events and power
readings to differentiate between true appliance events and false alarms unrelated
to power consumption. (Section 4.4)
Unsupervised event clustering. Leveraging unsupervised clustering algorithms, we
can classify the events generated by an appliance into the same cluster, and esti-
mate the power consumption of the appliance by correlating the events with mea-
surements by the smart meter. (Section 5)
Autonomous event-appliance association. Supero associates the classified events
with their appliances based on features of the events and the prior information.
It then calculates the energy consumption of each appliance. (Section 6)

We note that sufficient appliance events are needed for accurate event clustering
and event-appliance association. Thus, Supero needs to collect data for a sufficient
time period (e.g., one or more days) before it can generate a latest electricity usage
report. Therefore, Supero is not designed to achieve real-time load disaggregation that
estimates the instantaneous powers of appliances in real time (e.g., every several min-
utes). However, Supero can provide an appliance-level electricity usage report at a fine
time granularity. For instance, it can report the energy consumption of an appliance
within a short time duration (e.g., several minutes) based on the event clustering and
event-appliance association results over the day that includes the short time duration.

4. EVENT DETECTION AND DATA CORRELATION

4.1. Light Event Detection

Light sensors sample light intensity periodically (4Hz in our implementation) and
detect light events by an exponential difference filter (EDF), which is a lightweight and
yet effective detection algorithm. By denoting x[n] as the sensor reading at time step
n, the exponential moving average, denoted by x̄[n], is computed by x̄[n] = α ·x[n]+(1−
α) · x̄[n − 1], where α ∈ (0, 1). By setting α = αs or α = αl where αs > αl, we have the
short-term and long-term moving averages denoted by x̄s[n] and x̄l[n]. The changes of
x̄s[n] and x̄l[n] capture the transient light changes and natural ambient light dynamics,
respectively. Given two positive thresholds ηL and τ , the sensor counts the number of
continuous samples satisfying |x̄s[n]− x̄l[n]| ≥ ηL and raises a detection once the count
exceeds τ . The sign of (x̄s[n] − x̄l[n]) indicates whether the appliance is turned on or
off. Whenever the sensor raises a detection, it reports a light event message including
current reading and the two averages. Moreover, it sets x̄l[n] = x̄s[n] to quickly adapt
the long-term average to the most recent light intensities. The sensor maintains a
Gaussian noise model based on the recent measurements when |x̄s[n]− x̄l[n]| < ηL.
The threshold ηL is continuously updated according to the noise model to achieve a low
false alarm rate, e.g., 5%. The settings of αs, αl and τ will be discussed in Section 8.
Fig. 2 shows the operation of the EDF on the readings of a photodiode when two lights
are turned on/off and a person moves around. It can be seen that the light events can
be accurately detected and the human movements do not trigger false alarms. Light
sensors may still pick up events unrelated to power consumption (which we refer to as
non-power events), such as those caused by human movements and the opening/closing
of window blinds, which will be identified by a multi-modal data correlation technique
given in Section 4.4 and then discarded.

4.2. Acoustic Event Detection

A challenge in acoustic sensing is that a high sampling rate is often required to extract
event features. Supero adopts a duty-cycled and adaptive sampling scheme to reduce
the energy consumed in the sampling and computation. For each second, an acoustic
sensor is active for 0.08 seconds only. Initially, it samples the signal at 1kHz when it
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is active. If the signal energy exceeds a threshold ηA, the sensor switches to a high
sampling rate of 12.5kHz to capture more details of the potential event. As shown in
Fig. 3, we use three lattice wave digital software filters to decompose the signal into
low-pass, band-pass, and high-pass components. The passbands of the three filters are
[0, 900Hz], [900Hz, 3000Hz], and [3000Hz,∞), respectively. The signal energy and zero-
crossing counts of the signals in the whole band and the three subbands are computed
as acoustic features and transmitted to the base station. The sensor remains in the
fast sampling mode as long as the signal energy is above ηA. We set a low threshold
ηA conservatively such that the acoustic sensors will not miss any sounds generated
by an appliance. Note that different from a light event, that refers to the switching
on/off of a light, an acoustic event refers to the sound heard by a sensor. Therefore,
the sensor will continuously report acoustic events while the sound persists. We refer
to the switching or phase change of an acoustic appliance as an acoustic transition.
Owing to intrinsic complexity of the acoustic modality, acoustic transitions are detected
by advanced learning algorithms running on the base station, as we will discuss in
Section 5.2.

4.3. Power Event Detection

As the total power consumption is critical for identifying appliance events and esti-
mating per-appliance consumption, real-time power readings by the smart meter are
transmitted to the base station for storage. Moreover, the base station applies EDF to
detect rapid increases and drops in the power measured. The thresholds in the EDF
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are tuned in offline experiments such that power changes as small as 50W can be al-
ways detected. In this paper, we assume that the appliances are not duty-cycled at
high rates, except those explicitly specified. In Section 7, we develop an approach for
monitoring high-power duty-cycled appliances (e.g., stove burner) and discuss how to
integrate the approach with Supero.

4.4. Multi-modal Data Correlation

Because of their limited sensing capability and the complexity of home environments,
the sensors can easily raise false alarms or miss important on/off events of appliances.
For instance, opening/closing a window blind can trigger the nearby light sensors, and
human conversations may trigger the acoustic sensors. To deal with these sensing er-
rors, we present a two-tiered fusion approach to correlate the light/power events and
acoustic transitions reported by different sensors. The first tier uses a short moving
window to correlate the events/transitions reported by multiple sensors of the same
modality. The events/transitions falling into the same window are regarded as gen-
erated by the same source. This is equivalent to an OR-rule for decision fusion and
can greatly reduce the overall miss rate. The second tier correlates the results of the
first tier with readings by the smart meter to remove false alarms. Specifically, if the
change in power on an event/transition is smaller than a conservatively low threshold
(e.g., 5W), the event/transition will be discarded. The evaluation in Section 9 shows
that this approach is effective in removing sensor false alarms.

5. UNSUPERVISED EVENT CLUSTERING

A novel feature of Supero is that it automatically classifies the detected events and
associates them with the right appliances, without any in situ system training. This
section presents our unsupervised event clustering algorithms. We first define the fol-
lowing notation:

— The appliances that cannot be easily or reliably detected by light and acoustic sensors
are referred to as unattended appliances (e.g., rice cookers). A power event detected
by EDF is considered caused by an unattended appliance if there is no simultaneous
light event or acoustic transition. Such power events are referred to as unattended
events. NL and NA are the total numbers of light and acoustic sensors. ML, MA, and
MU are the total numbers of light, acoustic, and unattended appliances, respectively.
∆k denotes the absolute power change on the kth light/power event or acoustic tran-
sition.

— xi is the feature of sensor i in an event. For the light modality, xi is the absolute
change of light intensity, which can be calculated from the current reading and the
long-term average; for the acoustic modality, xi includes signal energies and zero-
crossing counts in the subbands; for unattended power events, by letting the index
of the smart meter be 0, we have x0 = ∆k. For the light and acoustic modalities, the
feature vector is X = [x1, x2, . . . , xN ]T, where N = NL or NA.

5.1. Light Event Clustering

Because of the ad hoc deployment approach, the signal emitted by an appliance can
be sensed by multiple sensors. Moreover, according to the spatial distribution of the
sensors/appliances, the set of sensors that can detect an appliance is generally differ-
ent for each appliance. However, the feature vectors of the events caused by the same
appliance are clustered in the feature space. Fig. 4 shows the feature vectors measured
by two light sensors when three standing lights nearby the sensors were turned on and
off. We can clearly see that the feature vectors are clustered together.
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The light event features will be clustered into ML clusters. The Euclidean distance
between two feature vectors can be small when non-zero vector entries are measured
by completely different light sensors, leading to potentially false clustering results.
To solve the problem, Supero adopts a novel dissimilarity metric that incorporates
identity information of the sensors. Let bk,i ∈ {0, 1} denote the detection decision
made by light sensor i regarding event k, where bk,i = 1 means that sensor i de-
tects an on/off event of some appliance. The decision vector, denoted by Bk, is given
by Bk = [bk,1, bk,2, . . . , bk,NL

]T. The dissimilarity between two decision vectors Bk and

Bj is defined as d(Bk, Bj) =
∑NL

i=1 bk,i⊕bj,i−
∑NL

i=1 bk,i ·bj,i, where ⊕ represents exclusive

OR,
∑NL

i=1 bk,i⊕ bj,i is the number of sensors that can only detect either event k or j but

not both, and
∑NL

i=1 bk,i · bj,i is the number of sensors that can detect both events k and
j. Hence, d(Bk, Bj) quantifies the net difference between the sets of sensors observing
the two events. By denoting ‖Xk −Xj‖ as the Euclidean distance between the feature
vectors Xk and Xj for the events k and j, the new dissimilarity metric is defined as

d(Xk, Xj) =

{

‖Xk −Xj‖, d(Bk, Bj) < d0,
‖Xk −Xj‖+ δ, d(Bk, Bj) ≥ d0,

(1)

where d0 is a threshold and δ is a large constant that can separate the feature vectors
observed by very different subsets of sensors into different clusters. In our implemen-
tation, we set d0 = 2, i.e., two feature vectors should be classified into two distinct
clusters if the number of sensors that can only detect the first event is two more than
that for the second event. Supero adopts a merging-based clustering algorithm [Duda
et al. 2012], which is applicable to nonlinear dissimilarity measures, to group the fea-
ture vectors into ML clusters. Because of space limitation, here we omit the details of
the algorithm, which can be found in [Duda et al. 2012, p. 552].

Our experience shows that, the clusters with a small number of feature vectors often
affect the accuracy of clustering results. To improve the robustness of clustering, we
detect outliers as follows. If the size of a cluster is smaller than a small threshold, its
member feature vectors are regarded to be outliers, which are discarded and then the
clustering algorithm is re-executed. Outliers are produced by unidentified false alarms
and rarely used appliances and hence removing them has little impact on the accuracy
of overall energy consumption estimation. In our implementation, we set the outlier
cluster size to be 2, i.e., we ignore the appliances that generate two or fewer events in
a long period.
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5.2. Acoustic Event Clustering and Transition Detection

A challenge of acoustic event clustering is that many appliances, such as multi-speed
fans, have multiple phases of operation. Unfortunately, for many appliances, their
number of phases cannot be easily determined by the user. For instance, refrigera-
tors have different phases depending on the brand/model and when they were made.
Moreover, the number of actually used phases of an appliance, such as multi-speed
fans, strongly depends on the habit of the user and is, therefore, unpredictable. The
overlaps between sounds from different appliances and noises (e.g., shower and water
flush) further result in an unpredictable number of acoustic patterns. Consequently, it
is infeasible to assume a known and fixed number of clusters for the collected acous-
tic events. We propose the following approach based on advanced pattern recognition
algorithms to address the above challenges.

To reduce the computational overhead in clustering, Supero first applies principal
component analysis (PCA) to reduce the dimensionality of the feature vectors. For in-
stance, in one of our experiments, to keep a 99% sample variance, the dimensionality
can be reduced from 40 to 8 when 5 acoustic sensors are deployed. Supero then es-

timates the number of clusters as kopt = argmaxk
det(Sb(k))
det(Sw(k)) [Strehl and Ghosh 2003],

where Sb(k) and Sw(k) are the between-cluster and within-cluster variance matrices
when the specified cluster number is k. For each given k, the k-means algorithm is
executed to cluster the events and calculate Sb(k) and Sw(k). Based on the clustering
results with k = kopt, Supero detects acoustic transitions as the transitions between
clusters over time. Specifically, by dividing time into small windows, we count the num-
ber of feature vectors belonging to each cluster and identify the cluster with the largest
number of feature vectors (referred to as major cluster) in each small time window.
Then, the edges between two consecutive windows with different major clusters are
detected as the acoustic transitions.

We have developed a method to choose the window size to reduce the average mis-
classification rates in the windows. Specifically, the window size is selected to minimize
the product of the number of acoustic events and the sum of misclassification rates in
all windows. The misclassification rate in a window is the ratio of the number of fea-
tures that do not belong to the major cluster in the window to the total number of
features in the window. The rationale of jointly considering the number of acoustic
events in the minimization objective is as follows. The misclassification rate typically
decreases with the window size. Therefore, only minimizing the sum of misclassifica-
tion rates will mostly result in an unreasonable small window size.

As a simple example, Fig. 6 shows the results of using an acoustic sensor to detect
the phase changes of a 3-speed fan. Specifically, we place the acoustic sensor close
to the fan to record the 8-dimensional acoustic features as described in Section 4.2.
After applying PCA to the collected features, we have the major PC as shown by the

points in Fig. 6(b). Fig. 6(a) shows the det(Sb(k))
det(Sw(k)) versus the number of clusters k. From

the figure, we can see that, with k = 3, the ratio det(Sb(k))
det(Sw(k)) is maximized. Thus, the

number of clusters is estimated as 3. This indicates that the fan has three phases,
which is consistent with the number of speed levels used in the experiment. The k-
means algorithm with k = 3 classifies the event features into three clusters, which are
represented by different colors in Fig. 6(b). Finally, the vertical dashed lines in Fig. 6(b)
represent the transitions between phases as detected by our system.

5.3. Unattended Power Event Clustering

For the unattended power events, Supero adopts the Euclidean distance between the
power changes as the dissimilarity metric, and applies the k-means algorithm to clus-

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.



Unsupervised Residential Power Usage Monitoring using a Wireless Sensor Network A:11

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9 10

d
et
(S

b
(k
))
/
d
et
(S

w
(k
))

(a) k

-6

-4

-2

0

2

4

6

8

0 2 4 6 8 10

M
aj

o
r

P
C

(×
1
0
4
)

(b) Time (minute)

cluster 1
cluster 2
cluster 3

Fig. 6. Acoustic event clustering and transition detection for a 3-speed fan. (a) The number of phases is
identified as three; (b) Clustering and transition detection results, where Y -axis is the major principle com-
ponent (PC) and vertical lines represent the detected acoustic transitions.

ter the events into MU clusters. To simplify the discussion, in this paper, we assume
that the unattended appliances are not multi-phase. However, by extending the ap-
proach developed for the acoustic modality, Supero can be readily extended to address
multi-phase unattended appliances.

6. AUTONOMOUS APPLIANCE ASSOCIATION

Event clustering does not tell us which appliance triggers the events in a cluster. This
section associates the right appliances with the clusters by exploiting the correlations
between event features, sensing models, and other prior information. Based on the
association results, each appliance’s energy consumption can be calculated either by
integrating power over time or by a regression approach [Kim et al. 2009] for improved
robustness.

6.1. Light Cluster-Appliance Association

The decay of light intensity follows the power law, which can be exploited to associate
light appliances with clusters. We conducted extensive measurements to verify the
decay model in various household environments. Fig. 5 reports one set of results, which
plots the light intensity readings of a sensor versus the line-of-sight distance from a
light bulb in a 5 × 3.2m2 living room. Both axes of Fig. 5 are in log-scale. The linear
relationship in the figure conforms to the power law. Moreover, at a certain distance,
the sensor reading is proportional to the power of the light bulb. Therefore, we assume
that the intensity measured by sensor i, denoted by yi, is given by yi = β · Pj · d−α

ij ,
where Pj is the power of light j, dij is the line-of-sight distance between sensor i and
light j, α is the path loss exponent of the power law, and β is a scaling factor. α and β
can vary with the deployment environment, but have bounded ranges. For instance, α
typically ranges from 2.0 to 5.0.

The association between clusters and lights is represented by a matrix A =
[am,j]ML×ML

. If cluster m is associated with light j, am,j = 1; otherwise, am,j = 0. Let

µm denote the average of the feature vectors in cluster m. Hence, the ith component of
µm, denoted by µm,i, is the average change of light intensity measured by sensor i when
the corresponding light is turned on and off. By denoting Rm as the set of sensors that
make positive decisions in cluster m, we define the error caused by associating cluster
m with light j as em,j =

∑

i∈Rm

∣

∣β · Pm · d−α
i,j − µm,i

∣

∣, where Pm is the power of the light
that generates the events in cluster m. We estimate Pm as the median value of the
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Algorithm 1 Acoustic Transition-Appliance Association Algorithm

Input: acoustic transition set T , non-primarily monitored appliance set A
Output: acoustic transition-appliance association

1: C = ∅
2: for transition k in T do
3: find sensor i with the largest absolute change of signal energy in k
4: if sensor i is a primary sensor then
5: associate k with the corresponding primarily monitored appliance
6: else
7: C = C ∪ {k}
8: end if
9: end for

10: cluster the transitions in C using k-means algorithm based on their absolute power
changes, with |A| as the number of clusters

11: sort clusters according to their centers
12: sort appliances in A in terms of power
13: associate the sorted clusters with the appliances in A in order

absolute power changes (i.e., ∆k) of the events in cluster m. The total error is defined
as E(α, β,A) =

∑

∀m,∀j am,j ·em,j. Based on this error metric, we formulate the problem
as:

Light Cluster-Appliance Association Problem. Find α, β and A to minimize
E(α, β,A), subject to that ∀m,

∑

∀j am,j = 1 and ∀j,∑∀m am,j = 1.

The constraint in the above formulation means that A is a one-to-one mapping. To
solve the above problem, we first fix α and β and then find A to minimize E(α, β,A) un-
der the constraint, which is a linear assignment problem [Burkard et al. 2012]. We em-
ploy the Hungarian algorithm [Burkard et al. 2012] with a time complexity of O(M4

L)
to solve this sub-problem. Henceforth, the final solution can be found by enumerating
α and β in their possible ranges. Therefore, Supero automatically learns the values of
α and β in a specific deployment such that the association minimizes the discrepancy
between the measurements and the decay model. This is desirable since determining
their exact values through in situ calibration would be labor-intensive.

The association algorithm requires the sensor-appliance distances, which can be es-
timated by a sonic laser tape, arm span, or even rough visual estimation. As long as the
order of the distances is preserved in the estimation, the association result will most
likely remain unaffected. Hence, the association algorithm is robust to small errors in
the distance estimation. In the evaluation reported in this paper, all the distances were
visually estimated and we do not observe any association errors caused by inaccuracies
of the visual estimation.

6.2. Acoustic Transition-Appliance Association

Although acoustic signals follow power law decay, they are typically side effects of
the appliances’ operation. Hence, the scaling factor β can vary significantly across dif-
ferent acoustic appliances and the association algorithm developed in Section 6.1 is not
applicable to the acoustic modality. We now propose a heuristic association approach
to solve the problem. Sensor i is defined as the primary sensor of appliance j if the
absolute change of signal energy of sensor i is always the largest when appliance j
changes its state, and must not be the largest when any other appliance changes state.
Appliance j is defined as a primarily monitored appliance. The complement set of pri-
marily monitored appliances comprises non-primarily monitored appliances. Different
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from a dedicated sensor that can only sense one appliance, a primary sensor can sense
multiple appliances. The primary sensors can be identified by user intuition based on
the sensor and appliance locations. When a sensor cannot be accurately classified as
a primary sensor, it can be conservatively excluded from the set of primary sensors.
The pseudo code of the association is given in Algorithm 1. The algorithm first identi-
fies the acoustic transitions generated by primarily monitored appliances and directly
associates the transitions with the appliance (Line 3 to 5). The remaining acoustic
transitions are associated with the non-primarily monitored appliances according to
power (Line 10 to 13). Note that the extra prior information required by Algorithm 1
is the order of the non-primarily monitored appliances with respect to power, which is
used in Line 12.

6.3. Unattended Appliance Association

The power of the appliance that generates the unattended power events in cluster
m, denoted by Pm, is estimated as the median value of the absolute power changes of
those events. Supero associates the clusters with appliances by matching Pm’s with the
rated powers. The association is a linear assignment problem [Burkard et al. 2012],
which aims to minimize the total error of power. The error of associating cluster m
with appliance j is defined as em,j = |Pm − P ∗

j |, where P ∗
j is the rated power of j.

This optimization-based association is resilient to small deviations between the true
working power and rated power. We create a virtual background appliance to represent
all the appliances that consume little but variable power, such as laptop computers.
The association error of the background appliance is always zero, i.e., em,j = 0 for any
cluster m. In other words, the background appliance can be associated with any cluster
such that it will not affect the association of other unattended appliances.

For various acoustic appliances that have complex signal patterns, the sensors may
miss important events. For instance, the sound of a water boiler becomes detectable in
a couple of seconds after being turned on. The delayed acoustic event may be falsely
removed by the data correlation due to little associated power change. To address the
issue, we treat such an acoustic appliance as an unattended appliance as well and
then merge the acoustic transitions and power events. Supero is expected to become
more robust to event misses if more acoustic appliances are jointly monitored and their
rated powers are provided.

7. DUTY-CYCLED HEATING APPLIANCES

As discussed in Section 3.2, heating appliances such as stove burner and oven are
major electricity consumer in homes. Most modern heating appliances duty-cycle to
achieve the desired heat level. For instance, the top part of Fig. 7 shows the total
household power readings when a GE JB710ST2SS burner is working. As the cycle
can be short (e.g., several seconds), the EDF-based detector discussed in Section 4.3
may have poor performance. In this section, we propose a new approach to detect the
duty-cycling pattern from the total power readings and calculate the related energy
consumption.

Duty-cycled appliance rapidly switches between on and off, causing large variation
in power readings. Thus, we detect the duty-cycling pattern based on the standard de-
viation of the windowed power readings. By denoting P and γ ∈ (0, 1) as the power
and duty cycle of the appliance, the standard deviation of the power readings can be
derived as P

√

γ − γ2. We choose a threshold of P
√
0.05− 0.052 by conservatively as-

suming that the duty cycle is greater than 5%. When P is unknown, we can choose a
default value of 1.5kW for P because most duty-cycled heating appliances have a rated
power around 1.5kW [TPCDB 2015]. As a result, the default threshold is 0.327kW. To
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Fig. 7. Detecting stove burner. (1) Red curve: Total household power readings when a burner is working;
Blue curve: The reconstructed lower envelope. (2) Standard deviation of power readings and threshold-based
detection results (detection window size: 100 s).

suppress the false alarms caused by other high-power non-duty-cycled appliances, we
further require that the zero crossing count of the mean-removed power readings in
a window is at least 2. The bottom part of Fig. 7 shows the standard deviation of the
power readings in the top part and the detection result. We can see that the time du-
ration that the burner is working can be accurately detected. For the power readings
in a window that has a positive detection, we apply the k-means algorithm with k = 2
and then interpolate the power readings in the cluster with a smaller average to re-
construct the lower envelope of power consumption (i.e., the background power), as
shown in the top part of Fig. 7. With the lower envelope, it is easy to calculate the
energy consumption of the duty-cycled appliance. In typical U.S. homes, stove burner
and oven are the major duty-cycled heating appliances and they are often the compo-
nents of a range. Supero does not differentiate the duty-cycled heating appliances and
attributes all energy consumption to the range. To address multiple simultaneously
working duty-cycled appliances, the number of clusters, i.e., k, can be first determined
by the technique presented in Section 5.2.

The rapid duty-cycling can cause significant errors to the EDF-based power event de-
tection (cf. Section 4.3) and the second tier of the multi-modal data correlation (cf. Sec-
tion 4.4). Hence, when a duty-cycled appliance is detected, Supero disables these two
components and the power changes of the light/acoustic events in this period are set
to be missing values. Although such a design can cause errors to other appliances, it is
worthwhile to give priority to the high-power duty-cycled appliances since they usually
dominate the total power consumption of a household.

8. IMPLEMENTATION AND DEPLOYMENT

8.1. Prototype System Implementation and Settings

8.1.1. Sensors and Smart Meter. The sensors are implemented using TelosB and Iris
motes [Memsic Corp. 2011]. TelosB has a light sensor only while Iris has both light
and acoustic sensors. According to our lab tests, the light sensors on TelosB and Iris
have satisfactory isotropic sensitivity in a considerably large range of incoming an-
gles, which can mitigate the impact of sensor orientation on the accuracy of the power-
law-based association algorithm. The signal sampling and event detection algorithms
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described in Section 4 are implemented in TinyOS 2.1. The parameters used in these
algorithms are carefully tuned offline and then fixed for different deployments. The
sensors communicate directly with the base station. Such a single-hop topology suf-
fices for our deployments in three apartments and two multi-story houses. TED5000
[Detective 2015] is used to measure the total household power consumption.

8.1.2. Base Station. The base station is a TelosB mote connected to a laptop com-
puter. A daemon service on the computer retrieves real-time power readings from the
TED5000 and stores the received event messages. The data correlation, clustering,
and association algorithms are implemented in GNU Octave. The energy consump-
tion of an appliance is computed by integrating estimated power over time. Note that
this simple energy calculation method can be easily replaced by the regression-based
method developed in [Kim et al. 2009] to improve robustness.

8.1.3. Groundtruth Kill-A-Watt Meters. In order to evaluate the accuracy of Supero, we
built 14 power meters based on the P3 Kill-A-Watt (KAW) Model P4400 [P3 Inter-
national Corp. 2012] to provide groundtruth power usage data of individual appli-
ances. We connect two ADC channels of a Senshoc mote to two pins on the internal
circuit board of a KAW to sample the voltage and current signals. Senshoc is a TelosB-
compatible mote implementation with significantly reduced cost [Li et al. 2011]. The
Senshoc mote computes and transmits the real-time power usage data to the base sta-
tion for storage. Each modified KAW is carefully calibrated to output accurate power
readings.

8.1.4. Parameter Settings. The parameters of algorithms in Supero are determined by
offline experiments. Note that this process does not need to be repeated for different
deployment environments. All the deployments in our experimental evaluation use the
same parameter settings.

The first group of parameters are the coefficients of the EDF for power and light
event detection presented in Section 4, i.e. αs, αl, and τ . Their settings are determined
via a set of sensitivity analysis based on a data set collected in a controlled experiment
that will be detailed in Section 9.2. We now use the sensitivity analysis conducted
for power event detection to illustrate. Fig. 8 shows the false positive and negative
rates in detecting power changes larger than 30W versus the setting of a parameter
when the other two parameters are fixed. From Fig. 8(a), the detection performance
is insensitive to the setting of αs when αs ∈ [0.31, 0.4]. From Fig. 8(b), a satisfactory
trade-off between the two error rates can be achieved when αl ∈ [0.08, 0.12]. From
Fig. 8(c), when τ ∈ [3, 8], the detector misses no power events and gives false positive
rates lower than 0.1%. From the results in Fig. 8, we set αs = 0.31, αl = 0.08 and τ = 7.
We adopt a similar sensitivity analysis approach to determine the settings for light
event detection as αs = 0.18, αl = 0.074, and τ = 4.

The second group of parameters are d0 and outlier cluster size in the light event
clustering presented in Section 5.1. We set d0 = 2, i.e., two feature vectors should be
classified into two distinct clusters if the number of sensors that can only detect the
first event is 2 more than that of the second event. Moreover, we set the outlier cluster
size to be 2, i.e., we ignore the appliances that generate two or fewer events in a long
period such as several days. As other parameters can be either easily set (e.g., ηA for
acoustic sampling and δ in (1)) or autonomously adapted and/or optimized (e.g., ηL in
Section 4.1, α and β in Section 6.1), we omit the details here.
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Fig. 8. Sensitivity of power event detection performance to parameter settings.

8.2. System Deployment and Configuration

This section discusses the sensor deployment and initial configuration of Supero.1

8.2.1. Sensor Deployment Strategies. A necessary condition for correct clustering and
association is that every light/acoustic appliance can be detected, which is referred
to as the coverage requirement. A conservative deployment strategy is to place a sen-
sor close to each appliance. The number of sensors can be reduced by incrementally
placing sensors close to appliances, starting with those that emit dim light/acoustic
signals, until the coverage requirement is met. In our implementation, the coverage is
checked by switching appliances on and check the sensors’ LEDs that blink to indicate
detection. Note that this coverage check is different from supervised training processes
(e.g., [Patel et al. 2007]) that are typically conducted after system deployment and in-
volve labelling the events with the source appliances. After coverage requirement is
met, a few extra sensors may be deployed in regions without any sensors to provide
redundancy and improve robustness. The effectiveness of the above conservative and
incremental deployment strategies will be evaluated in Section 9.4.

8.2.2. User Inputs. First, Supero needs a list of the monitored appliances, which are
categorized as lights, acoustic, or unattended appliances. Supero also needs to know
whether an appliance has multiple working states although the exact number of the
working states is optional. Second, for the light modality, Supero requires roughly es-
timated line-of-sight distances between the sensors and lights. Third, for the acoustic
modality, Supero needs to know whether an acoustic appliance has a primary sen-

1An online video illustrating the system deployment and configuration can be found at https://youtu.be/
4sSZaaV0Kv4
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(a) Acoustic configuration (b) Rated power database

Fig. 9. Web configuration interface.

sor or not. All the non-primarily monitored acoustic appliances need to be sorted by
their powers. Such a ranking is usually straightforward to obtain, e.g., based on com-
mon sense. Finally, Supero requires the rated powers of the unattended appliances,
which can be obtained from the labels on the appliances or from a database of ap-
pliance rated powers. Supero only needs to be reconfigured occasionally, e.g., when
sensors/appliances are relocated.

8.2.3. Configuration Interface. We have developed a web configuration interface using
JavaServer Pages served by the base station computer to help the user input all the
required information. For instance, Fig. 9(a) shows the configuration for the acoustic
sensing, where the user can input the acoustic sensor IDs, appliance names, and other
required information. In addition, we leverage TPCDB [TPCDB 2015], which is an
online collaboratively edited database of appliance powers, to help the user input the
required rated powers. Currently, TPCDB comprises the information of more than 500
appliances. Fig. 9(b) shows our interface of querying TPCDB through its web service
API, where the user can find the rated power by appliance type, manufacturer and
model. The case studies presented in Section 9.6 shows that this interface can be easily
used by non-professionals.

9. EXPERIMENTAL EVALUATION

9.1. Deployments and Evaluation Methodology

We deployed and evaluated Supero in five real households. We first deployed Supero
in a 40m2 single-bedroom apartment (Apartment-1). As most of the appliances in
Apartment-1 can be monitored by groundtruth KAW meters, this deployment allows
us to extensively evaluate the accuracy of Supero. We then evaluate the sensor deploy-
ment strategies (cf. Section 8.2) in an 80m2 apartment (Apartment-2). In addition, we
deployed Supero in a one-story three-bedroom ranch house (House-1) to evaluate the
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portability of Supero to larger homes. Lastly, we recruited two homeowner volunteers
to deploy Supero in their homes, an apartment (Apartment-3) and a two-story house
(House-2). The Apartment-3 and House-2 deployments evaluate if non-professionals
can deploy Supero easily.

We compare Supero with two baseline approaches. The first baseline approach
(referred to as Oracle) uses appliances’ groundtruth states and then applies the
regression-based energy calculation method in ViridiScope [Kim et al. 2009]. In the
second baseline approach (referred to as Baseline), the state of each appliance is de-
tected by the sensor closest to the appliance and then the regression is applied. The
results of Baseline will help us understand the challenges brought by an ad hoc sensor
deployment.

9.2. Controlled Experiments in Apartment-1

9.2.1. Experimental Settings. The electrical appliances in Apartment-1 include 5 stand-
ing lights, a refrigerator, a water boiler, a 3-speed tower fan, a rice cooker, a bath fan,
a hair dryer, 3 laptop computers, and a WiFi router. The apartment uses a natural gas
range and a steam-based central heating unit that do not draw electrical power. The
deployment consists of 4 TelosB and 5 Iris motes. The Iris motes only detect acoustic
events. The laptops and router cannot be easily detected by sensors. However, as the
router’s rated power is known and it is always on, Supero can estimate its energy con-
sumption. The residual energy consumption is thus mainly attributed to the laptops.
The rice cooker, water boiler, and refrigerator are treated as unattended appliances,
because they do not emit light or stable acoustic signals. The water boiler and refrig-
erator are also monitored by acoustic sensors. Fig. 10 shows the floor plan and sensor
positions. The sensors are placed on the floor, a nearby table, chairs, and a toilet. The
positions of the sensors are not carefully chosen except for the tower fan, refrigerator,
and water boiler. Sensors are deployed close to these quiet appliances. As the bathroom
has complex sound patterns, two acoustic sensors are deployed and both of them can
hear all the appliances and the sound of water flowing in the bathroom.
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Fig. 11. Results of the controlled experiment in Apartment-1. (1) The top chart shows the power readings
labeled with ground truths of the events. (2) The bars in the second chart show the detections of the light
sensors. Two black bars at around the 35

th minute are false alarms (labeled “FA” in the chart) identified
by the multi-modal data correlation. Clusters are differentiated by colors and the overhead numbers are
the IDs of the associated light. (3) The third chart shows the major principle component given by PCA
and the detected acoustic transitions. The acoustic transitions of the same color are associated with the
same appliance. (4) The bottom chart shows the clustered and associated power events of the unattended
appliances.

Table I. Energy breakdown for the 1-hour controlled experiment in Apartment-1.

Appliance KAW Supero Oracle Baseline
Name Rating Power Energy Power Energy Error∗ Power Energy Error∗ Power Energy Error∗

(W) (W) (kW·h) (W) (kW·h) (%) (W) (kW·h) (%) (W) (kW·h) (%)
Light 1 150 152 0.0307 154 0.0309 0.7 152 0.0305 0.7 153 0.0310 1.0
Light 2 150 148 0.0298 150 0.0300 0.7 150 0.0300 0.7 151 0.0305 2.3
Light 3 150 151 0.0300 153 0.0304 1.3 153 0.0306 2.0 152 0.0307 2.3
Light 4 50 60 0.0211 61 0.0210 0.5 60 0.0210 0.5 62 0.0219 3.8
Light 5 100 102 0.0207 103 0.0205 0.5 100 0.0200 3.4 102 0.0206 0.5

Water boiler 1500 1472-
1524

0.0490 1479 0.0456 6.9 1481 0.0481 1.8 232 0.0289 41.0

Tower fan N/A 23-40 0.0031 N/A 0.0029 5.3 {23,
28,
35}

0.0028 9.7 30 0.0045 45.1

Rice cooker 500 498 0.0163 508 0.0168 3.1 507 0.0168 3.1 508 0.0163 0.0
Hair dryer N/A 442 0.0158 462 0.0150 5.1 459 0.0150 5.1 5 0.0018 88.6

Refrigerator N/A† 117-
146

0.0784 129 0.0841 7.3 122 0.0795 1.4 119 0.0848 8.2

Bath fan N/A‡ N/A N/A 60 0.0020 N/A 61 0.0020 N/A 55 0.0048 N/A
Router 12 12.5 0.0147 12 0.0142 3.4 13 0.0154 4.8 13 0.0154 4.8

3 Laptops N/A 37-63 0.0468 36 0.0430 8.1 31 0.4840 3.4 53 0.0472 0.9
Average error 3.6 3.1 16.5

∗Error is the relative error of energy, in percentage, with respect to the KAW measurements.
‡Bath fan is hardwired to the power line and hence no KAW is applied for it.
†Refrigerator’s rated power is not available. However, its power events can be correctly associated when a rated power of 80W to
400 W is given to Supero.
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9.2.2. Energy Estimation Accuracy. This section presents the results of a controlled ex-
periment, in which we intentionally turned on and off the appliances. It allows us
to understand the micro-scale performance of Supero. Fig. 11 shows the groundtruth
information, power readings, event detection and clustering results. Both of the two
light false alarms are identified by the multi-modal event correlation. No light event
is missed. All the light events are correctly clustered and associated. For the acoustic
modality, the non-power sounds such as a toilet flush and running tap water can be
identified by the multi-modal data correlation. From the third chart in Fig. 11, Supero
fails to detect the off event of the refrigerator and four events of the water boiler. The
miss detections of the water boiler are caused by the delay of sound. However, as dis-
cussed in Section 6.3, by jointly treating the refrigerator and water boiler as acoustic
and unattended appliances, these misses can be successfully recovered by the events
detected from the power readings. Other detected acoustic transitions including the
phase changes of the 3-speed tower fan can be correctly associated.

Table I shows the groundtruth measurements by KAWs and the estimation results
of the various approaches. Both Supero and Oracle can accurately estimate the power
and energy of each appliance. The average errors of energy consumption estimate are
lower than 4%. For a few appliances, Supero outperforms Oracle. This can be caused
by small errors in the groundtruth measurements by KAWs and the adoption of dif-
ferent energy calculation methods in Supero and Oracle. As Lights 1, 2, and 3 have no
nearby sensors, Baseline uses the groundtruth states of Lights 1, 2 and 3. For other
appliances, Baseline uses the closest sensor to detect the state of an appliance. As
Baseline does not perform data correlation and event clustering, it generates excessive
false alarms. For instance, as the hair dryer is very noisy, all the acoustic sensors raise
detections when the hair dryer is on, which causes false alarms for all the other acous-
tic appliances. Hence, Baseline yields wrong power and energy estimates for several
appliances. In fact, it is quite difficult to deploy dedicated acoustic sensors as they can
be easily triggered by any noisy appliances. Acoustic data from multiple sensors must
be jointly processed to produce correct detection results.

9.2.3. Impact of Distance Errors. This section evaluates the robustness of the association
algorithm in Section 6.1 with respect to the errors in the light-sensor distances. The
distances given to Supero are distorted as follows. First, we proportionally increase
all the distances. As the association algorithm can find a best fit scaling factor β, the
association remains correct even if we multiply the distances by 10. Second, we add
a random bias to a particular distance in each test. The result shows that if the bias
is within 70% of the true distance, the association remains correct. Finally, when we
exclude Node 2 from the evaluation, the results remain the same as long as the order
of the distances from Node 1 to Light 1 and Light 3 is consistent with reality, i.e., Light
1 is farther from Node 1 than Light 3. These results demonstrate that Supero is robust
to the errors in the light-sensor distances.

9.3. 10-Day Experiment in Apartment-1

We conducted a 10-day uncontrolled experiment, during which two residents led nor-
mal lives in their apartment. In this section, we first discuss our experiences and
learned lessons, and then present the evaluation results.

9.3.1. Experiences and Learned Lessons. We experienced the following three issues dur-
ing the 10-day experiment.

Power spikes. Power spikes are typical dynamics in power lines, which can be caused
by bad weather conditions and turning on/off appliances in the tested home and even
neighbor homes. Power spikes may cause errors in the appliance power estimation. In
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Fig. 12. PRR and power traces in 10 days.

the controlled experiment, we can see a few power spikes in the top chart of Fig. 11
when an appliance changes state. As we apply a guard region for computing the power
change as discussed in Section 4.4, the power spikes do not affect the results. However,
in the 10-day experiment, we observe excessive power spikes as shown in Fig. 12(b)
that can affect the calculation of power changes for the detected events. We suspect
that the power spikes observed on September 1 were caused by the thunderstorms
during the period of the experiment. An expanded view of the power trace on that day
is shown in Fig. 12(c). Almost all power spikes can be removed by a median filter with
a window size of 7 seconds. We also apply the median filter with the same setting to
the power traces collected in other experiments.

Router failures. The probe of TED5000 installed on the power panel sends real-time
readings through power lines to the TED5000 gateway, which was attached on a power
outlet and wired to the WiFi router to deliver readings to the base station computer.
However, the router failed twice during the 10 days, leading to disruptions to the col-
lection of power readings. We had to reset the router manually to restart the data
collection. We suspect that the failures were caused by bugs in the router. As power
readings are critical information to Supero, it is crucial to adopt a high-quality and
stable router. Moreover, when the base station fails to receive power readings for a
period of time, it can raise an alarm sound to remind the user to reset the router.

Communication performance. The quality of wireless links between the base sta-
tion and sensors can affect the performance of Supero. Each Supero sensor only sends
a packet when an event is detected while each KAW meter continuously transmits
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Table II. Energy breakdown during 7 days in Apartment-1∗

Appliance KAW Supero Oracle Baseline
Name E P E Error P E Error P E Error

(kW·h) (W) (kW·h) (%) (W) (kW·h) (%) (W) (kW·h) (%)
Light 1 4.14 154 4.17 0.5 152 4.11 0.9 152 4.11 0.9
Light 2 4.96 150 4.96 0.1 149 4.92 0.8 149 4.92 0.8
Light 3 6.15 155 6.24 1.4 155 6.25 1.7 155 6.25 1.7
Light 4 1.45 62 1.45 0.1 62 1.45 0.1 63 1.48 1.7
Light 5 0.39 105 0.39 0.2 105 0.39 0.7 110 0.41 5.5

Water boiler 0.48 1493 0.48 0.5 1491 0.48 1.6 0 0 100
Tower fan 0.15 30 0.21 50 26 0.17 17.9 24 0.24 66.2

Rice cooker 1.00 499 0.98 2.2 513 1.01 1.2 511 1.01 0.8
Hair dryer 0.09 467 0.07 19.2 467 0.09 0.4 3 0.02 73.2

Refrigerator 12.22 143 11.8 3.7 127 11.8 3.2 127 11.8 3.2
Bath fan N/A 50 0.12 N/A 57 0.17 N/A 0 0 N/A
Router 2.12 12 2.03 4.3 18 3.04 43.3 18 3.04 43.3

Average error 7.5 6.5 27.0
∗Error is relative error of energy with respect to KAW measurements.

groundtruth power usage to the base station by the attached Senshoc mote equipped
with a CC2420 radio. Therefore, we use the data traces of KAWs to examine the packet
reception ratio (PRR). Fig. 12(a) shows the PRR of a KAW during the 10 days. We
can see that the communication performance significantly degraded and fluctuated
between the evening of September 1 and the noon of September 3. As the residents
watched online videos over WiFi during this period, we suspect that the poor link
quality was caused by the interference from WiFi. We also examined the traces of
other KAWs. Similarly, their link quality degraded during this outage period. We were
able to repeat this phenomenon during an extra experiment using Senshoc motes and
two laptops that transferred a large file over WiFi. Although the channel of Senshoc
was set to 11, which is well separated from channel 6 used by WiFi, the PRR of Sen-
shoc still significantly degraded. However, we did not observe significant degradation
of PRR when experimenting with TelosB and Iris motes. Hence, we suspect that the
performance degradation is caused by the imperfect antenna design of Senshoc.

Nevertheless, after the 10-day experiment, we have enabled packet acknowledgment
and added retransmission mechanism to enhance the reliability of communication.
Due to the router failures and lost groundtruth information from KAWs, we only use
three data segments (“seg 1”, “seg 2” and “seg 3” shown in Fig. 12(a)). The total length
of the three segments is more than 7 days. The three data segments are concatenated
and then fed to the clustering and association algorithms.

9.3.2. Evaluation Results. Table II shows the results based on the seven days of data.
During this period, 713 false alarms out of a total of 859 light events were raised by
the light sensors, in which 703 of the false alarms are identified by the multi-modal
data correlation. All the remaining false alarms are identified as outliers by the event
clustering algorithm (cf. Section 5.1). In addition to the acoustic transitions generated
by the refrigerator, 60 acoustic transitions were detected. We see that Supero can ac-
curately estimate the energy consumption of lights. The tower fan was turned on and
off twice and all its transitions were detected. However, two bath fan transitions were
incorrectly associated with the tower fan, because Node 13 (i.e., the primary sensor for
the tower fan) heard loud noises in the living room at the same time. The two false
associations introduced errors in the energy estimates of the tower fan and hair dryer.
As shown in Table II, the average error of Supero is only 7.5%. The average error of Or-
acle is 6.5%. Therefore, the performance of Supero is close to that of Oracle. Baseline
still fails to estimate the energy consumption of several appliances due to excessive
false alarms, leading to an average error of 27%.
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Fig. 13. Sensor placements in Apartment-2. The numbers in the squares and circles are the sensor IDs of
TelosB and Iris, respectively. If a TelosB does not face upward, the arrow represents its facing direction.

(a) Node 2 (2nd
placement)

(b) Node 5 (4th
placement)

(c) Node 11 (d) Node 20

Fig. 14. Sensor installation examples. Sensors were placed on the ground, in the corner of walls, on the fan
of a range, and on a table.

9.4. Experiments in Apartment-2

This section evaluates the performance of Supero under different sensor placements.
We deployed 6 TelosB and 11 Iris motes in the doorway, living room, and kitchen of
Apartment-2, as shown in Fig. 13. As the two doorway lights are controlled by the
same switch, they are regarded as one light. As shown in Fig. 14, sensors were placed
or attached on the ground, walls, appliances, and furniture. Note that the positions of
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Table III. The set of sensors detecting a light (i.e., Rm) and cluster-
ing/association results

Light Red Green Blue Yellow Black
Dining {6} {6} {6} {6} {6}
Kitchen {3} {3} {3} {3} {3}
Doorway {5} {5} {1} {1} {1}
Living 1 {1,2,4} {1,2,4} {5} {5,3} {3}
Living 2 {1,2,4,6} {1,2,4,6} {5,6} {5,6} {6}
Result X X X X X

sensors were chosen by common sense without careful planning. We also varied the
positions of sensors in several trials and similar results were observed, as shown later
in this section. We first evaluated the light modality. We conducted five sensor place-
ment trials to monitor 6 lights including incandescent bulbs and fluorescent lamps.
Different colors of the TelosB motes in Fig. 13 represent different placements, which
are also labeled with the initials of color names, i.e., ‘R’, ‘G’, ‘B’, ‘Y’ and ‘BK’. In the
red and green placements, a sensor was placed close to each appliance. The blue and
yellow placements follow the incremental strategy to reduce the number of sensors
from 6 to 4. In the black placement, no sensor was deployed in the living area. All the
placements ensure the coverage requirement. We conducted a controlled experiment
to evaluate each placement. Table III shows the set of sensors that can detect the same
light (i.e., Rm defined in Section 6.1). The clustering and association results of the red
to yellow placements are correct. In the black placement, although all the events can
be detected, they cannot be correctly clustered. For instance, although Node 6 can de-
tect the near dining light (13W) and the farther “living light 2” (150W), the changes in
light intensity from them are similar, leading to incorrect clustering.

To further demonstrate the flexibility of sensor deployment, we deployed 11 Iris
motes and select four different subsets of them as sensor placements, which are S1 =
{All Iris motes}, S2 = {10, 12, 14, 15, 16, 18, 20}, S3 = {10, 12, 14, 19}, and S4 = {10, 14}.
All the subsets satisfy the coverage requirement. However, they represent very differ-
ent deployment strategies. S1 and S2 use redundant sensors and hence are conserva-
tive. S3 follows the incremental deployment strategy. As there is no sensor in the living
area, S4 does not follow any proposed deployment strategy. The acoustic appliances
covered in the experiment include an exhaust fan over the range, a waste disposer in
the sink, a dish washer, and a vacuum cleaner. During the experiment, we used the
vacuum cleaner in both the dining and living areas. The exhaust fan has two speeds
and Node 10 is designated as the primary sensor for the fan. For the other appliances,
the order (rather than the actual values) of their power consumption is provided to
Supero. The event detection and association results for S1, S2, and S3 are correct. For
S4, although all the acoustic events can be successfully detected, some of them cannot
be correctly associated. For instance, when the vacuum cleaner ran in the living area,
Node 10 received the highest signal energy, which is inconsistent with its designation
as the primary sensor for the exhaust fan.

The results in this section show that both the conservative and incremental deploy-
ment strategies can effectively ensure the sensing results. Moreover, the data correla-
tion and the unsupervised clustering/association algorithms adopted by Supero allow
the sensors to be deployed in an ad hoc manner with considerable flexibility.

9.5. Experiments in House-1

House-1 is a one-story three-bedroom ranch house with a living space of about 150m2.
Compared with Apartment-1, it has more lights of various types (incandescent bulbs
and standard/compact fluorescent lamps). The deployment consists of 7 TelosB and
3 Iris motes. The Iris motes detect both light and acoustic events. We conducted a
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Table IV. Energy breakdown in House-1∗

Appliance Groundtruth Supero
Name P E P E Error

(W) (kW·h) (W) (kW·h) (%)
Entry light 32 .0079 33 .0081 2.3
Hall light 38 .0112 38 .0109 1.9

Kitchen light 24 .0059 23 .0056 5.8
Dining light 76 .0149 77 .0113 24.6
Living light 43 .0041 41 .0040 3.1

Master bed light 33 .0065 31 .0061 6.0
Master bath light 22 .0054 21 .0052 3.6
Master bath fan 47 .0069 47 .0068 2.3
Guest bed light 29 .0071 29 .0056 21.2
Guest bath light 20 .0070 20 .0070 0.6
Guest bath fan 41 .0097 40 .0097 0.0
Stove burner 1356 .4603 1379 .4675 1.6

Water dispenser N/A N/A 140 .0518 N/A
Average error 6.1

∗Error is relative error of energy with respect to KAW measurements.

controlled experiment for more than 5 hours. Groundtruth information was manually
recorded and then rectified by checking the total power readings. In the experiment,
each light sensor could detect multiple lights, and 40 false alarms out of totally 127
light events were raised by the light sensors, where 38 of the false alarms were identi-
fied by multi-modal data correlation. The remaining two false alarms were identified
as outliers by the clustering algorithm. Table IV shows the results. For one of the din-
ing light events, a sensor monitoring the light missed the event, which resulted in a
misclassification and error in estimating the energy of the dining light. From the back-
ground cluster of unattended power events, we observed that an unknown appliance
with a power of 140W was turned on for one minute about every 10 minutes. The ap-
pliance turns out to be a hot water dispenser at a sink. Moreover, the dispenser caused
a missed detection of a guest bed light event, as the dispenser and the light were once
turned on/off at the same time. The average error of Supero is 6.1%.

9.6. System Usability

We now present two case studies on how easily Supero can be deployed and config-
ured by non-professionals. We recruited two homeowner volunteers to deploy Supero
in their homes including a single-bedroom apartment (Apartment-3) and a two-story
house with basement (House-2). We first introduced Supero and explained the de-
ployment strategies to the volunteers, which took less than one hour. They then in-
stalled the sensors and configured the system using our web interface without any
further instructions from us. For safety reasons, they did not install the TED5000.2 In
Apartment-3, the volunteer deployed 5 TelosB and 3 Iris motes to monitor all the ap-
pliances including 5 lights, a refrigerator, a microwave, and a fan. The deployment and
configuration took only about half an hour. In House-2, the volunteer took about one
hour to survey the appliances and another hour to install the sensors. He finally de-
ployed 12 TelosB and 10 Iris motes to monitor 12 lights, an exhaust fan in the kitchen,
a waste disposer, a dish washer, a refrigerator, a microwave, and three fans in three
bathrooms respectively. The base station on the first floor could reliably receive data
packets from sensors distributed on the two floors and basement. After the system
deployments, we conducted controlled experiments to evaluate the deployments and

2The TED5000 probe needs to be hardwired to electrical service wires to get powered and connected to the
gateway. Contactless power sensors [Patel et al. 2010], which are more friendly to non-technical end users,
can be used instead.
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Fig. 15. Battery voltage traces of TelosB and Iris.

configurations. We generated total power readings according to gathered groundtruth
to run the algorithms. The event detection, clustering, and association results of the
controlled experiments are correct in both deployments. These two case studies show
that the non-professional users were able to quickly deploy Supero and ensure correct
sensing results. We also find that both users preferred the conservative deployment
strategy discussed in Section 8.2.

9.7. System Lifetime

This section evaluates the lifetime of the battery-powered Supero sensors. In this ex-
periment, we force the CPUs of the motes to stay active even though they would oper-
ate in low duty cycles (e.g., ≤ 5% for Iris) in Supero. The radios are turned on only when
there are packets to transmit. The TelosB motes report their battery voltages to the
base station every minute. Fig. 15(a) plots the battery voltages of two TelosB motes
with Alkaline and Lithium batteries, respectively, over time. The projected lifetime
with Alkaline batteries is 79 days by conservatively setting the minimum operating
voltage (MOV) to be 2.2V although it is 2.1V in datasheet [Memsic Corp. 2011]. With
the high-capacity Lithium batteries, there is no observable voltage drop in one month.
For the tested Iris mote, we enforce it to always work in the fast sampling mode. It
piggybacks voltage reading to the acoustic feature packet. Fig. 15(b) plots the battery
voltage of the Iris with Alkaline batteries. The tested Iris kept working from the 4th to
the 9th day. Regression analysis shows that the projected lifetime is 40 days by conser-
vatively setting the MOV of Iris to be 2.2V, since the MOVs of the RF230 radio chip
and ATmega1281 8MHz MCU on Iris are 2.1V and 1.8V. We note that the lifetime can
be further extended by simply using Lithium batteries and duty-cycling the CPU of
motes.

10. CONCLUSION AND FUTURE WORK

This paper presents Supero – a sensor system for unsupervised residential power us-
age monitoring. In Supero, the multi-sensor fusion can effectively reduce sensing er-
rors in complex household environments. By using unsupervised event clustering al-
gorithms and a novel appliance association framework, Supero can autonomously es-
timate the power and energy usage of each monitored appliance. Extensive evaluation
in five real homes shows that Supero can be deployed with considerable flexibility and
provide accurate monitoring results.

Complementary to Supero, a few direct meters (e.g., the Zigbee-enabled KAW) can
be applied to handle certain other appliances that have highly complex light/acoustic
signal characteristics (e.g., TV) and power consumption profiles (e.g., furnace). In our
future work, we will explore the use of other sensing modalities (e.g., infrared, seismic,
and magnetic) to monitor these complex appliances. We will explore privacy-preserving
strategies to prevent information leakage due to the wireless communications in Su-
pero. Moreover, we will study the applications of Supero in non-residential environ-
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ments such as legacy public infrastructures without permanent appliance-level moni-
toring capability.
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