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Overloaded Grid is Unsafe 
• Loss of generation 

– Unexpected failures 

• Transmission line short circuit 
– Hits by overgrown trees (2003 Northeast Blackout) 
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Existing Solution: Load Shedding 
• Disconnect some loads 

– When demand surges or failure detected 

– Resilient to (remaining) credible contingencies 

• Unfair, uncomfortable 



New Opportunity: Load Curtailment 

• Collaborative load curtailment 
– Fair, less painful 
– Untrustworthy (human factors, huge # of edge devices) 

 

• Handle overload using curtailment with safety assurance? 

Residential air conditioner moderated by 
real-time electricity price [ComEd Illinois] 

Large commercial and industrial curtailment 
programs [CenterPoint Energy] 
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Challenges 

• Existing grid safety assessment tools 
– Time-domain simulators [PowerWorld] 

Slow! 

– Learning-based classifiers [Sun 2007, Amjady 2007] 
“Safe” or “unsafe” for triggering shedding 
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• Curtailment needs time to take effect 
– Too late to trigger curtailment if already unsafe 
– Predictive assessment needed 

 

• Safety: non-linear 
– Curtailment scheduling repeatedly invokes assessment 
– Rapid assessment needed 

 



Outline 

• Motivation, Approach Overview 

• Rapid and Predictive Grid Safety Assessment 

• Predictive Curtailment Scheduling 

• Simulations 



Background of Safety Assessment 

• Grid is safe if safety condition is met when 
contingency happens 

– Safety condition 
Example: All generators’ speed within (55 Hz, 62 Hz) 

– Contingency 
Example 1: Most overloaded line trips 
Example 2: Any single line trips 
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• Safety depends on grid state 

– Load (dominating) 

Basic requirement: Tolerate loss of any single line 
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An Example 
G 

G 

G 

Load bus 8 

Load bus 5 
Load bus 6 

Bus6 demand (MW) 

IEEE 9-bus system 
Time-domain simulation result 

(Bus5 demand fixed) 

unsafe 

• Safety assessment 
– Contingency: short circuit on a line 
– Safety condition: speed dev < 3 Hz 

• A grid becomes unsafe if demands increase 
– How much time from now? 

 

safe 

now 
transformer 



Time to Being Unsafe (TTBU) 
• TTBU is minimum time t 

grid with demand D + Δ(t) is unsafe 
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Time to Being Unsafe (TTBU) 
• TTBU is minimum time t 

grid with demand D + Δ(t) is unsafe 

 

 

 

 

 

 

• Predictive but compute-intensive safety metric 

– Run PowerWorld for each t 
15 secs for 37-bus system on 4core @ 2.8GHz 
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learned from New York ISO load data 
June-July, 2012 



ELM-Based Assessment 
• Extreme Learning Machine [Huang 2006] 

– Neural network with one hidden layer 
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– TTBU from offline time-domain simulations 
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• Extreme Learning Machine [Huang 2006] 

– Neural network with one hidden layer 
 

• Training data set {<demand vector, TTBU>} 
– Demand history 
– TTBU from offline time-domain simulations 

 

37-bus system 

Time (hour) 

true value 

ELM 

avg err = 0.9% 
105x speed-up 
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Demand Prediction Model 
• Strong temporal correlation 

– One-step prediction 
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Demand Prediction Model 
• Strong temporal correlation 

– One-step prediction 

 

– Recursive prediction at horizon h 
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Prediction horizon h 

New York ISO data 
Cycle = 10 min 
R = 12 

f(·) = autoregressive model 

avg err = 1.3% 
at 1 hour horizon 
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Simulation Settings 

• Commitment ξ ∈ [0, 1] 

37-bus system 

Contingency: 
Short circuit on a backbone line 
 
Safety condition: 
Generators’ speed within (55 Hz, 62 Hz) 
 
Demand: 
Synthesized from New York ISO load data 
 
Cycle len = 10 min, σ0 = 0.02 p.u. 

actual demand = ξ × demand ceiling + (1 – ξ ) × desired demand 
 
(desired demand: data traces) 



Alternative Designs of ELM 

# of hidden neurons of ELM 

Demand 
Demand + Generation * 

Demand + Generation + Line flow 
Demand + Generation + Line flow + Bus voltage 
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Demand 
Demand + Generation * 
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• More state data improves accuracy slightly 
– Need more sensors 
– Estimating them from demands incur overhead 

 

good setting 

* Generation follows demand by economic dispatch 
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Impact of Commitment 

• ξ > 0.4, load shedding avoided 

 

Peak hours of a day 

safeguard 
threshold 

No load management 
Load curtailment (ξ = 0.9) 

Load curtailment (ξ = 0.5) 

unsafe for 4 hrs 

well maintained if 
commitment high 



Setting of Safeguard Threshold 

• Low commitment 

– High safeguard 

Minimum 
safeguard threshold 
to avoid load shedding 
(minutes) 

0.3 0.6 0.9 
Commitment ξ 



Impact of Optimization Horizon 
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Impact of Optimization Horizon 

 


H

h h1
|safeguardTTBU|min. 

• Too small H 

– Ignore impact (due to demand inertia) on later steps 

• Too large H 

– Low prediction accuracy 

 

Optimization horizon H 

ξ = 0.9 



Conclusion and Future Work 

• Safety-assured collaborative load management 

– Time to being unsafe 

– Rapid and predictive safety assessment 

– Predictive curtailment scheduling 

• Evaluation on 37-bus system 

 

• Future work 

– Study and integrate empirical commitment models 

• Affected by {x1, …, xH} and σ(x1, …, xH) 

 

 


