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ABSTRACT

When a power grid is overloaded, load shedding is a con-
ventional way to combat the imbalance between supply
and demand that may jeopardize the grid’s safety. How-
ever, disconnected customers may be excessively incon-
venienced or even endangered. With the emergence of
demand-response based on cyber-enabled smart meters
and appliances, customers may participate in solving
the imbalance by curtailing their demands collabora-
tively, such that no single customers will have to bear
a disproportionate burden of reduced usage. However,
compliance or commitment to curtailment requests by
untrusted users is uncertain, which causes an important
safety concern. This paper proposes a two-phase load
management scheme that (i) gives customers a chance to
curtail their demands and correct a grid’s undersupply
when there are no immediate safety concerns, but (ii)
falls back to conventional load shedding to ensure safety
once the grid enters a vulnerable state. Extensive sim-
ulations based on a 37-bus electrical grid and traces of
real electrical load demonstrate the effectiveness of this
scheme. In particular, if customers are, as expected, suf-
ficiently committed to the load curtailment, overloads
can be resolved in real time by collaborative and grace-
ful usage degradation among them, thereby avoiding un-
pleasant blackouts in existing practice.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Reliability, availabil-
ity, and serviceability

1. INTRODUCTION
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The conventional power grid has a well understood
centralized design. It could be seen as “heavy around
the waist,” in that all the key control points are situ-
ated in the core of the system, which is trusted under
careful operator control. For instance, when the grid is
overloaded (due to say unexpected loss of generation or
a surge in demand driven by extrinsic conditions), some
breaker in the core may open, thereby disconnecting a
region of customers to shed load and restore the balance
between supply and demand. While this strategy pro-
tects the grid against expensive equipment damage or
prolonged imbalance that could lead to cascading fail-
ures and massive blackouts, the disconnected region of
customers are nevertheless severely affected in that they
will be totally without power for some significant period
of time. These “unlucky” customers may suffer signif-
cant loss of comfort or money, and their personal safety
could be endangered in certain situations.
The emergence of smart grid initiatives [21], however,

is evolving the architectural design of power grids in
the direction of the Internet, whose end systems par-
take in sophisticated control relative to the core that
performs simple well-defined functions. With demand-
response (DR) [6] using smart meters and appliances
that are capable of automated sensing and control, as
well as communicating with the core, the grids of tomor-
row are pushing towards a smart edge not unlike today’s
Internet end systems. Such a trend has important po-
tential benefits. For instance, in the previous overload
situation, many smart homes/appliances could collabo-
ratively curtail their power consumption to restore the
balance between supply and demand. By allowing cus-
tomers to participate in the load management, the im-
pact of undersupply will likely be milder and more bear-
able than in the case of the conventional design. This
shows that decentralized control at the edge could drive
the grid’s operation to a resilient performance region,
in which any needed service degradation is graceful and
fair to everyone.
Vis-a-vis improved operation, the safety of smart grids

as mission-critical cyber-physical infrastructures cannot



be ignored and in fact requires heightened attention. In-
deed, it is a well known dilemma in system design that
by single-mindedly pursuing performance features, no
matter how desirable, we may grow the system’s com-
plexity unknowingly to the point that its safety and reli-
ability are compromised at high costs [10]. Specifically,
with more complex collaborative load management, the
trustworthiness of control is significantly weakened be-
cause edge users/devices are involved, due to users’ er-
ratic behavior and limited/changing commitments, and
devices’ physical insecurity, variable quality, and possi-
ble misconfigurations. For instance, in the collaborative
curtailment, unexpected deviations from a prescribed
curtailment schedule may cause weakened or delayed
responses to undersupply, or even diametrically oppo-
site behaviors to exacerbate the overload, thus leading
to extremely expensive failure of the critical infrastruc-
ture.
This paper is driven by the key objective to enable de-

sirable performance features such as graceful and collab-
orative load curtailment in smart grids, while simulta-
neously assuring their safety at a level no less than that
of the well tested conventional design. The fundamental
tussle we need to address is that complexity engenders
performance features, while the safety of a simple sys-
tem is typically much stronger than that of a complex
one. To resolve the conflict, we let the system run in a
collaborative, though untrusted, mode when there are
no known immediate safety concerns, but we monitor
the collaborative operations continually and proactively
to ensure sustained safety. When the monitoring, which
is trusted, detects a drift of the system to an impending
vulnerable state, the system falls back on a simple and
safe, albeit possibly suboptimal, control mechanism in
an assured and timely manner (i.e., we are certain to
avert unacceptable system failure in time).
We apply the above framework to load management

in smart grids to handle overloads. The collaborative
operating regime corresponds to DR-driven load cur-
tailment by the edge devices and the fallback mech-
anism corresponds to the conventional load shedding.
The monitoring that triggers the load curtailment and
shedding whenever needed is carried out by a real-time
and high-fidelity intelligent system (IS) that can assess
the grid’s safety using sensors such as phasor measure-
ment units (PMUs) distributed in the trusted grid core.
In particular, the IS is designed based on a novel safety
metric, which we call time-to-being-unsafe. The metric
measures the minimum remaining time until the grid’s
possible failure should contingencies occur. It provides
foresight to activate the load shedding in time to prevent
the grid from entering unsafe regions. It also provides
time, before safety becomes emergent, for customers to
curtail their demands by following a schedule prescribed

by the grid operator using a planning algorithm based
on model predictive control (MPC). Extensive simula-
tions based on a 37-bus transmission system and traces
of real electrical load demonstrate these features.
The rest of the paper is organized as follows. §2 re-

views background and related work. §3 overviews our
approach. §4 and §5 present the IS for safety assess-
ment and the proposed load management framework.
§6 presents simulation results. §7 concludes.

2. BACKGROUND AND RELATED WORK

2.1 Power Grid Safety Assessment

Safety assessment of a power grid is performed with
respect to a safety criterion that consists of a contin-

gency and a safety condition [14]. Take the assessment
of generator safety as an example. When a grid is sub-
jected to a fault (e.g., a short circuit on a transmission
line), the deviation of speeds of generators in the grid
from the nominal value (i.e., 50 or 60 Hz) must be within
a range (e.g., 3 Hz) to prevent infrastructural damage
[14]. In this assessment, the contingency is usually cho-
sen as a fault located at a line/bus near the generators.
The safety condition is the allowed range of generator
speeds during the transient period after the contingency.
Under a certain operating condition that consists of var-
ious measurable physical quantities of the grid (e.g., de-
mand at the buses), if the contingency does not cause
any violation of the safety condition, the grid is clas-
sified as safe. Otherwise, it is unsafe. For an unsafe
grid, generation shift and load shedding are two conven-
tional approaches to restoring the safety. Specifically,
by rescheduling the generation of multiple generators or
opening appropriate breakers to disconnect a subset of
the loads, these two approaches change the operating
condition to meet the safety condition.

2.2 Related Work

Safety assessment can be conducted using time-domain
(T-D) simulations. However, they are time-consuming
and therefore usually inappropriate for online assess-
ment. Various intelligent systems (ISes) [20, 5, 24] have
been proposed as alternatives. Trained with data gener-
ated by offline T-D simulations, these ISes can provide
assessment results rapidly. Sun et al. [20] build a deci-
sion tree to classify a power grid’s safety based on PMU
measurements. Amjady and Majedi [5] train a neural
network to detect future transient instability based on
the angle and timing of the first swing of the transient
oscillation caused by a fault that occurred. In [24], Xu
et al. employ extreme learning machines (ELMs) to
estimate the critical clearing time (CCT) of a contin-
gency, i.e., the maximum time duration of the contin-
gency without causing unsafety. Different from these



approaches that classify the grid’s safety [20, 5] or cal-
culate properties of tolerable contingencies [24], this pa-
per constructs ELMs to predict the minimum remaining
time before the grid becomes unsafe, thereby enabling
proactive actions to prevent the unsafety.
Actions can be taken to correct an unsafe grid. Kato

and Iwamoto [13] propose an approach combining gen-
eration shift and generator voltage control to extend
CCTs. Karapidakis and Hatziargyriou [12] propose an
online iterative algorithm that calculates a new genera-
tion dispatch until a decision tree classifies the grid as
safe. Genc et al. [7] use a decision tree to identify safety
regions for generation and load, and employ generation
shift and load shedding to restore the grid safety. Dif-
ferent from these approaches [13, 12, 7] that rely on
centralized control in the grid’s core, our approach al-
lows to cope with potential unsafety in a decentralized
manner, through DR involving distributed users.
Recent studies [25, 19] explore decentralized demand-

side management to improve system performance. Xu
et al. [25] show that dynamic demand technology, which
adjusts the power consumption automatically by mon-
itoring the line frequency, can be employed to achieve
supply-demand balance. Furthermore, Short et al. [19]
show that refrigerators equipped with dynamic demand
controllers can replace a certain volume of spinning re-
serve. However, exploiting the demand side in grid
safety monitoring and maintenance has received limited
research attention.
The Simplex architecture [18], which consists of a

high-performance controller (HPC) and a high-assurance
controller, has been proposed to deal with HPC failures
and changes of physical dynamics [23]. Both Simplex
and our proposed load management feature a mecha-
nism that triggers different manipulation strategies ac-
cording to the system state. Different from Simplex that
applies HPC to pursue desirable high performance in
normal operation, our approach leverages DR to achieve
a resilient solution during selected periods (e.g., peak
hours) only, in which the service degrades, albeit fairly,
for customers. Moreover, in contrast to the intrinsic un-
reliability or untrustworthiness of HPC in Simplex (due
to the complexity or unverifiability of software compo-
nents), the unreliability of load curtailment in our prob-
lem is extrinsic, i.e., from the customers who can be
considered a part of the plant from a control perspec-
tive.

3. APPROACH OVERVIEW

Current safety assessment and management approaches
such as those reviewed in §2.2 have two major potential
issues. First, most of them adopt a centralized man-
agement approach (e.g., load shedding) that can be un-
fair and even hazardous to customers as discussed in
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Figure 1: Overview of our approach (arrows rep-
resent data or control flows).

§1. Second, many of them adopt a bipolar safety met-
ric, i.e., the grid is classified as either safe or unsafe.
Such a metric may suffice for load shedding that can
immediately restore the grid’s safety on the detection of
an unsafe state. However, for generation shift and de-
mand side management that often need significant time
to take effect, this bipolar metric can result in unex-
pected delays in reacting to unsafe states. To address
these issues, this paper designs a holistic approach by
leveraging machine learning techniques and the increas-
ingly available communication and control capabilities
at the edge of power grids.
As illustrated in Fig. 1, our approach consists of two

pillar modules: (i) a real-time safety assessment subsys-
tem based on a new safety metric and extreme learning
machine (ELM), and (ii) a novel two-phase load man-

agement subsystem. The contributions of our approach
are:

A new safety metric: We propose to adopt the min-
imum remaining time until the power grid becomes un-
safe as the safety metric, which we refer to as time-

to-being-unsafe (TTBU). With this new metric, we can
proactively activate preventive management actions and
account for their delays in assuring the grid’s safety.

Real-time safety assessment: We develop a real-
time safety assessment subsystem based on ELM [11] to
estimate the TTBU. We first conduct extensive offline
T-D simulations to generate training data for the ELM.
At run time, ELM estimates the TTBU according to the
current operating conditions. Moreover, it can be re-
peatedly invoked to assess candidate load management
actions and find the best one accordingly.

Safety-assured collaborative load management:
We propose a two-phase load management subsystem
consisting of a load curtailment and a load shedding

phase. Specifically, when the TTBU drops below a
warning threshold, the subsystem enters the load cur-
tailment phase and induces the customers to reduce
their consumption collaboratively via DR. This phase
decentralizes the safety management by involving dis-



tributed customers. We develop an algorithm for the
curtailment scheduling based on a MPC method, which
computes a list of suggested demand ceilings for a num-
ber of future time periods. However, the curtailment
schedules may not be fully realized due to limited cus-
tomer commitment and/or incorrect edge devices. Once
the TTBU drops below an emergent threshold, the sub-
system enters the load shedding phase, which immedi-
ately disconnects a subset of loads to prevent unaccept-
able system failures.
Note that our approach allows DR-based load cur-

tailment to run side-by-side load shedding employing
existing technologies. Hence, DR programs can be in-
troduced incrementally for selected (growing) subsets of
the customers.

4. REAL-TIME SAFETY ASSESSMENT

This section defines the TTBU metric and presents
the design of ELM to learn the metric. Lastly, a case
study is provided to illustrate the ELM-based real-time
safety assessment.

4.1 Time-to-Being-Unsafe

We propose the TTBU metric based on extensive T-
D simulations using PowerWorld [4]. PowerWorld is a
power system simulator that is widely used in the power
industry for transmission planning and operation anal-
ysis and visualization. Our simulation results show that
the demand vector at all the load buses (which we refer
to as loading) is the dominating factor for grid safety.1

Loading indicates the level of stress imposed on a grid.
When the grid is under higher stress, it is at a higher
risk of being destabilized due to the same contingency.
Thus, loading directly relates to grid safety, and we use
loading as the operating condition for the safety assess-
ment. An associated advantage of this choice is that,
since we aim to protect the grid by load management,
using loading for safety assessment can provide imme-
diate decision support to guide the load management
actions.
We now use a set of T-D simulations for the IEEE

9-bus system [4] produced by PowerWorld [4] to illus-
trate the effect of loading on grid safety. This system
has 3 generators and 3 load buses (buses #5, #6, and
#8) out of totally 9 buses. We evaluate the generator
speed deviation against a balanced 3-phase solid fault
at the transmission line from bus #5 to #7. This con-
tingency happens when all the three conductors of the
line are shorted together, due to say a lightning strike.

1Power injections from generators also affect the grid’s
safety. This paper focuses on non-renewable generation,
whose power injections are dependent variables of the eco-
nomic generation dispatch with demand as a vector of inde-
pendent variables.
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Figure 2: (a) Maximum generator speed devia-
tion (represented by a gray scale) after a fault vs.
the demand of two buses. The white area is the
unsafe region with a boundary marked by the
dashed curve. (b) Safety boundaries for differ-
ent contingencies at different transmission lines
(labeled by their respective terminal bus num-
bers).

Its clearing time is set to be 5 cycles (i.e., 83 ms for
this 60Hz system). For ease of illustration, we fix the
demand of the load bus #5 at 200MW and vary the
demand of the two other load buses. The maximum
deviation of the three generators’ speeds from the nom-
inal value (60Hz) after the contingency, as a function of
the varied demand, is plotted in Fig. 2(a). Under the
default setting of this system, a generator will be shut
down to prevent infrastructural damage if its speed de-
viation exceeds 3Hz. Thus, the system with a generator
speed deviation of more than 3Hz is considered unsafe.
From Fig. 2(a), we can clearly observe a monotonic re-
lationship between the maximum speed deviation and
the demand. That is, as long as the demand increments
of the two load buses are non-negative, the speed devia-
tion will increase. Moreover, there is a cut-off boundary
between the safe and unsafe regions. Fig. 2(b) shows the
boundaries for the balanced 3-phase solid faults that oc-
cur at different transmission lines with the same clearing
time.
The above monotonic property can also be observed

for other types of contingencies such as ground fault.
Specifically, for a certain safety criterion, starting from
a safe state, if the demand at each bus2 keeps increas-
ing, at some point the grid will become unsafe. Once
the grid is unsafe it will remain unsafe unless the de-
mand at some bus(es) is reduced. Formally, let the
vector L ∈ R

m
≥0 denote the loading of a system with

m buses. For any time instant t0, we define δt0(∆t) =
[δ1,t0(∆t), δ2,t0(∆t), . . . , δm,t0(∆t)], where δi,t0(∆t) is the
ramp-up in demand of bus i at time t0+∆t. We assume
that δi,t0(∆t) is a positive and strictly increasing func-
tion of time duration ∆t. There exists a factor T such
that the grid at time t0 +∆t with loading L + δt0(∆t)

2In the rest of this paper, we use bus to refer to a load bus

unless otherwise stated.



is safe if ∆t < T , and it is unsafe otherwise. If δi,t0(∆t)
is the maximum ramp-up in demand at each bus i, then
T is the minimum remaining time before the grid with
loading L at time t0 may become unsafe. We call T the
time-to-being-unsafe (TTBU). Note that T is defined
with respect to a certain safety criterion. In §4.2, we
will discuss how to address multiple safety criteria, such
as multiple contingencies in Fig. 2(b).
In this paper, for simplicity, we assume that each bus

at any time instant t0 has the same maximum ramp-
up function, i.e., δi,t0(∆t) = δ(∆t), ∀i ∈ [1,m], ∀t0.
Under this simplification, we define the power-distance-

to-being-unsafe as P = δ(T ), which is the maximum
amount of additional power that each bus can draw
without causing unsafety. Thus, as long as P is known,
T can be obtained as T = δ−1(P ). This intermedi-
ate metric P will be used to design the ELM in §4.2.
Although the simplifying assumption of identical max-
imum ramp-up may lead to a loss of accuracy in esti-
mating T , it will not affect the safety assurance if δ(∆t)
is appropriately chosen. For instance, we can choose
the upper envelope of all the actual ramp-up functions
as δ(∆t), i.e., δ(∆t) = max∀i∈[1,m],∀t0 δi,t0(∆t). The re-
sulting T will be a conservative estimate for the TTBU.
As discussed in §4.2, the safety assessment subsystem
can be readily extended to admit per-bus ramp-up func-
tions, albeit with additional overhead.

4.2 Design of ELM

We use extreme learning machine (ELM) [11] to learn
the proposed safety metric. ELM is a single hidden layer
feedforward neural network with a training algorithm
much faster than conventional gradient-based learning
algorithms. The design of ELM for our problem boils
down to the selection of its input/output parameters
and internal configurations. We choose loading L and
power-distance-to-being-unsafe P as the input and out-
put of the ELM, respectively. At run time, given the
current loading, the safety assessment subsystem calcu-
lates T based on the ELM’s output P by T = δ−1(P ).
The advantage of using the intermediate metric P as
the ELM output is that it isolates the demand behavior
(i.e., δ(∆t)) from the ELM. Thus, the ELM need not be
re-trained if δ(∆t) changes.
We use a synthetic data set, of historical records of

L from an operator’s database, and T-D simulation re-
sults to train the ELM. First, the maximum ramp-up
function δ(∆t) can be easily learned from the records
of L. Second, given L, we may run T-D simulations to
determine P . By enumerating L in all the records, we
generate a large number of data pairs 〈L, P 〉. In this
paper, we assume that the system model for driving the
T-D simulations is accurate. In practice, system opera-
tors often improve the model continually based on real

measurements for past contingencies [16]. The ELM
trained using the generated data pairs will preserve the
realistic physical dynamics provided by the high-fidelity
offline T-D simulations. The internal configuration for
the ELM, such as the number of hidden neurons, is usu-
ally determined by an iterative trial-and-error procedure
to minimize some error metric (e.g., sum of squared er-
rors of estimation) based on the training data. At run
time, the ELM can quickly compute P according to L
as measured by trusted metering devices such as PMUs
at the buses. The high-speed computation is highly de-
sirable since it allows us to iteratively look for the best
control actions in real time, where the ELM is invoked
repeatedly to evaluate candidate actions (cf. §5.2).
We now discuss two practical issues. First, if there is a

planned change to the grid (e.g., adding a transmission
line or generator), the ELM needs to be re-trained using
new T-D simulations based on the new system model.
Second, the discussions so far are for a single safety cri-
terion consisting of a contingency and a safety condi-
tion. The system operator may want to handle multiple
credible safety concerns, e.g., multiple contingencies at
different locations. This issue can be addressed by us-
ing multiple ELMs, in which each ELM is trained to
address one safety criterion. At run time, the minimum
of the power-distances-to-being-unsafe estimated by all
the ELMs is used to calculate T , which is the mini-
mum time to an unsafe state caused by any credible
contingency. As power grid design is often incremen-
tally improved to fix known outstanding vulnerabilities
to credible contingencies, it is unlikely that T will be
confined to explaining a small set of contingencies.

4.3 A Case Study

In this section, we use a case study to illustrate the
learning processes for δ(∆t) and the ELM. It is based on
real loading data published by the New York Indepen-
dent System Operator (NYISO) [2]. The measurements
were taken every 5 minutes over two months (June and
July 2012) for 11 regions. As a detailed model for the
NYISO grid is unavailable, in this case study, we use
an example system model from PowerWorld as shown
in Fig. 3. The model consists of 9 generators and 25
load buses out of totally 37 buses. It includes detailed
physical properties of the grid, such as generator con-
figurations and line capacities. However, because there
are only 11 regions (buses) in the original NYISO data
set, we create an adapted loading data set as follows.
The demand of each bus in the new data set is the total
demand of two randomly picked regions in the NYISO
data set. For each bus, the minimum demand over the
two months is selected as the base power and each de-
mand record is normalized using this base power. Thus,
different buses have different base power numbers, and
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Figure 3: One-line diagram of the system for
case study.

the new data set has 18,000 loadings, where each de-
mand record is within the range of [1.0, 1.7] per unit
(p.u.). Note that these normalized p.u. values allow us
to learn an identical δ(∆t) that is applicable to all the
buses. We follow the approach in §4.1 to learn δ(∆t).
Fig. 4 plots the maximum ramp-up functions for the in-
dividual buses δi(∆t), as well as the global system-level
ramp-up function δ(∆t).
We evaluate the grid’s safety against a contingency

of a balanced 3-phase solid fault at the line from bus
#31 to bus #38, for a duration of 5 cycles (i.e., 83 ms).
As this line is a backbone, the fault may cause non-
oscillatory instability, in which all the generator speeds
drift away from the nominal value of 60Hz. Under the
default settings for this 37-bus system, if a generator’s
speed is higher than 62Hz or lower than 55Hz for more
than two seconds, it will be automatically shut down to
prevent damage. Therefore, in this case study, we de-
fine the safety condition based on the post-contingency
operation status of all the generators. Specifically, un-
der a loading, if all the generators remain in operation
20 seconds after the contingency, the grid is considered
safe; otherwise, it is unsafe.
We follow the approach in §4.2 to generate training/testing

data for the ELM using PowerWorld. For instance,
Fig. 5 shows the speed of a generator in two T-D sim-
ulations (labelled by Sim1 and Sim2 respectively) for a
loading in the data set with different increments in de-
mand at each bus as illustrated in Fig. 4. In Sim1, the
grid is safe. In Sim2, the demand increment is 0.146 p.u.
The generator is shut down after six seconds, which vi-
olates the safety condition. If the demand increment is
smaller than 0.146 p.u., the grid remains safe. Thus, for
this loading, P = 0.146 p.u., which maps to T = 57min
according to δ(∆t) in Fig. 4. By leveraging the mono-
tonic property of grid safety discussed in §4.1, we use
binary search to speed up the process of finding P given

0

0.1

0.2

0 25 50 75 100

ra
m

p
u
p

(p
.u

.)

∆t (minute)

T

P

Sim1

Sim2

δi
δ

Figure 4: Maximum
ramp-up functions for
individual buses and
the system.

59

60

61

62

63

0 2 4 6 8 10 12 14 16 18 20G
en

er
at

o
r

sp
ee

d
(H

z)

Time (second)

shutdown

Sim1
Sim2

Figure 5: Speed of the
generator at bus #44
after a fault occurred
at time zero.

50

150

250

350

450

550

0 6 12 18 24 30 36 42 48
10

15

20

25

30

T
(m

in
u
te

)

T
o
ta

l
d
em

an
d

(G
W

)

Time (hour)

T in testing data
predicted T

Total demand

Figure 6: T and the total demand in two days.

a loading L. On a workstation computer with an In-
tel Xeon quadcore CPU at 2.8GHz, it takes about 15
seconds to process a loading, and hence about three
days to complete the data generation. In practice, high-
performance computers can be used to speed up this
process.
We use one third of the generated data to train the

ELM implemented using Python [1] and the other two
thirds for testing. The training takes less than one
minute. Using ELM to estimate T for a loading takes
0.15 ms only, which is a 105x speed-up compared with
the binary search based on T-D simulations. Denoting
by P̂ the power-distance-to-being-unsafe as estimated
by the ELM, we define the relative estimation error as
P̂−P
P

× 100%. The test shows that all the relative esti-
mation errors fall within the range [−4%, 2%], and 99%
of them are smaller than 1%. This result confirms the
high accuracy of the ELM. Fig. 6 shows the T estimated
by the ELM and its corresponding true value in the test-
ing data, as well as the total demand of the 25 buses,
in two days. We can see that the ELM can accurately
estimate T . Consistent with intuition, T and the total
demand exhibit opposite trends over time.

5. TWO-PHASE LOAD MANAGEMENT

This section starts with an overview of the two-phase
load management proposed in §5.1. Then, §5.2 and §5.3
detail the load curtailment and shedding approaches, re-
spectively. Lastly, §5.4 discusses several implementation
issues.

5.1 Overview of Two-Phase Load Management

The safety assessment and load management are car-
ried out periodically. At the beginning of each cycle, the
system measures L and estimates T by ELM. The two
phases of the load management are load curtailment and



load shedding. According to the T estimated at the be-
ginning of each cycle, the system determines the current
phase and applies its corresponding management strat-
egy. In the load curtailment phase, the system curtails
the power usage of customers via a DR program. The
curtailment schedule at each bus is a list of suggested
demand ceilings for several subsequent cycles. This pa-
per focuses on scheduling the demand ceilings for buses.
A demand ceiling for a bus can be further decomposed
into demand ceilings for individual customers connected
to the bus and participating in the DR. If the per-bus
demand values do not exceed these ceilings, T will be
maintained around a predefined level. Note that the
demand ceilings could be translated as alternative DR
signals including real-time prices [17], as long as a model
for bus demand given the DR signal is available. In the
load shedding phase, some breaker(s) in the grid’s core
will open to disconnect some subset of the loading im-
mediately.
The system enters/exits the load curtailment phase

by comparing T with a warning threshold denoted by
TW . Various existing load shedding approaches [7, 15]
can be applied for the load shedding phase. In this pa-
per, we adopt a hysteresis-based load shedding approach
[15], which is designed to exploit the predictive safety
metric T . This approach uses two thresholds, namely
the restorative and emergent thresholds (denoted by TR

and TE), which are used respectively as triggering and
exiting watermarks for the load shedding. We assume
that TW > TR > TE . How to set the three thresholds
is the subject of §5.4.1. Regarding a cycle, its length
should be chosen to achieve a suitable tradeoff between
(i) the communication overhead of sending curtailment
schedules to a large number of customers, and (ii) pre-
diction accuracy, which typically degrades with longer
cycles. Moreover, cycle lengths adopted by existing DR
proposals such as real-time pricing [17], which are in low
tens of minutes, provide reference settings.
We now use the example shown in Fig. 7 to illustrate

switching between the two phases during peak hours.
For simplicity of exposition, the beginning of the kth
cycle is referred to as time instant k. In Fig. 7, at
k = 0, as T > TW , the grid is considered safe enough
and no management actions are applied. As the load-
ing increases, at k = 1, T drops below TW and the
system enters the load curtailment phase. In particu-
lar, a MPC-based algorithm for curtailment scheduling
(cf. §5.2) computes a curtailment schedule for each bus,
which aims to maintain T above TW in a few (two in
Fig. 7) subsequent cycles. The square dots in Fig. 7(b)
give the demand ceilings for bus #1 in the curtailment
schedule. However, as discussed in §3, the buses may re-
duce their demand but in this scenario they still exceed
the scheduled ceilings. As a result, T keeps decreasing
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Figure 7: Illustration of the proposed two-phase
load management during peak hours: The digit
labels in Subfigure (a) give the numbers of shed
buses. Subfigure (b) shows the actual demand
and suggested demand ceilings.

and drops below TE at k = 3. At this point, the grid is
in an emergent condition and the hysteresis-based load
shedding [15] is activated to prevent the grid from be-
coming unsafe. Under this hysteresis-based approach
[15], if T is below TE in a cycle, a certain percentage of
load on a newly selected bus is shed. On the other hand,
if T is above TR in a cycle, this approach reconnects the
previously shed load at a selected bus. At k = 7, all the
buses have been relieved from the load shedding. But
as T is still under TW , the system switches to the load
curtailment phase. At k = 8, T > TW and no more
management actions are needed.

5.2 MPC-Based Load Curtailment

In this section, we formulate the load curtailment
problem based on the principles of MPC [8]. Since nor-
mally bus-level demand is predictable due to its intrinsic
strong autocorrelation [17], as well as the predictabil-
ity of extrinsic factors like weather, MPC is a suitable
tool for planning the demand ceilings. In the following,
§5.2.1 describes the models for demand prediction and
curtailment, and §5.2.2 develops the proposed MPC-
based algorithm for curtailment scheduling.

5.2.1 Preliminaries

Demand Prediction Model. An accurate prediction
model is key to the effectiveness of MPC. Various de-
mand prediction models have been applied in practice
for generation scheduling and real-time pricing in elec-
tricity markets [3]. Due to strong temporal correlation
in the demand of a bus in normal operation, most ex-
isting prediction models assume that a future demand
depends on the most recent past demand.
We adopt an abstract prediction model as follows. Let



0

1

2

3

4

0 2 4 6 8 10 12

P
re

d
ic

ti
o
n

er
ro

r
(%

)

Prediction horizon h (cycle)

Figure 8: Relative prediction errors: error bar
represents 90% confidence interval; cycle length
is 5 minutes; R = 24.

di,k, di,k−1, . . . , di,k−R+1 denote the R most recent ac-
tual demand levels of bus i at time instant k. Its pre-
dicted demand in the next cycle, denoted by d̂i,k+1, is
given by

d̂i,k+1 = fi(di,k, di,k−1, . . . , di,k−R+1,Θ), (1)

where Θ represents all other time-varying and/or bus-
dependent affecting factors such as forecast weather data.
This prediction model can be used to generate multi-
horizon predictions in a recursive manner, i.e.,

d̂i,k+h = fi(d̂i,k+h−1, . . . , d̂i,k+1, di,k, . . . , di,k+h−R,Θ),

where h is the prediction horizon. In the evaluation in
this paper, we adopt a linear autoregressive (AR) model

[17], i.e., d̂i,k+1 =
∑R−1

j=0 ajdi,k−j + aR, which can pre-
dict demand accurately. We use one third of the loading
data created in §4.3 to learn the coefficients {aj}

R
j=0 and

use the rest for testing. Fig. 8 shows the error bars of
relative prediction errors for bus #1 versus the predic-
tion horizon h. We can see that the AR model achieves
accurate predictions, with relative errors less than 4%.
Moreover, consistent with intuition, the prediction error
increases with h.

Curtailment Model. The operator of each bus imain-
tains a curtailment schedule, which is a first-in-first-out
(FIFO) queue consisting ofH demand ceilings. It is for-
mally represented by Si = [Di,1, Di,2, · · · , Di,H ], where
Di,1 and Di,H are the oldest and newest elements, re-
spectively, and H is the optimization horizon of the
MPC-based curtailment scheduling (cf. §5.2.2).
At the beginning of each cycle, there is a short curtail-

ment scheduling session. During this session, the system
operator computes the curtailment schedules and com-
municates with each bus i to update all the elements
in Si. After this session, bus i pops Di,1 and uses it
as the demand ceiling for the current cycle to guide its
curtailment. Ideally, at the end of the current cycle,
the demand of bus i is no higher than Di,1. (The re-
maining elements in the schedule, i.e., Di,2 to Di,H , are
estimated demand ceilings for the subsequent H − 1 cy-
cles, which will be updated by the system operator in
the future curtailment scheduling sessions. The bus can
use these estimates to prepare for the curtailments in the
subsequent cycles.) Then, the bus duplicates the newest

element Di,H and pushes it onto Si. Although all the
elements in Si will be updated in the next curtailment
scheduling session, this self-duplication step simplifies
the system design when the load management subsys-
tem switches from the load curtailment phase to the
load shedding phase, which will be discussed in §5.4.2.
The above curtailment model has clear and simple se-
mantics to system operators and customers. As such,
it simplifies the design of supporting DR devices and
fosters adoption.

5.2.2 MPC-Based Curtailment Scheduling

This section develops an algorithm to determine the
demand ceilings in the curtailment schedules of the buses.
Executed in each curtailment scheduling session, the al-
gorithm aims to maintain T at around TW , assuming
that all the buses follow the curtailment schedules ex-
actly. In §6, we will evaluate extensively the impact of
customer commitment to the curtailment schedules on
the performance of the scheduling algorithm. Suppose
we need to compute the curtailment schedules for the
kth to (k+H−1)th cycles at time instant k. We denote
xh ∈ R≥0 the demand curtailment in p.u. for any bus in
the (k+h)th cycle, and define X = [x1, . . . , xH ] ∈ R

H
≥0.

Imposing the same per-unit curtailment on all the buses
achieves max-min fairness [9]. Note that since different
buses may have different base powers (cf. §4.3), the de-
mand curtailments in watts, which are translated from
the xh, vary across the buses. Let d̃i,k+h denote the pre-
dicted demand of bus i at time instant k + h provided
that the bus curtails xh p.u., i.e.,

d̃i,k+h=fi(d̃i,k+h−1, . . . , d̃i,k+1, di,k, . . . , di,k+h−R,Θ)−xh.
(2)

Based on {d̃i,k+h|i ∈ [1,m], h ∈ [1, H ]}, we can predict
the TTBUs for the subsequent H cycles using ELM,
which are denoted by {T̃k+h}

H
h=1. Therefore, these pre-

dicted TTBUs depend on X. Moreover, we define the
following two quantities. First, as the objective of the
curtailment scheduling is to maintain the prediction T̃
at around TW , we define the cost function:

c(T̃ |TW ) = |T̃ − TW |.

Second, rapidly changing curtailments – i.e., large vari-
ations in the elements in X – make it challenging for
customers to plan their power consumption in the pres-
ence of practical constraints and may thus reduce their
commitment to the curtailment schedules. We define
an abstract function σ(X) to quantify the variation, as
follows:

σ(X) = max
h∈[1,H]

|xh − xh−1|, (3)

where x0 represents the implemented curtailment in the
(k−1)th cycle. Note that other realizations of σ(X) such
as standard deviation may also be used.



We formulate the following:

Curtailment scheduling problem. Find X ∈ R
H
≥0 to

minimize C(X)=
∑H

h=1 c(T̃k+h|TW ) subject to σ(X)≤σ0.

In the above formulation, σ0 is the maximum allowed
variation of the curtailments. It can be tuned by the sys-
tem operator according to empirical past data on how
it may impact customer commitment. The problem is
a constrained non-linear optimization problem that has
to be solved in real time. As C(X) depends on the
ELMs, it has no closed-form formulas. Thus, an opti-
mal algorithm of polynomial time complexity is likely
unavailable.
Under our realization of σ(X) in Eq. (3), the com-

plexity of brute-force search is O(N · ⌈σ0/q⌉
H), where

N represents the number of ELMs to address multi-
ple safety criteria, and q represents the search granular-
ity for each element in X. The evaluation in §6 shows
that a small setting for H suffices. Thus, a brute-force
search may still have acceptable delay. For instance,
when H = 4, it takes 8 to 10 seconds only on a com-
mon desktop computer. When a large H is needed, a
constrained simulated annealing algorithm (CSA) [22],
which can handle cost functions specified by a proce-
dure instead of in closed-form, may be used to obtain
near-optimal solutions. Our tests with H ∈ [1, 10] show
that the CSA yields the exact optimal solution and its
computation time increases linearly with H . It is worth
noting that, since the ELM is invoked for each candi-
date solution X in the search algorithm, the high-speed
ELM makes it feasible to apply the MPC-based curtail-
ment scheduling in practice. Such predictive scheduling
would be infeasible if time-consuming T-D simulations
were required.
Our problem can have multiple optimal solutions. In

that case, we choose the one with the minimum
∑H

h=1 xh

such that curtailments are applied only when they are
necessary. We denote by X∗ = {x∗

h}
H
h=1 the optimal

solution we choose. At time instant k, each ceiling Di,h

in the curtailment schedule Si is updated with d̃i,k+h

given by Eq. (2) with xh = x∗
h. As discussed in §5.2.1,

only Di,1 will be applied for the current cycle and other
ceilings in Si serve as hints only and they will be up-
dated in subsequent curtailment scheduling sessions be-
fore actual application. This is consistent with receding

horizon control in MPC [8], which is widely adopted
to improve system robustness to prediction inaccuracy.
This robustness is particularly important in our prob-
lem domain, because uncertain and variable customer
commitment, as well as potential unreliability of DR
devices, may affect the prediction accuracy of Eq. (2)
significantly. For instance, underestimated demand ceil-
ings for the subsequent cycles due to limited customer

commitment need to be amended in time before appli-
cation.

5.3 Hysteresis-Based Load Shedding

Load shedding is a well-established technology in power
grids [14] to cope with unsafety detected by online con-
tingency analyses such as those discussed in §2.2. In-
tegrated with the MPC-based load curtailment in §5.2,
existing load shedding can be used easily as a compo-
nent in the proposed two-phase management. In our
evaluation, we adopt a hysteresis-based load shedding
approach [15] designed to exploit the foresight of TTBU.
We now describe briefly its principles, while the details
can be found in [15]. Under this approach, the two
thresholds TE and TR (cf. §5.1) serve as the low and
high watermarks for the hysteresis. If T is below TE

in a cycle, a certain percentage (denoted by ρ) of load
at a newly selected bus is shed; on the other hand, if
T is above TR in a cycle, the previously shed load at a
selected bus is reconnected. The load management sub-
system exits the load shedding phase if all the shed loads
have been restored. The percentage of load to be shed
in a cycle is specified by the system operator, subject to
a tolerable level of disturbance caused by disconnecting
load, as well as other constraints such as service agree-
ments.

5.4 Implementation Considerations

This section discusses two important issues when im-
plementing the two-phase load management.

5.4.1 Configurations for TE, TR, and TW

As the load shedding phase is a fallback mechanism,
the two thresholds used by the hysteresis-based load
shedding approach, TE and TR, need to guarantee that
T will not reach zero even without the load curtailment
phase. Simulations based on past loading data can be
conducted to search for the minimum settings of TE

and TR such that T never goes to zero. With fixed
TE and TR, TW should be chosen to minimize the ac-
tivations of load shedding. However, the effectiveness
of load curtailment depends on customers’ commitment
to the curtailment schedules. Similarly, simulations can
be conducted to search for the minimum settings of TW

under different commitment levels, such that T does not
drop below TE . At run time, the system operator can
update TW periodically (e.g., every month) according to
the observed commitment level. In §6, we will conduct
simulations to illustrate this configuration approach.

5.4.2 Phase Transits

We now discuss our design when the load management
subsystem switches from load curtailment to load shed-
ding. After the transition, the system operator stops



updating the curtailment schedule for each bus (i.e.,
Si). However, by following the self-duplication step de-
scribed in §5.2.1, each bus i will keep popping the oldest
element and pushing a duplicate of the newest element
onto Si in every cycle. If bus i has not been selected
to shed load, it will use the popped demand ceiling to
guide its curtailment. Otherwise, the loads that be-
long to bus i but are not disconnected (recall that only
ρ×100% of the load is disconnected) are also subject to
demand ceilings as part of the popped demand ceiling
for the whole bus. When the load management subsys-
tem switches back to the load curtailment phase, the
curtailment scheduling is resumed and all the bus cur-
tailment schedules will be updated. If another existing
load shedding approach is used to replace the hysteresis-
based approach, minor modifications to the above de-
sign may be needed for the phase transitions.

6. TRACE-DRIVEN SIMULATIONS

6.1 Simulation Methodology and Settings

The simulations are based on the 37-bus systems shown
in Fig. 3 and the synthetic loading data traces described
in §4.3. The contingency event and safety condition are
the same as in §4.3. We use the testing data traces to
drive the simulations. When no load management ac-
tions are applied, the demand of each bus is set with
the testing data. When the system enters the load cur-
tailment phase, we simulate the desired demand of each
bus as follows. Let di,k and d̄i,k denote the demand of
bus i at time instant k in the simulation and the data
traces, respectively. The desired demand of this bus
at the next time instant, denoted by d∗i,k+1, is set by

d∗i,k+1 = d̂i,k+1 + η · (d̄i,k − di,k), where η is a constant

and d̂i,k+1 is given by Eq. (1) with fi(·) realized by a
trained linear AR model. Note that as the AR model
captures the trend of demand only, it alone cannot drive
the simulations. Thus, we use the term η · (d̄i,k − di,k)
in d∗i,k+1 to capture the reason for demand increase in
the data trace.
The buses curtail their demands with a certain com-

mitment ξ ∈ (0, 1). Specifically, the actual demand of
bus i at time instant k+1, i.e., di,k+1, is set to an inter-
polated value ξDi,1+(1−ξ)d∗i,k+1, where Di,1 is the de-
mand ceiling in the curtailment schedule for the current
cycle. Once bus i is selected to implement load shedding
at time instant k0, the shed demand is ∆di = ρ · di,k0

and the actual demand is reset by di,k0
= di,k0

− ∆di.
The actual demand at any subsequent cycle under load
shedding is set to di,k = d̄i,k − (d̄i,k0

− di,k0
), such that

the simulated actual demand preserves the shape of the
real demand trace over time, but is reduced by a con-
stant (d̄i,k0

−di,k0
). Once bus i is restored from the load
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Figure 9: Estimation errors and delays of ELM-
based and data-driven safety assessments.
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Figure 10: Peak hours of Aug 02, 2012 (H = 3).

shedding, its actual demand is reset to di,k = di,k+∆di.
To simplify the simulations, we set the cycle length to 5
minutes, which is the same as the period of the load-
ing data. Default settings for other parameters are:
TW = 60min, TR = 40min, TE = 20min, H = 2,
σ0 = 0.01 p.u., η = 0.5, ρ = 5%, and R = 24.

6.2 Simulation Results

6.2.1 Effectiveness of ELM-Based Safety Assessment

We compare our ELM-based approach with a data-

driven baseline approach. This baseline approach stores
the training data set consisting of a large number of
data pairs 〈L, P 〉. At run time, it searches the data pair
with an L closest to the input L in terms of Euclidean
distance and outputs the P of the pair. Fig. 9 compares
the estimation errors and delays of the ELM-based and
baseline approaches. Consistent with intuition, their
estimation errors shown in Fig. 9(a) decrease with the
training data volume. Our ELM-based approach is more
accurate. Fig. 9(b) shows the ratio of the delays of the
baseline and ELM-based approaches, where the delay
of ELM is within [0.10, 0.15] milliseconds. The delay of
the baseline approach increases with the training data
volume, and is much longer than that of ELM.

6.2.2 Effectiveness of MPC-Based Load Curtailment

In this set of simulations, we disable the hysteresis-
based load shedding and focus on the evaluation of MPC-
based load curtailment. Fig. 10 shows the evolution of T
during the peak hours of a day. Without any load man-
agement, the system is unsafe (i.e., T is around zero)
for more than four hours. With load curtailment, if the
customer commitment is high (90%), T can be main-
tained at around TW . If the customer commitment is
low (50%), T keeps below TW but will not reach zero.
Note that the system exits the load curtailment phase
if T has been above TW for a certain time duration (0.5
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hours in Fig. 10).
We also evaluate the impact of H on the system per-

formance by the following two metrics. First, for a cer-
tain time instant, we compute the error between the ac-
tual demand and the predicted demand given by Eq. (2),
averaged over all prediction horizons h ∈ [1, H ]. We
further average the errors over all the time instants.
Fig. 11(a) plots the average prediction error versus H .
Second, we refer to the sum of (TW −T ) over time when
T is below TW as overshoot sum, which characterizes the
effectiveness of load curtailment. Fig. 11(b) plots the
overshoot sum versus H . From Figs. 11(a) and 11(b),
we can see that both the prediction error and overshoot
sum decrease with commitment. When ξ = 90% and
ξ = 50%, both metrics are minimal when H = 2 and
H = 1, respectively. For MPC, a larger H does not
necessarily improve the overall performance due to a
decreasing prediction accuracy with h [8]. Moreover,
customer commitment also significantly affects the pre-
diction accuracy. Nevertheless, we can see that the over-
all performance of load curtailment is not sensitive to
H . Thus, a small setting for H (e.g., 1 to 3) will suffice.
Fig. 12 shows the actual demand of bus #1 under dif-

ferent commitment levels for a few cycles around 5pm in
Fig. 10. With a low commitment, the demand of the bus
is high, leading to a low T in Fig. 10. Fig. 12 also plots
the scheduled demand ceilings computed at k = 120 and
k = 121. For a low commitment, a demand ceiling for a
certain cycle needs to be significantly changed due to the
reduced prediction accuracy caused by the low commit-
ment. Such a change is referred to as schedule revision,
which is illustrated in Fig. 12. Fig. 13 shows the aver-
age schedule revision versus commitment with different
optimization horizons. We can see that the schedule re-
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vision decreases with commitment. It implies that, if
the customers follow the curtailment schedules better,
their schedules change less in return, thereby mitigating
the challenges in power consumption planning.

6.2.3 Configurations of TE and TW

Fig. 14(a) shows the minimum TE that ensures a non-
zero T versus ρ. For instance, if ρ is set to 3% to meet
a tolerable level of disturbance due to load shedding,
from Fig. 14(a), TE must be larger than 10 minutes.
Fig. 14(b) shows the minimum of T in the simulations
versus TW under different commitment levels. If TE

is 10 minutes (represented by the horizontal line), TW

should be set to 90, 20, and 13 minutes if the observed
commitment is 30%, 60%, and 90%, respectively.

6.2.4 Performance of Two-Phase Load Management

We compare the two-phase load management scheme
with a baseline scheme with hysteresis-based load shed-
ding only. Fig. 15(a) shows the evolution of T . Fig. 15(b)
shows the demand of bus #1 as well as the number of
shed buses. Under the two-phase scheme and the set-
ting ξ = 30%, at most 8 buses need to shed any load.
Note that if ξ is higher than 51%, no buses need to shed
load. In contrast, for the baseline scheme, all the 25
buses need to shed load from 3pm to 7pm. This result
shows that with load curtailment, the chance of load
shedding can be reduced.

7. CONCLUSION AND FUTURE WORK

We presented a two-phase smart-grid load manage-
ment scheme that switches between the load curtail-



ment and shedding phases, in which the swtiching is
controlled by a new safety metric called time-to-being-

unsafe. The scheme allows the grid to correct its un-
dersupply gracefully in the common case, when users
participate in the collaborative demand-response as ex-
pected. At the same time, it guarantees to avert unac-
ceptable system failure even in the case of erratic cus-
tomer behavior, by falling back on conventional load
shedding in an assured and timely manner where nec-
essary. Simulations based on a 37-bus system and real
traces of electrical load demonstrate the features of the
proposed design.
For future research, succinct but realistic models of

customer commitment to curtailment schedules are in-
teresting. Inclusion of these models in the MPC-based
curtailment scheduling may further improve its effec-
tiveness and reduce the need for load shedding. The
curtailment scheduling may also be relaxed to admit dif-
ferent per-unit curtailment for different buses, to better
account for the heterogeneity of buses in the real world.
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