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Abstract—This paper studies the performance and resilience of
a linear cyber-physical control system (CPCS) with attack detec-
tion and reactive attack mitigation in the context of power grids.
It addresses the problem of deriving an optimal sequence of false
data injection attacks that maximizes the state estimation error
of the power system. The results provide basic understanding
about the limit of the attack impact. The design of the optimal
attack is based on a Markov decision process (MDP) formulation,
which is solved efficiently using the value iteration method. We
apply the proposed framework to the voltage control system of
power grids and run extensive simulations using PowerWorld.
The results show that our framework can accurately characterize
the maximum state estimation errors caused by an attacker who
carefully designs the attack sequence to strike a balance between
the attack magnitude and stealthiness, due to the simultaneous
presence of attack detection and mitigation. Moreover, based on
the proposed framework, we analyze the impact of false positives
and negatives in detecting attacks on the system performance.
The results are important for the system defenders in the joint
design of attack detection and mitigation to reduce the impact
of these attack detection errors.Finally, as MDP solutions are
not scalable for high-dimensional systems, we apply Q-learning
with linear and non-linear (neural networks based) function
approximators to solve the attacker’s problem in these systems
and compare their performances.

Keywords: Cyber-physical control system, power grid volt-
age control, Markov decision process, Q-learning, Neural
networks

I. INTRODUCTION

Critical infrastructures such as power grids are increasingly
becoming the target of cyber attacks as evidenced in recent
high-profile incidents, e.g., the BlackEnergy attack [2]. These
attacks injected false sensor data and/or control commands
to the industrial control systems and resulted in widespread
damage to the physical infrastructures and service outages.
These incidents alert us to a general class of attacks called false
data injection (FDI) against cyber-physical systems (CPS).
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Attack detection and mitigation are two basic CPS security
research problems, where the attack detection makes deci-
sions in real time regarding the presence of an attack and
attack mitigation isolates a detected attack and/or reduces its
adverse impact on the system performance. CPSs often have
various built-in anomaly detection methods that are effective
in detecting simple fault-like FDI attacks, such as injecting
surges, ramps, and random noises. However, critical CPSs
(e.g., power grids) are the target of sophisticated attackers
(such as hostile national organizations), whose attacks are
often well-crafted using detailed knowledge of the system
and its anomaly detection methods. To avoid detection, the
attacker can inject a sequence of attacks of small magnitude
and gradually mislead the system to a sub-optimal and even
unsafe state. However, due to the stochastic nature of the
physical and measurement processes of CPSs, as well as the
adoption of stringent, advanced attack detectors, the well-
crafted attacks can be detected probabilistically [3]. Upon the
detection, mitigation should be activated to isolate the attack
or maintain acceptable system performance in coexisting with
the attack.

Therefore, attack detection and mitigation are deeply cou-
pled and they jointly define the system resilience against
FDI attacks. On the one hand, a conservative detector may
miss attacks, causing system performance degradation due to
the mis-activation of attack mitigation. On the other hand,
an aggressive detector may frequently raise false positives,
triggering unnecessary mitigation actions in the absence of
attacks, while attack mitigation generally needs to sacrifice the
system performance to increase its robustness against attacks.
Thus, it is important to understand the joint effect of attack
detection and mitigation on the system performance, which
serves as a basis for designing satisfactory detection-mitigation
mechanisms. However, prior research on FDI attacks mostly
study attack detection and mitigation separately [4], [3], [5],
and falls short of capturing their joint effect on the system. The
studies on attack detection [4], [3] generally ignore the attack
mitigation triggered by probabilistic detection of attacks, and
its impact on the future system states. On the other hand, the
studies on attack mitigation [6], [7] assume that the attack
has been detected, and ignore the probabilistic nature of the
attack detection and any adverse impact of mis-activation or
false activation of mitigation due to missed detections (MDs)
and false positives (FPs).

As an early (but important) effort in closing the gap, we
jointly consider attack detection and mitigation in the system
defense and study their joint effect from both the attacker and
the defender’s perspectives. In particular, from the attacker’s
perspective, we investigate the largest system performance
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degradation that a sophisticated attacker can cause in the
presence of such a detection-mitigation defense mechanism.
Studying this largest performance degradation helps us quan-
tify the limit of attack impact. From the defender’s perspective,
we quantify the system performance degradation due to FPs
and MDs. The framework serves as an important basis for de-
signing and assessing attack detection and mitigation strategies
for critical infrastructures.

Although our analysis applies to general control systems,
the primary focus of this work is power grid controls. We
consider a general discrete-time linear time invariant (LTI)
system with a feedback controller that computes its control
decision based on the system state estimated by a Kalman
filter (KF). The LTI model is a widely used approximation
to model many control loops in a power grid, such as the
power grid’s voltage control system [8], [9] and the generator
swing equations [10]. Moreover, under the assumption of
direct current (DC) power flows, the observation mode can
also be linearized [11], [12]. These LTI models have been
widely used in power grid research literature [13], [14], [15].
For each time step, the controller uses a χ2 attack detector
[16], and activates mitigation actions upon detecting an attack.
Following the Kerckhoffs’s principle, we consider an attacker
who accurately knows the system and its attack detection
and mitigation methods. The attacker launches FDI attacks on
the sensor measurements over an attack time horizon, aiming
at misleading the controller into making erroneous control
decisions.

As the attack detection at each time step is probabilistic, we
formulate the attacker’s problem as a constrained stochastic
optimization problem with an objective of maximizing the
state estimation error over the attack time horizon, subject
to a general constraint that the energy of the attack signal is
upper-bounded. The attacker faces a fundamental dilemma in
designing his attack – a large attack magnitude will result in
high detection probability, thus nullifying the attack impact on
the system (due to mitigation) whereas a small attack magni-
tude increases stealthiness but may cause little damage. Thus,
the solution to this problem leads to an attack sequence that
strikes a balance between attack magnitude and stealthiness to
achieve the largest system performance degradation.

The main challenge in solving the aforementioned attacker’s
problem lies in the fact that the system state at any time
depends on all the past attack detection results, due to reactive
attack mitigation. Thus, the optimal attack at any time must
exhaustively account for all possible sequences of past detec-
tion results, which is computationally complex. Moreover, the
probabilistic attack detection introduces additional randomness
into the system dynamics. Our key observation to overcome
these issues is that the system dynamics is Markovian and the
attacker’s injections at any time can be computed based on the
knowledge about it, which captures the impact of all the past
detection results. To summarize, the main contributions of our
work are as follows:
• We solve the aforementioned attacker’s problem using a

Markov decision process (MDP) framework. In our formula-
tion, the sequential operations of probabilistic attack detection
and mitigation are mapped to the MDP’s state transition

probabilities. The MDP is solved by state space discretization
and using the value iteration algorithm [17].
• However, the value iteration algorithm is computationally

expensive, especially for high-dimensional systems. To address
this issue, we apply a Q-learning with linear and non-linear
(neural networks based) function approximation method to
solve the attacker’s problem in these systems.
• Based on the above framework, we consider the prob-

lem of designing the detection threshold from the defender’s
perspective. To this end, we derive analytical expressions
to quantify the cost of FPs and MDs. Based on these cost
functions, the attack detection threshold can be tuned to
balance the effects of FPs and MDs depending on the accuracy
of the mitigation signal.
• We apply our framework to the power grid voltage

control that regulates the pilot bus voltages by adjusting
the generators’ reactive power outputs. The attacker injects
false voltage measurements, aiming at deviating the pilot bus
voltages. Extensive simulations using PowerWorld show that
the optimal attack sequence computed using our approach
causes the maximum deviations of the pilot bus voltages.

The rest of the paper is organized as follows. Section II
reviews related work. Section III describes the system model.
Section IV formulates the research problem. Section V de-
scribes the MDP-based solution. Section VI analyzes the im-
pact of FPs and MDs on the system performance. Section VIII
presents the simulation results. Section IX concludes.

II. RELATED WORK

Most of the existing studies treat attack detection and miti-
gation problems separately. In the category of attack detection,
the performance degradation caused by stealthy attacks in a
noiseless LTI system has been analyzed [18]. However, non-
determinism and measurement noises experienced by real-
world systems provide an opportunity for the attacker to mas-
querade his attack as natural noises, thereby rendering attack
detection probabilistic. For a general LTI system, research
[3] and [4] studied the impact of stealthy FDI attacks, and
derived optimal attack sequences that can cause the worst
system performance degradation. The impact of such stealthy
FDI attacks on system efficiency and safety in the context of
power grids have also been investigated [19], [20], [21]. In
particular, the economic impact of FDI attacks were studied
in [19] and [20]. Reference [21] showed that the attacker can
drive the power system frequency to unsafe levels by injecting
a sequence of carefully-crafted FDI attacks. However, all these
studies [4], [3], [5], [19], [20], [21] ignore the attack mitigation
triggered by probabilistic detection of attacks and its impact
on the future system states and attack detection.

In the category of attack mitigation, preventive and re-
active mitigation strategies have been proposed. Preventive
mitigation identifies vulnerabilities in the system design and
removes them to prevent exploitation by attackers. For in-
stance, in a power grid, a set of sensors and their data links
can be strategically selected and protected such that a bad
data detection mechanism cannot be bypassed by FDI attacks
against other unprotected sensors and links [22], [23], [24].
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However, preventive mitigation provides static solutions only,
which do not address the adaptability of strategic attackers
against critical infrastructures. Thus, in addition to preventative
mitigation, it is important to develop reactive attack mitigation,
i.e., countermeasures that are initiated after detecting an attack.
Reactive attack mitigation is mainly studied under game-
theoretic settings, both in the context of general LTI systems
[6], [7] and power grids [25], [26], [27]. In particular, [25]
and [26] studied the mitigation of FDI attacks against power
grids as one-shot games, where as [27] formulated the repeated
interactions between the attacker and the defender’s actions
under a Markov game framework. However, the aforemen-
tioned studies on reactive mitigation assume that the attack
has been detected, and ignore the impact of uncertain attack
detection on the overall attack mitigation. In contrast, our
framework captures the interdependence between the attack
detection and mitigation, and their joint impact on the system’s
dynamics and performance.

III. PRELIMINARIES

The analysis in this paper is based on the general discrete-
time LTI model. Using this LTI model, we can develop a
general framework that applies to many control loops in the
power grid (please refer to Section III-A1), rather than being
specific to individual control loops and analyzing each of them
separately.

A. System Model

A block diagram of the system model is illustrated in Fig. 2.
We consider a general discrete-time LTI system evolving as

x[t+ 1] = Ax[t] + Bu[t] + w[t], (1)

where x[t] ∈ Rn is the system state vector, u[t] ∈ Rp is the
control input, and w[t] ∈ Rn is the process noise at the t-
th time slot. Matrices A and B denote the propagation and
control matrices, respectively. The initial system state x[0] and
process noise w[t] are independent Gaussian random variables.
Specifically, x[0] ∼ N (0,X) and w[t] ∼ N (0,Q), where
0 = [0, . . . , 0]T and X and Q are the covariance matrices. The
process described in (1) is observed through sensors deployed
in the system, whose observation at time t, denoted by y[t] ∈
Rm, is given by

y[t] = Cx[t] + v[t], (2)

where C ∈ Rm×n is the measurement matrix and v[t] ∼
N (0,R) is the measurement noise at time t with a covariance
of R. We assume that v[t] is independent of x[0] and w[t].
Moreover, we assume that the system in (1) is controllable
and the measurement process in (2) is observable.

From a practical point of view, the process noise models
the mismatch between the actual system state (following a
control action) and that predicted by the linear model in (1).
The observation noise is due to the sensor measurement noise.

In the context of power grids, these noises can be modeled as
Gaussian random variables1.

1) LTI Systems in Power Grids: .We provide examples of
a discrete-time LTI system, namely a power system’s voltage
control and generator swing equations. A power system con-
sists of a set of buses (nodes) to which generators and loads
are connected, and transmission lines connecting these buses.
Fig. 1 illustrates the IEEE 9-bus test system.

Voltage control: Power system voltage control refers to
maintaining the voltages of selected critical buses (called pilot
buses marked with “P” in Fig. 1) within safe operational limits
by adjusting the output voltage of the generator buses [8], [9].
It can be modeled as an LTI system described in Eqs. (1) and
(2). Specifically, the state vector x[t] refers to the voltages of
the pilot buses at time t, which should be maintained at a
nominal voltage denoted by x0. The control signal, which is
applied at the generator buses, corresponds to the change in
the generator bus voltages, i.e., u[t] = vG[t]−vG[t−1], where
vG[t] is a vector of the generator bus voltages. We clarify here
that we do not consider the detailed model of the generator
control loop at the generator bus explicitly. Instead, the control
actions in our model only considers the changes in the voltage
of the generator bus, while abstracting away finer details of
the generator control loop at the generator buses.

Under this model, the voltage control system can be ap-
proximated by an LTI system with A = I [9],[8]. The control
matrix B models the dependency between change of voltage
at the generator bus (i.e., the control signal) and the change
of voltage at the pilot buses (i.e., the state). This relationship
depends on the power flow within the network. Note that in
our work, instead of using the power flow equations to model
B (e.g., by ac or dc power flow equations), we used a data-
driven approach in which we estimate the matrix B from data
traces obtained in a PowerWorld simulation. More details on
estimating the matrix B will be presented in Section VIII.
Since the estimation cannot be perfect, the LTI model may
be inaccurate, though the inaccuracies are small and can be
captured as process noise. As the system state can be directly
measured by voltage sensors (e.g., phasor measurement units,
PMUs) deployed at the pilot buses, the measurement matrix
is an identity matrix, i.e., C = I. The system is bounded-
input bounded-output stable if the control algorithm satisfies
Bu[t] = α(x0−x[t]) for α ∈ (0, 1), and this control is adopted
in practical systems [8]. However, as the sensor measurements
are noisy, the controller cannot have perfect knowledge of the
system state x[t]. Rather, the state is estimated using the KF-
based technique described in (3). Based on the estimated state
x̂[t], the control can be computed as u[t] = αB−1(x0− x̂[t]).

Generator swing equations: The swing equations establish a
mathematical relationship between the angles of the mechani-
cal motor and the generated alternating current electricity [10].
The swing equations can be linearized and modeled as an LTI
system described by Eqs. (1) and (2) under the assumption of

1Although our analysis assumes Gaussian noise, in Section VIII, we
perform simulations with non-Gaussian noises and show the performance of
the algorithms developed under this setting. The non-Gaussian setting may
be important to model real-world sensor measurement noises, for instance,
noises from phasor measurement units (PMUs) [28].
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direct current (DC) power flow. For a power network consist-
ing of n generators, the state vector consists of 2n entries. The
first n entries are the generator’s rotor phase angles and the
last n entries are the generator’s rotor frequency. The control
inputs correspond to changes in mechanical input power to the
generators, and is responsible for maintaining the generator’s
rotor angle and frequency within a safe operational range.
The entries of the matrix A depend on the power system’s
topology (including the transmission lines’ susceptances) as
well as the generators’ mechanical parameters (such as inertia
and damping constants). The structure of the matrix B depends
on the type of feedback control used to restrict the rotor angle
frequency to within the safety range [10]. The measurement
vector y[t] under the DC power flow model includes nodal
real power injections at all the buses, all the branch power
flows, and the rotor angles. The observation matrix C can be
constructed based on the power system topology [11], [12].
These linearized control models have been widely used in
power grid research literature [13], [14], [15].

2) Power Grids Dynamic State Estimation Using Kalman
Filter: .We consider Kalman filter (KF), which is widely used
for state estimation of a dynamic system, and adopted in power
grids’ transmission [29] and distribution grids [30] as well. The
KF works as follows:

x̂[t+ 1]=Ax̂[t]+Bu[t]+K(y[t+ 1]−C(Ax̂[t]+Bu[t])),
(3)

where x̂[t] and x̂[t+1] are the estimates of the system states at
the t−th and t+ 1−th time slots, respectively, K denotes the
steady-state Kalman gain given by K = P∞CT (CP∞CT +
R)−1, and the matrix P∞ is the solution to the algebraic
Riccati equation P∞ = AP∞AT +Q−AP∞CT (CP∞C+
R)−1CP∞AT . We denote the KF estimation error at time t
by e[t] = x[t]− x̂[t].

Note that in this work, we focus on the estimation of a
sequence of steady states of the power system. Compared to
single snapshot-based weighted least square (WLS) method
(i.e., the traditional state estimation algorithm [11]), dynamic
state estimators like Kalman filter exploit the valuable histor-
ical information of the system states to reduce the compu-
tational complexity involved in computing the state estimate
(i.e., observe that the evolution of the state estimate is linear
(3)).

B. Attack Model, Detection, and Mitigation

1) Attack Model: .Modern-day critical infrastructure sys-
tems extensively use ICT for their operation. For instance, in
a power grid, the remote terminal units (RTUs) and many
other field devices are connected by the Internet protocol
(IP) [31]. Additionally, in a power grid, the sensors (such
as the voltage and current measurement units) are spread
over a large geographical area, making their measurements
vulnerable to physical attacks. Such vulnerabilities can be
exploited to launch attacks and disrupt the normal power grid
operations.

In this paper, we follow Kerckhoffs’s principle and consider
an attacker who has accurate knowledge of the targeted CPCS
and read access to the system state. Such knowledge can
be obtained in practice by malicious insiders, long-term data
exfiltration [32], or social engineering against employees,
contractors, or vendors of a critical infrastructure operator
[33]. Specifically, we assume that the attacker knows the
matrices A,B and C, as well as the operational details of the
KF and the system’s method of anomaly detection (including
the detection threshold). In addition, the attacker also has read
and write accesses to the system measurements, e.g., using
PLC rootkits [34].

We consider FDI attacks on the system sensors. The
compromised observations, denoted by ya[t], are given by
ya[t] = y[t]+a[t], where a[t] ∈ Rm is the attacker’s injection.
To model the attacker’s energy constraint, we assume that the
norm of the injection, ‖a[t]‖, is upper-bounded by a constant
amax, i.e., ||a[t]|| ≤ amax. Denote by A the set of all feasible
attack vectors that satisfy the above energy constraint.

2) Attack Detection and Mitigation: .We assume that the
controller uses the χ2 detector [16] to detect the attack,
which has been widely adopted in security analysis of LTI
systems [4], [3]. The χ2 detector computes a quantity g[t] =
r[t]TP−1r r[t], where r[t] is the residual given by r[t + 1] =
ya[t + 1] − C(Ax̂[t] + Bu[t]) and Pr = CP∞C + R is a
constant matrix that denotes the covariance of the residual
in the steady state. The detection result of the detector is
denoted by i[t] ∈ {0, 1}. The detector declares an attack if
g[t] is greater than a predefined threshold η. Specifically, if
0 ≤ g[t] ≤ η, i[t] = 0; otherwise, i[t] = 1.

Based on the detection result, the controller applies a reac-
tive mitigation action. If the χ2 detector’s alarm is triggered,
the controller forwards a modified version of the observation
ya[t]−δ[t] to the KF, where δ[t] ∈ Rm is an attack mitigation
signal; otherwise, the controller directly forwards ya[t] to the
KF (ref. Fig. 2). Thus, the controller’s operation is

yf [t] = ya[t]− i[t]δ[t]. (4)

With the controller’s mitigation action, the KF estimate is

x̂[t+1]=Ax̂[t]+Bu[t]+K(yf [t+1]−C(Ax̂[t]+Bu[t])). (5)

The mitigation signal δ[t] can be generated using existing
mitigation approaches [35], [36], [37], [38]. Specifically, once
the attack is detected, a conservative mitigation approach is to
ignore the sensor measurements completely, and drive the sys-
tem based only on the model. For instance, the estimated state
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x̂[t+ 1] = Ax̂[t] + Bu[t] can be which is subsequently used
to compute the control decisions. Alternately, upon detecting
an attack, the controller can ignore the sensor measurements,
and instead make an educated guess to obtain the true sensor
measurements [36]. For instance, in power grids, accurate real-
time load forecasts can be computed using techniques such
as regression models, neural networks and statistical learning
algorithms. The forecasted measurements can be used to drive
the Kalman filter estimates. The operator can also run a secure
state estimation algorithm (e.g., [37], [38]) to obtain a reliable
estimation of the system state in the presence of sensor attacks.

The main focus of this paper is not the design of the miti-
gation strategy, but to understand the impact of the detection-
mitigation loop on the optimal attack strategy. Thus, in this
paper, we do not focus on a specific mitigation approach.
Instead, we design a generic framework that admits any
mitigation signal. In Section VIII, our simulations are based
on a perfect mitigation strategy in which the controller can
precisely remove the attack signal, as well as a practical
mitigation strategy in which the mitigation signal is a noisy
version of the attack signal.

Combining (1), (2), (4) and (5), we obtain the dynamics of
the KF estimation error with attack mitigation as

e[t+1] = AKe[t]+WKw[t]−Kam[t+1]−Kv[t+1],
(6)

where am[t+1] = a[t+1]−i[t+1]δ[t+1],AK = A−KCA
and WK = (I − KC). Further, we have E[e[0]] = 0 and
E[e[0]e[0]T ] = Pe = (I−KC)P∞.

IV. PROBLEM FORMULATION

Under the Kerckhoffs’s assumption about the attacker’s
knowledge, we analyze attack strategies that can mislead the
controller into making erroneous control decisions. This is
accomplished indirectly by increasing the estimation errors.
For a given attack detection threshold η and mitigation strategy
{δ[t]}Tt=1 over a horizon of T time slots, the optimal attack
sequence that maximizes the cumulative sum of KF’s expected
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Fig. 3. Attack impact for the voltage control problem.

square of norm of the estimation error over the horizon is given
by the following optimization problem:

max
a[1],...,a[T ]

T∑
t=1

E[‖e[t]‖2] (7)

s.t. KF error dynamics (6), ‖a[t]‖ ≤ amax,∀t.

Maximizing the KF estimation error implies that the controller
no longer has an accurate estimate of the system state. In
systems that use KF for state estimation (such as power grid’s
voltage control etc.), control input computed based on inac-
curate/wrong system state estimates can adversely affect their
performance and even result in catastrophic safety incidents.
Moreover, the cumulative sum in the objective function implies
that the attack has a sustained adverse impact on the system
over the entire attack time horizon. We note that similar
cumulative metrics have also been widely adopted in control
system design to assess the performance of controllers [39].

We now illustrate the relevance of (7) to power grid’s
voltage control. Fig. 3 shows the impact of an attack that
is able to bypass the χ2 detector (and consequently the
controller’s mitigation steps) on the pilot bus voltage. In this
figure, the dotted line indicates the voltage setpoint, and the
solid lines show the evolution of the system state x[t] and
estimate x̂[t]. The gap between the two curves measures
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the KF estimation error e[t]. As evident from the figure, if
the attacker manages to increase the KF’s estimation error
using a carefully constructed attack sequence, he can cause
a significant deviation of the system state from the desired
setpoint. Interestingly, the estimate x̂[t] is close to the setpoint
x0 that misleads the controller into believing that the desired
setpoint has already been achieved, while the actual pilot bus
voltage continues to deviate.

Intuitively, to cause a significant impact, the attack magni-
tude must be large. But at the same time, it is important that
the attack bypasses the controller’s detection – otherwise the
attack will be mitigated. Thus, the solution of the optimization
problem (7) must strike a balance between the attack magni-
tude and stealthiness. In the following section, we solve the
optimization problem (7) using an MDP-based approach.

V. MDP SOLUTION

In this section, we cast the optimization problem (7) to an
MDP problem [17] and solve it using value iteration.

Markov Decision Process Model: A state in the MDP
corresponds to the KF filter estimation error e[t] and the ac-
tions correspond to the attacker’s injection a[t]. Our approach
is to map the KF error dynamics (6) to the state transition
probabilities of the MDP, and the objective function of (7)
to the MDP’s long-term expected reward. The mathematical
details of the MDP is presented next.

Formally, the MDP is defined by a tuple (E ,A, T , R), where
E ⊆ Rn is the state space of the problem corresponding to the
set of all possible e[t]. A is the action space of the attacker;
T (e,a, e′) is the probability of transiting from state e to e′

(where e, e′ ∈ E) under an action a ∈ A of the attacker;
formally, T (e,a, e′)

.
= P(e[t+1] = e′

∣∣e[t] = e,a[t+1] = a).
R(e′,a, e) is the immediate expected reward for the attacker
when it takes an action a ∈ A in state e ∈ E .

MDP state transition probabilities: We adopt the following
approach. First, we compute the quantity P(elb ≤ e[t + 1] ≤
eub
∣∣e[t] = e,a[t+1] = a), for any elb, eub ∈ Rn and elb ≤ eub

from (6). Then, we use the fact that for a random variable X,
P(X = x) ≈ F (−∞,x+ε)−F (−∞,x−ε)

2ε , where F (x1, x2) =
P(x1 ≤ X ≤ x2) and ε > 0 is a small positive quantity. The
result is stated in the following lemma:

Lemma V.1: For a given e[t] = e and a[t + 1] = a the
quantity P(elb ≤ e[t+ 1] ≤ eub

∣∣e[t] = e,a[t+ 1] = a) can be
computed as the sum of the following terms:

P
([

0
elb − y2

]
≤ X ≤

[
η

eub − y2

])
+ P

([
η

elb − y2 −Kδ

]
≤ X ≤

[
∞

eub − y2 −Kδ

])
. (8)

In (8), X ∈ Rn+1 is a concatenated variable given by X =[
Y (WKw[t]−Kv[t+ 1])T

]T
, y2 = AKe−Ka, and δ is

the mitigation signal.
The proof of Lemma V.1 is omitted here and presented in
Appendix A of [1].

MDP reward: We now map the objective function of (7)
to the MDP reward function. Accordingly, the immediate

expected reward of the MDP is given by R(e,a, e′) =∫
e′∈E T (e,a, e′)||e′||2.

MDP policy and state value function: The solution to
the MDP corresponds to a policy π, which is a mapping
from a state to an action. The state value function of
the MDP for a given policy π is defined as V π(e) =

Eπ
[∑T

t=1 ||e[t]||2
∣∣e[0] = e

]
.

Optimal policy: The optimal policy π∗ maximizes the total
expected reward, π∗ = arg maxπ V

π(e),∀e ∈ E , and the
optimal value function is defined as V ∗(e) = V π

∗
(e).

Solving the MDP: MDPs can be solved by value/policy
iteration methods for discrete systems [17]. However, we
study discrete-time CPCS with continuous system states. For
instance, the voltages in the voltage control system are con-
tinuous variables. Hence, the MDP described does not admit
the value iteration method directly. To address this issue, we
define a discretized MDP by discretizing the state space of
the original continuous MDP. The discretized MDP admits
a deterministic optimal policy (i.e., a pure strategy) [17],
(Theorem 4.4.2), which be can computed using the value
iteration method (the convergence of value iteration follows
from the fact that the updates of the value iteration algorithm
form a contraction mapping [17], Theorem 6.3.1). The optimal
policy of the discretized MDP can then be used as a near-
optimal solution to the continuous MDP [40]. (Please also
refer to our subsequent arguments in bullet point 2.) The
details of the discretization procedure are omitted here and
can be found in Appendix B of reference [1]. We make some
remarks on the MDP formulation:

1. Note that to execute the MDP policy, the attacker requires
the knowledge of the Kalman filter estimation error e[t],
which in turn depends on the system state x[t]. The
attacker can use a separate Kalman filter to track x[t],
since he can access the original sensor measurements. To
simplify our analysis, we assume that the attacker can
directly observe x(t) and e(t). Under this assumption,
the attacker is advantageous. Thus, our analysis is con-
servative from the perspective of the system defender,
which is often acceptable for safety-critical systems. We
verify the validity of this assumption using simulations
for voltage control in the IEEE-9 bus system and present
the result in Section VIII.

2. The optimal cost of the discretized MDP is guaranteed
to lie within a bounded distance from the optimal cost of
the original MDP [40]. As the discretization is finer, the
discretized MDP approaches to the original MDP more
closely.

3. Let A and D denote the size of the action and the
state space of the discretized MDP. The computational
complexity of implementing the value iteration algorithm
is O(AD) [17]. We note that the number of discretiza-
tion levels of the state space D is an important factor.
Moreover, the algorithm requires the value function to be
stored for each discretized state, making it challenging to
implement in high-dimensional systems. To address this
issue, we present a Q-learning algorithm with function
approximation in Section VII, which is more suited
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Fig. 4. Attack detection probability and the expected attack impact (immediate
expected reward of MDP) for different attack magnitudes.

for application in these systems. We also compare the
computational overhead of the two algorithms.

A. Attack Magnitude and Stealthiness

We now illustrate the structure of the MDP solution using
a numerical example. In Fig. 4, we plot the attack detection
probability and the attack impact computed in terms of the
MDP’s immediate expected reward for different values of
attack magnitude a. The system parameters are n = m = 1,
A = 1, C = 1, Q = 1, R = 10, η = 10 and δ = a. It
can be observed that while the probability of detection is low
for an attack of small magnitude, it also has little impact.
On the other hand, the probability of detection is high for
an attack of large magnitude, and consequently the expected
attack impact is also low. The optimal attack lies in between
these two quantities. In this example, the optimal attack that
maximizes the expected immediate reward has a magnitude of
10, and a detection probability of 0.3. Thus, the MDP solution
strikes a balance between attack magnitude and stealthiness,
resulting in maximum impact2.

VI. COSTS OF FALSE POSITIVES AND MISSED
DETECTIONS

In this section, we use the framework established in Sec-
tion IV and Section V to quantify the costs of false positives
and missed detections. We use the cumulative state estimation
error (objective function of (7)) as the cost metric. To quantify
these costs, we consider an LTI system with an oracle attack
detector as the reference system. The oracle detector achieves
perfect detection capability, that is, it generates no FPs and
MDs. The cost of FPs is then the additional cost incurred,
compared with the reference system, by wrongly triggered
mitigations in the LTI system of Fig. 2 (defined by (1) and (2)
with the χ2 detector and mitigation modules), compared with
the reference system. The cost of MDs is the additional cost
incurred by unmitigated attacks in the LTI system of Fig. 2.

Cost of FPs: To quantify the cost of FPs, we compute
the state estimation error (objective function of (7)) in the
following two systems: (i) the LTI system of Fig. 2 under
no attacks, i.e., a[t] = 0, ∀t; (ii) the reference LTI system
with a[t] = 0, ∀t. Under setting (i), all the alarms of the χ2

detector correspond to FPs, which wrongly trigger a mitigation
action. Since the mitigation signal is imperfect, it leads to
an increase in the estimation error. The difference between

2Strictly speaking, MDP solution maximizes the long term expected reward.
For the ease of illustration, in this example we only considered the immediate
expected reward.

the state estimation errors of the two systems quantifies the
performance degradation due to FPs.

Cost of MDs: To quantify the cost of MDs, we compute
the state estimation errors in the following two systems: (i) the
LTI system of Fig. 2 with optimal attacks (ii) the reference
LTI system with optimal attacks. The difference between
the state estimation errors of the two systems quantifies
the performance degradation due to MD, i.e., the cost of
MD. In particular, the optimal attacks derived in Section V
characterizes the worst-case performance degradation due to
MDs.

It is hard to characterize the state estimation error (objective
function of (7)) analytically for a generic LTI system. Never-
theless, for n = m = 1, we present a recursive method to
compute the state estimation error under any attack sequence
a[t],∀t. We let Bt = {0, 1}t denote the set of all binary combi-
nations of length t, and fi[1:t](b) = P(i[1:t] = b),∀ b ∈ Bt de-
note the pdf of i[1:t]. Additionally, we introduce the following
notations to denote the conditional random variables ec[t] =

e[t]
∣∣i[1:t], rc[t] = r[t]

∣∣i[1:t−1], e(0)
c [t+1] = e[t+1]

∣∣{i[1:t], i[t+
1] = 0} and e

(1)
c [t + 1] = e[t + 1]

∣∣{i[1:t], i[t + 1] = 1}. The
cumulative state estimation error in the LTI system of Fig. 2
can be computed as E[||e[t]||2] =

∑
b∈Bt fi[1:t](b)E[||ec[t]||2],

where the terms E[||ec[t]||2] can be evaluated recursively as

E[(e(i)
c [t+1])2]=Var(e(i)

d [t+1])+

∫ bi
ai
((E

[
e
(i)
d [t+1]

]
)2fy(y))∫ bi

ai
fy(y)

, (9)

where i = 0, 1. In (9), E[e
(i)
d [t+1]] and Var

(
e
(i)
d [t+ 1]

)
are

the mean and variance of the variable e
(i)
d [t+ 1]. They can be

computed using the result presented in Appendix A-Part I. The
complete derivation of (9) can be found in Appendix A-Part
II.

Using the result above, the cost of FPs can be computed
by setting a[t] = 0,∀t (i.e., no attacks) and the cost of MDs
under any non-zero attack sequence a[t],∀t by injecting the
appropriate attacks. The worst-case cost of MDs under the
optimal attacks (computed as in Section V) can be directly
derived from the value function V (ξi) at the convergence of
the value iteration algorithm.

In Section VIII-B, we present simulation results, based
on the derivations in this section, to illustrate the cost of
FPs and MDs under different attack detection thresholds and
mitigation strategies. We also provide guidelines to tune the
attack detection threshold based on this quantification.

VII. ALGORITHM IMPLEMENTATION IN
HIGH-DIMENSIONAL SYSTEMS

The value iteration algorithm to solve the MDP (as pro-
posed in Section V) has high computation overhead for high-
dimensional systems. Let Ξ denote the discretized version of
the original state space E , where Ξ = {ξ1, . . . , ξD}, D is the
total number descritization levels. Then, the value iteration
algorithm loops over each discretized state ξi ∈ Ξ, and the
value function V (ξi) must be stored for each discretized state
ξi ∈ Ξ (refer to Algorithm 1 in reference [1] for details of the
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value iteration algorithm). For an n−dimensional system, if
each dimension is discritized into d states, the total number of
discretized states is D = dn. Thus, it becomes challenging to
run the value iteration algorithm. In this section, we propose
to use the Q-learning with function approximation (QLFA)
method [41] to extend the MDP solution to high-dimensional
systems.

We first introduce the concept of Q-learning. It is a model-
free method for computing the optimal MDP policy that max-
imizes the time-average reward. The basic idea of Q-learning
is to perform trajectory-based sampling, i.e., run trajectories
of the Kalman filter estimation error 〈e[t],a[t], R[t], e[t +
1],a[t+ 1], R[t+ 1], . . . 〉, and perform Bellman backups only
on the states visited. Thus, the Q-learning algorithm does
not loop over each state ξi ∈ Ξ, in contrast to the value
iteration algorithm. The Q-learning algorithm computes the
action-value function for each state and action pair Q(ξi,a).
In particular, for ξi[t] = ξi,a[t] = a, e[t + 1] = ξ′i, and
R[t+ 1] = R, the Q-values are updated as

Q(ξi,a)←(1−α)Q(ξi,a)+α
(
R+γmax

a′
Q(ξ′i,a

′)
)
, (10)

where α > 0 is the learning rate. The action a[t] = a
is chosen according to the ε−greedy method [41]. The Q-
learning algorithm can converge for a finite number of state-
action pairs under certain conditions on the learning rate,
discount factor, and the reward function [41].

The Q-learning algorithm still has the issue that it stores the
Q-values for each state-action pair, which will be challenging
in high-dimensional systems. To address this issue, we propose
to combine the Q-learning with the function approximation
method [42]. The key idea of this approach is to approximate
the Q-values using parametric functions instead of storing
them individually for each state-action pair. The number of
parameters to be stored and updated is much less than the
number of states. As a result, this method is more suited
for application in high-dimensional systems. In particular,
we focus on Q-learning with linear function approximation
(QLFA), in which the Q-values are approximated as a linear
function of a parameter vector θ(a),∀a as

Q(ξi,a) = φ(ξi)
Tθ(a), ∀ξi ∈ Ξ,a ∈ A, (11)

where φ(ξi) is the feature vector corresponding to every state
ξi. The feature vector is a lower-dimensional representation
of the state, where the feature function φ : E → RK
maps each state-action pair to a feature vector, K being the
dimension of the feature vector. The feature function φ can
be constructed for each state using various basis functions.
For example, one of the simplest basis functions is the fixed
sparse representation (FSR) with binary encoding. Under FSR,
we first discretize the n−dimensional state space with uniform
grid cells of d levels each. Thus, the state space Ξ has dn states
represented by the tuple (i, j, . . . ) ∈ Ξ. The feature vector
corresponding to each state (i, j, . . . ) ∈ Ξ is then constructed

as

φ((i, j, . . . , )) = [0, .., 1︸︷︷︸
ith position

, .., 0

︸ ︷︷ ︸
d elements

, 0, .., 1︸︷︷︸
jth position

, .., 0

︸ ︷︷ ︸
d elements

, ..]T .

(12)

Note that φ((i, j, . . . , )) is a nd−dimensional vector (thus, in
this case, K = nd).

Other choices of basis functions to construct the feature
vector include the use of Radial Basis Functions (RBFs) and
Incremental Feature Dependency Discovery (iFDD) [42]. The
choice of basis function offers a trade-off between accuracy
(of estimating the correct value of the MDP’s value function)
and learning speed.

Under the function approximation method, finding the opti-
mal policy involves updating the parameter vector θ(a) (rather
than the Q-values). Thus, the total number of elements to be
stored is ndA (as opposed to DA = dnA for the direct Q-
learning algorithm). We specify the QLFA algorithm in the
following.

Algorithm 1: Q-Learning with function approximation
Data: MDP, α, γ
Result: Policy π
θ(a)← Initialize arbitrarily ∀a ;
〈ξ,a〉 ← 〈ξ0, πε(ξ0)〉. while time left do

Take action a, observe reward R and next state ξ′

Q+(ξi,a)← R+ γmax
a′

Q(ξ′i,a
′) O(ndA2)

δ ← Q+(ξi)−Q(ξi)

θ(a)← θ(a) + αδφ(ξi) O(ndA)

〈ξ′,a〉 ← 〈ξ′, πε(ξ′)〉 O(ndA2)
end
Return π greedy with respect to Q

Computational complexity of QLFA algorithm: The
computational complexity of main execution steps of the
QLFA algorithm is indicated in Algorithm 2. We note that
computing Q(ξi,a) has a complexity of O(ndA) (since it
involves multiplication of two vectors of dimension ndA as
in eq. (11)). Thus, computing the policy maxaQ(ξi, a) has a
complexity of O(ndA2). We observe that the complexity of
the algorithm is linear in the system dimension n, as opposed
to the exponential complexity of the value iteration and
the original Q-learning algorithm. Moreover, the number of
parameters to be stored and updated is ndA. Thus, The QLFA
algorithm is feasible even for high-dimensional systems.

In Section VIII, we conduct simulations to compare the
performance of attack sequences generated by the QLFA
algorithm with other attack sequences in high-dimensional
systems.

A. Q-learning with Non-Linear Function Approximation

Although the QLFA algorithm is computationally
lightweight, its performance often requires a careful
design of the feature set, which is non-trivial and challenging
[42]. Without the right set of features, the linear function
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approximators may not accurately represent the true value
function. Alternately, one can use non-linear function
approximators (NLFA) such as a neural network. The NLFA
offer a richer class of function approximators that can map
directly from the states to the value function without the need
to explicitly specify the feature set. In particlar, we use the
Q-learning with non-linear function approximation (Q-NLFA)
algorithm [43] to solve the MDP (7). Simulation results
for the Q-NLFA algorithm are presented in Section VIII-E,
where we show that it outperforms the QLFA algorithm in
high-dimensional systems.

Finally, note that in this section, we have used the
value function approximation method (i.e., we approximated
the value function using linear/non-linear approximators).
An alternative function approximation approach in high-
dimensional/continuous systems is the policy gradient method,
which approximates the policy directly instead of the value
function [44]. While policy gradient methods are well-suited
for high-dimensional/continuous systems, they are known to
exhibit high variance in estimating the gradient, which may
adversely affect the learning.

VIII. SIMULATION RESULTS

We perform simulations on the voltage control system using
PowerWorld, which is a high-fidelity power system simulator
widely used in the industry [45]. All the simulations are
performed based on the IEEE 9-bus system shown in Fig. 1, in
which buses 1, 2, and 3 are the generator buses, buses 5, 6 and
8 are the load buses (we use the default load values), and 5,
7, and 9 are the pilot buses. The control matrix B is estimated
using linear regression on the data traces of x[t + 1] − x[t]
and u[t] obtained in a PowerWorld simulation. Specifically,
we applied a series of control inputs (i.e., changed the voltage
of the generator bus) and observed the change in voltage of the
pilot bus in Powerworld simulation, and used linear regression
between the two data series to obtain B. Further, the process
noise and observation noise are assumed to be Gaussian with
standard deviation of 0.01 and 0.02 pu respectively. The choice
is consistent with real-world sensor measurement noise from
PMUs [46].

First, we verify the accuracy of the LTI model in approx-
imating the real-world voltage control system by examining
the voltage at pilot bus 5. In our simulations, the voltage
controller aims to adjust the voltage of this bus from an initial
voltage of 1 pu to a setpoint (x0) of 0.835 pu (base voltage
of 230 kV) by applying the control by applying the control
u[t] = B−1(x0−x̂[t]) in both Powerworld and the LTI model.
Fig. 5 plots the bus voltage from t = 1 to t = 30 obtained
from the PowerWorld simulations, as well as the voltage values
obtained from the LTI model. To average the effect of random
measurement noise, we repeat the experiment 100 times, and
take the mean value. The two curves match well in this figure,
thus verifying the accuracy of the proposed LTI model.

We also include a simulation result to show the validity
of the approximation that the attacker can accurately track
the KF’s estimation error (see bullet point 1 in Section V).
We consider the IEEE-9 bus system with similar settings as
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Fig. 5. Comparison between PowerWorld and LTI model.
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Fig. 6. IEEE-9 bus system under ramp attack. (a) Evolution of system state
and the estimate. (b) Evolution of the KF estimation error

above and under a ramp attack sequence. We set the slope
of the ramp to 0.01 pu. For simplicity, we do not consider
attack detection (since our objective is to show the attacker’s
estimate of the system state under an attack sequence that
bypasses detection). Denote the defender’s and the attacker’s
estimates of the system state by x̂[t] and x̂a[t] respectively,
which are computed as

x̂[t+ 1]=Ax̂[t]+Bu[t]+K(yf [t+ 1]−C(Ax̂[t]+Bu[t])),

x̂a[t+ 1]=Ax̂a[t]+Bu[t]+K(y[t+ 1]−C(Ax̂[t]+Bu[t])).

Here yf [t] = y[t] − i[t]δ[t] and u[t] = α (x0 − x̂[t]) . Note
that the attacker’s estimate is computed using y[t + 1] (i.e.,
the true sensor measurements).

The result of the simulation is plotted in Fig. 6 (a). It can
be seen that while the defender (i.e., the system operator)
has an erroneous estimate of the system state due to the FDI
attack, the attacker can track the system state fairly accurately
based on the true sensor measurements. We also plot the KF
estimation error (i.e., x̂[t] − x[t]), and the attacker’s estimate
of the KF error (i.e., x̂[t]− x̂a[t]) in Fig. 6 (b), which shows
a close match between the two curves. Hence, in our analysis,
we assume that the attacker can track the Kalman filter’s
estimation error e[t] accurately.
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A. Attacks Against Voltage Control Using MDP and Value
Iteration Algorithm

Next, we simulate the impact of the proposed attacks on
the voltage control system while considering the χ2 attack
detection. We assume that the attacker has access to the voltage
sensor of bus 5, and injects false measurements to mislead the
controller. We compute the optimal attack sequence based on
the LTI model using the value iteration method implemented
in MATLAB. Recall that in this example, the state of the
MDP is the voltage of bus 5 and the attack sequence is the
FDI attack on the voltage sensor measurement of bus 5. We
restrict a[t] between 0− 0.2 pu discretized with an interval of
0.02 pu. To evaluate the attack impact, we run Monte Carlo
simulations using the PowerWorld simulator by injecting the
derived optimal attack into the voltage measurements, and
implementing the control based on the corresponding state
estimate. Fig. 7 (top figure) shows the pilot bus voltage (bus
5) for different attack sequences with η = 5 and perfect
attack mitigation. It can be observed that the pilot bus voltage
deviates from the setpoint of 0.835 pu, and the largest voltage
deviation is seen under the optimal attack. In particular, over
an attack duration of 30 time slots, we observe that bus 5
voltage deviates to 0.65 pu under the optimal attack, which is
about 0.2 pu from the setpoint.

Fig. 7 (bottom figure) shows the attack detection probability
under these attacks at different time instants. We also plot
the optimal policy computed by the value iteration algorithm
(Algorithm 1) in Fig. 8a, and the optimal attack sequence for
three Monte Carlo instantiations in Fig. 8b. We observe that the
attack detection probability for a naive attack sequence such as
the ramp attack increases with time, which results in nullifying
its impact due to attack mitigation. However, the optimal attack
is crafted in a way such that the detection probability decreases
over time. Consequently, the optimal attack causes a significant
deviation of the pilot bus voltage from its setpoint.

Algorithm Performance under Non-Gaussian Noises: We
also perform simulations to examine the algorithm perfor-
mance under non-Gaussian noise settings. Recent work based
on real PMU noise data shows that its statistical distribution
can be modeled by non-Gaussian distributions such as the
Student-t or Laplace distributions [28]. Accordingly, we ex-
amine the performance of the policy derived using the MDP
algorithm in a power system whose measurement noises follow
a non-Gaussian distribution. Specifically, we derive the policy
using the MDP approach (which assumes Gaussian noise).
However, at the policy evaluation stage, we evaluate using two
non-Gaussian noise distributions, i.e., Logistic and Student-t
distributions and compare the time average cost function (time
average Kalman filter estimation error). For fair comparison,
we set the noise variance to be the same as that of the Gaussian
case (0.02 pu). The results are shown in Fig. 9 (a), in which
we plot the time average cost function. It can be seen that
the performance of the MDP algorithm with non-Gaussian
noise is nearly identical to the Gaussian noise setting. We also
plot the evolution of the pilot bus voltage in the presence of
attack based on the MDP policy in Fig. 9 (b). The performance
degradation is nearly identical in all the three cases. Hence,
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Fig. 7. Attack against voltage control system. (a) Pilot bus voltage (Bus 5)
under different attack sequences. (b) Attack Detection probability for different
attacks.
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Fig. 8. (a) Optimal policy for different system states computed by value itera-
tion. (b) Optimal attack sequence for 3 Monte Carlo simulation instantiations.

we conclude that the MDP algorithm is nearly optimal for
real-world PMU sensor measurement noises.

B. Quantifying Cost of False Positives and Missed Detections

In this subsection, we perform simulations to quantify the
cost of FPs and MDs following the approach in Section VI.
We consider a general LTI model described by (1) and (2)
with n = 1, A = 1, C = 1, Q = 1, R = 10 and adopt a
practical attack mitigation approach under which the attack
mitigation signal is given by δd[t] = a[t] + b[t], where b[t]
is the error component in the mitigation signal. We generate
b[t] as a Gaussian distributed random variable with a standard
deviation of σmit units. Fig. 10 shows the cost of FPs and MDs
for different detection thresholds η and standard deviations of
the attack mitigation signal σmit.

From these plots, we observe that as the attack detection
threshold η is increased, the cost of FP decreases and the cost
of MD increases. This result is intuitive – a low detection
threshold detects most attacks but also leads to a large number
of FPs. Thus, the wrongly triggered mitigations will result in
a high FP cost. On the other hand, a high detection threshold
yields a low number of FPs, but also increases the number
of MDs. The figures show a basic tradeoff between FPs and
MDs, quantified in terms of the cost function.
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Fig. 9. (a) Average reward of the MDP policy, (b) pilot bus voltages under
non-Gaussian noise settings.

We also observe that these costs depend on the accuracy of
the attack mitigation signal. For instance, when the accuracy
is high (e.g., σmit = 0, 5), the cost of FP is very low, even for
a low detection threshold. Thus, in this scenario, the system
operator can choose a low detection threshold and obtain good
overall system performance. However, when the accuracy of
the mitigation signal is low (e.g., σmit = 15), the cost of FP is
high for a low detection threshold. For instance, in Fig. 10(d),
the cost of FP for η = 0 is greater than the cost of MD
for η = 5. In this scenario, the system operator must choose a
high detection threshold to obtain an acceptable level of system
performance. Thus, our result helps the system operator select
an appropriate threshold to balance the costs of FP and MD,
depending on the accuracy of the mitigation signal.

Lastly, we note that for σmit = 0 (i.e., perfect mitigation),
the cost of FP is zero for all detection thresholds. Under
perfect mitigation, even if an FP event occurs, the controller
can accurately estimate that the attack magnitude is zero
(i.e., no attack). Thus, in this specific case, wrongly triggered
mitigations do not increase the cost of FP. We also note that
for η = 0, there are no MDs. Hence, the cost of MD in this
case is nearly zero.

C. Comparison of Value Iteration, Q-Learning and QLFA
Algorithms

For the LTI system described in previous subsection,
we compare the performance of value iteration, Q-learning
(eq. (10)) and QLFA algorithms in a 1-dimensional system.
For QLFA, we use FSR with binary encoding as the basis
function. We first compute the policy π(e) using each of the
three algorithms and then evaluate the cost function using the
corresponding policies. We repeat the simulations for different

numbers of discretization levels d = {21, 41, 81}. The results
are shown in Fig. 11a, which show that the performance of
the original Q-learning algorithm and the QLFA algorithm is
close to that of the value iteration algorithm. We also plot the
policies of the three algorithms in Fig. 11b, which are similar.

D. Simulations for High-Dimensional Systems Using Q-
Learning with Function Approximation

We report simulations in high-dimensional systems using
the QLFA (with FSR with binary encoding as the basis
function) and Q-NLFA algorithms proposed in Section VII.
We use two bus systems (i) a moderately-sized IEEE-39 bus
system which has 10 generator buses (bus 30 − 39) and 10
pilot buses and (ii) a large bus system, i.e., the IEEE-118 bus
system which has 30 pilot buses (we only assign the non-
generator buses as pilot buses). The state of the system is the
pilot bus voltages and the actions are the FDI attack injected
at the pilot bus voltage sensor measurements. We estimate
the control matrix B for both the bus systems using linear
regression on data traces obtained in a PowerWorld simulation.

First, we show the average reward of the QLFA and Q-
NFLA algorithms as a function of the training time in Fig. 12
for both the bus systems. To derive the policy for the QLFA
algorithm, we compute the weight vector (θ(a)) for different
training times in a MATLAB simulation. To derive the policy
for the Q-NLFA algorithm, we use the TensorFlow library
[47]. In particular, we construct a neural network with 20
nodes per layer and 5 hidden layers and employ the rectified
linear unit (ReLU) activation function. We set a batch size of
200 for deep Q-learning’s experience replay step [43].

After obtaining the policy in each case, we run test trajec-
tories with the corresponding policies, and obtain the average
reward (cumulative Kalman filter estimation error) over 50
time slots. It can be observed from Fig. 12 that the average
rewards of the QLFA and the Q-NFLA algorithms increase
with the training time, implying that the algorithms learn
policies that yield a high reward. Moreover, we observe that
for the IEEE-39 bus system, the Q-NLFA algorithm converges
to a policy that yields high reward much faster than the QLFA
algorithm. For a larger system such as the IEEE-118 bus,
the Q-NLFA algorithm significantly outperforms the QLFA
algorithm, and the QLFA algorithm is suboptimal. Thus, we
conclude that Q-NLFA algorithm should be used for high-
dimensional systems (with more than 10 pilot buses).

Next, we use the policy obtained from the Q-NLFA al-
gorithm as the attack vector in voltage control loop of the
IEEE-39 bus system in a PowerWorld simulation. In these
simulations, the controller adjusts the voltage of the pilot buses
from an initial voltage of 0.3 pu to 0.835 pu by applying the
control u[t] = B−1(x0− x̂[t]). The attacker injects the attack
vector on the sensor measurements of the pilot buses. The
resulting pilot bus voltages and their estimates are plotted in
Fig. 13. It can be observed that while the voltage estimates
are close to the set-point, the actual pilot bus voltages deviate
significantly from the set-point, thus showing the efficacy of
the derived attacks.
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Fig. 10. Cost of FPs and MDs for different attack detection thresholds and standard deviation of the attack mitigation signal σmit.
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Fig. 11. (a) Time average reward under policies from value iteration, naive
QL and QLFA algorithms in 1-D system. (b) Policies from the respective
algorithms for d = 21 states.

IX. CONCLUSIONS

In this paper, we studied the performance of a CPCS with
attack detection and reactive attack mitigation. We derived the
optimal attack sequence that maximizes the state estimation
error over the attack time horizon using an MDP framework.
Our results show that an arbitrarily constructed attack sequence
will have little impact on the system since it will be detected,
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Fig. 12. Comparison of QLFA and Q-NLFA algorithms for different training
times (a) IEEE-39 bus system (with 10 pilot buses), (b) IEEE-118 bus system
(with 30 pilot buses).

hence mitigated. The optimal attack sequence must be crafted
to strike a balance between the stealthiness and the attack
magnitude. Our results are useful for the system operator to
assess the limit of attack impact and compare different attack
detection and mitigation strategies. We also quantified the
impact of FP and MD on the state estimation error, which
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Fig. 13. Attack against voltage control system for the IEEE-39 bus. (a) Pilot
bus voltages under QLFA attacks. (b) Estimates of the pilot bus voltages.

helps select the right attack detection threshold depending on
the accuracy of the attack mitigation signal. We apply our
results to the voltage control in a power system.
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APPENDIX A: COMPUTATION OF THE CUMULATIVE STATE
ESTIMATION ERROR

Appendix A - Part I

We first state the result for the computation of E[e
(i)
d [t+1]]

and Var
(
e
(i)
d [t+ 1]

)
.

The mean of e
(i)
d [t+ 1] can be computed as

E[e
(i)
d [t+ 1]] = x̄(i) + ΣxyΣ−1yy (y − ȳ),

where, x̄(i) = AKE[ec[t]] − K(a[t + 1] − 1{i=1}δ̄[t + 1]),
ȳ = CAE[ec[t]] + a[t+ 1]. The variance of e

(i)
d [t+ 1] can be

computed as

Var
(
e
(i)
d [t+ 1]

)
= Σ(i)

xx −ΣxyΣ−1yyΣyx,

where,

Σyy = CAVar(ec[t])ATCT + CQCT + R,

Σxy = AKVar(ec[t])ATCT + WKQCT −KRT ,

Σyx = CAVar(ec[t])AT
K + CQWT

K −RKT ,

Σ(i)
xx=AKVar(ec[t])AT

k+WKQWT
K+KRKT+1{i=1}KBKT ,

1x = 1 if x is true, or 0 if x is false, B = E[(δ[t+1]−E[δ[t+
1]])(δ[t+1]−E[δ[t+1])T ] and fy(y) is the Gaussian pdf with
mean ȳ and variance given by Σyy. The integration limits ai
and bi are [−

√
ηPr,

√
ηPr], if i = 0, and (−∞,−

√
ηPr] ∪

[
√
ηPr,∞), if i = 1. The terms E[ec[t]] and Var(ec[t]) in the

above can be in turn recursively computed as

E[e(i)
c [t+ 1]] =

∫ bi
ai

E[e(i)
d [t+ 1]]fy(y)∫ bi
ai
fy(y)

;E[ec[0]] = 0, i = 0, 1,

and Var(e(i)
c [t + 1]) = E[(e

(i)
c [t+ 1])2] − (E[e

(i)
c [t +

1]])2; Var(ec[0]) = Pe. Finally the quantity fi[1:t](b) can be
computed recursively as fi[1:t+1]

(b) =
∫ bi
ai
fy(y), i = 0, 1.

ec[t]

i[t+ 1] = 0

i[t+ 1] = 1

e(0)
c[t+ 1]

e(1)
c[t+ 1]

Fig. 14. Evolution of KF estimation error.

Appendix A - Part II

We now present the complete derivation of (9). First, we
present a sketch of the derivation. From Fig. 14, note that
e
(0)
c [t+ 1] can be equivalently expressed as

e(0)
c [t+ 1] = ec[t+ 1]

∣∣{i[1:t], rc[t+ 1] ∈ [−
√
ηPr,

√
ηPr]}.

We first derive an expression for e[t+1]
∣∣{i[1:t], rc[t+1] = r}

where r ∈ [−
√
ηPr,

√
ηPr]. Then, we evaluate E[(e

(0)
c [t +

1])2] by using E[X2|a ≤ Y ≤ b] =
∫ b
a
E[X2|Y ]fY (y)∫ b

a
fY (y)

, where

X = e
(0)
c [t+1], Y = rc[t+1]. The limits a and b correspond to

−
√
ηPr and

√
ηPr respectively. We adopt a similar approach

to evaluate E[(e
(1)
c [t+1])2]. We present the detailed derivation

in the following.
For brevity we only present analysis in the case when

rc[t + 1] ∈ [−
√
ηPr,

√
ηPr]. Recall the definitions of the

terms ec[t] = e[t]
∣∣i[1:t], rc[t] = r[t]

∣∣i[1:t−1]. They evolve in
time as

ec[t+ 1] = AKec[t] + WKw[t]

−K(a[t+ 1]− i[t+ 1]δ[t+ 1])−Kv[t+ 1], t ≥ 0,

(13)

rc[t + 1] = CAec[t] + Cw[t] + v[t + 1], (14)

where the above are obtained by conditioning both sides of
(6) and the residual dynamics r[t + 1] = CAe[t] + Cw[t] +
a[t+ 1] + v[t+ 1] on i[1:t] and noting that w[t] and v[t] are
independent of i[1:t].

For convenience, let us define

e
(0)
d [t+ 1]

.
= e[t+ 1]

∣∣{i[1:t], rc[t+ 1] = r}
= AKec[t] + WKw[t]−Ka[t+ 1]

−Kv[t+ 1]
∣∣{rc[t+ 1] = r}, (15)

where in the above we have used the definition of ec[t] as
well as the fact that w[t], and v[t + 1] are independent of
i[1:t], rc[t+ 1] and i[t+ 1] = 0. Let us denote x = AKec[t] +
WKw[t]−Ka[t+ 1]−Kv[t+ 1] and y = rc[t+ 1]. We note
that x and y are Gaussian random variables and hence jointly
Gaussian. Their mean and covariance matrix can be computed
as

E[x] = AKE[ec[t]]−Ka[t+ 1],E[y]

= CAE[ec[t]] + a[t+ 1] and Cov(X) =

[
Σxx Σxy

Σyx Σyy

]
,

where them terms Σxx,Σxy and Σyy are defined in Ap-
pendix A, Part I (for i = 0).
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We now present in recursive method to compute E[ec[t]]
in the above expression. First note based on our definitions,
e
(0)
d [t + 1] is the conditional random variable x|y. Thus,

the mean and variance of e
(0)
d [t + 1] can be derived using

multivariate normal distribution as

E
[
e
(0)
d [t+ 1]

]
= E[x] + ΣxyΣyy

−1(y − E[y]), (16)

Var
(
e
(0)
d [t+ 1]

)
= Σxx −ΣxyΣyy

−1Σyx. (17)

From (16), we can compute the E[e
(0)
c [t+ 1]] as

E[e(0)
c [t+ 1]] =

∫√ηPr

−
√
ηPr

E[e
(0)
d [t+ 1]]fy(y)∫√ηPr

−
√
ηPr

fy(y)
, (18)

where we have used the fact that E[X|a ≤ Y ≤ b] =∫ b
a
E[X|Y ]fY (y)∫ b

a
fY (y)

. A similar method can be used to compute

E[e
(1)
c [t+ 1]]. Then E[ec[t+ 1]] can be computed as E[ec[t+

1]] = P(i[t+1] = 0)E[e
(0)
c [t+1]]+P(i[t+1] = 1)E[e

(1)
c [t+1]].

The terms (16) and (17) can also be used to compute
E[(e

(0)
c [t+ 1])2] as

E[(e(0)
c [t+ 1])2] =

∫√ηPr

−
√
ηPr

E
[
(e

(0)
d [t+ 1])2

]
fy(y)∫√ηPr

−
√
ηPr

fy(y)
, (19)

where in we used the fact that E[X2|a ≤ Y ≤ b] =∫ b
a
E[X2|Y ]fY (y)∫ b

a
fY (y)

. Note that integrand of (19) is given by

E
[
(e

(0)
d [t+ 1])2

]
=
(
E
[
e
(0)
d [t+ 1]

])2
+ Var

(
e
(0)
d [t+ 1]

)
,

where the RHS terms are in (16) and (17) respectively. We
remark that the case rc[t + 1] /∈ [−

√
ηPr,

√
ηPr] can be

similarly analyzed to derive E[(e
(1)
c [t + 1])2]. We skip the

derivation here and The final result is stated in Appendix A,
Part I.

Finally, the quantity fi[1:t](b) can be computed by noting
that P(i[t+1] = 0|i[1:t]) = P(rc[t+1] ∈ [−

√
ηPr,

√
ηPr]) and

P(i[t + 1] = 1|i[1:t]) = P(rc[t + 1] /∈ [−
√
ηPr,

√
ηPr]). The

quantities P(rc[t + 1] ∈ [−
√
ηPr,

√
ηPr]) and P(rc[t + 1] /∈

[−
√
ηPr,

√
ηPr]) can be computed by noting that rc[t+ 1] is

a Gaussian distributed random variable from with mean E[y]
and variance Σyy (from (14)).
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