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Abstract

Recent years have seen the growing deployments of

Cyber-Physical Systems (CPSs) in many mission-critical

applications such as security, civil infrastructure, and trans-

portation. These applications often impose stringent re-

quirements on system sensing fidelity and timeliness. How-

ever, existing approaches treat these two concerns in iso-

lation and hence are not suitable for CPSs where system

fidelity and timeliness are dependent of each other because

of the tight integration of computational and physical re-

sources. In this paper, we propose a holistic approach

called Fidelity-Aware Utilization Controller (FAUC) for

Wireless Cyber-physical Surveillance (WCS) systems that

combine low-end sensors with cameras for large-scale ad

hoc surveillance in unplanned environments. By integrat-

ing data fusion with feedback control, FAUC can enforce a

CPU utilization upper bound to ensure the system’s real-

time schedulability although CPU workloads vary signifi-

cantly at runtime because of stochastic detection results. At

the same time, FAUC optimizes system fidelity and adjusts

the control objective of CPU utilization adaptively in the

presence of variations of target/noise characteristics. We

have implemented FAUC on a small-scale WCS testbed con-

sisting of TelosB/Iris motes and cameras. Our extensive ex-

periments on light and acoustic target detection show that

FAUC can achieve robust fidelity and real-time guarantees

in dynamic environments.

1 Introduction

Cyber-Physical System (CPS) is a new class of embed-

ded systems that tightly integrate computational and physi-

cal resources. Recent years have seen the growing deploy-

ments of CPSs in many mission-critical applications such as

security, civil infrastructure, and transportation. These ap-

plications often impose stringent performance requirements

including sensing fidelity and timeliness. In this work, we

define fidelity as a system’s capability of reaching correct

conclusions even when the sensing results from the dynamic

physical environment are noisy. In addition to fidelity, time-

liness is another fundamental requirement as many compu-

tational tasks in a CPS must complete within tight deadlines

in order to avoid undesirable or even catastrophic conse-

quences.

In this work, we investigate the problem of address-

ing both fidelity and timeliness requirements of Wire-

less Cyber-physical Surveillance (WCS) systems. A

typical WCS system consists of battery-powered cam-

eras, sensors, and embedded computers that communi-

cate through wireless networks. Without the reliance on

wired power/communication infrastructure, WCS systems

can be rapidly deployed in an ad hoc manner for large-scale

surveillance in unplanned environments. This is a key ad-

vantage for many critical domains such as security, trans-

portation, and natural/physical hazard monitoring. In 2008,

a number of wirelessly connected cameras were deployed

for real-time and high-fidelity surveillance over a 26-mile

course of the Boston Marathon which attracted over 20,000

runners and more than one million spectators [1]. In other

scenarios like border security, WCS systems need to pro-

vide surveillance and intruder detection during an extended

period of time up to several years. Because of the tight

budget on power resources and network bandwidth, WCS

systems often operate in an on-demand fashion where low-

end (e.g., acoustic/infrared/magnetic) sensors serve as “sen-

tinels” that wake up high-quality but power consuming sen-

sors (e.g., pan-tilt-zoom cameras) once a possible target is

detected. High-quality sensing results (e.g, images) are then

transmitted to an embedded computer for high-fidelity ob-

ject detection and recognition.

Both fidelity and timeliness are essential requirements

of the WCS systems described above. As an example, users

may require any target of interest to be detected “at high fi-

delity (both missing and false alarm rates lower than 1%)

and in real time (delay within five seconds)”. However, a

key challenge is that the timeliness and fidelity of a WCS

system are tightly dependent of each other. First, the per-

formance of low-end sensors is extremely sensitive to dy-

namics in the physical environment. It is shown in [2] that

individual dual-axis magnetometers on Mica2 motes [3] can

exhibit up to 60% false alarm and missing rates. As low-

end sensors trigger image capture and processing, their poor

fidelity can significantly affect the workload and real-time

performance of the system. For instance, the false alarms



from low-end sensors not only lead to energy waste of cam-

eras but also generate extra computation workload for im-

age processing. On the other hand, reducing CPU workload

and camera activity unnecessarily may lead to the increased

target missing rate.

In this paper, we argue that the fidelity and real-time

concerns of WCS systems must be jointly addressed be-

cause of the tight integration of system computational and

physical components. Numerous real-time scheduling algo-

rithms have been proposed to achieve real-time guarantees

for computing systems. However, many of them require

detailed knowledge of CPU workload while WCS systems

are subject to stochastic workload because of the impact

of physical dynamics. Several recent approaches [4–6] can

handle variable system workload. However, they are incog-

nizant of system fidelity requirements. On the other hand,

although sensor calibration [7] and signal processing [8]

techniques are available to improve the fidelity of a sens-

ing system, they do not account for the impact on system

timeliness. For instance, minimizing target missing rate of-

ten leads to a high false alarm rate [8], which in turn poses

undesirable CPU workload for a WCS system as discussed

earlier.

In this work, we propose a novel approach to holisti-

cally addressing the fidelity and timeliness requirements of

WCS systems. Our approach integrates multi-sensor data

fusion [8] with feedback control to achieve adaptive fidelity

and real-time guarantees for WCS systems operating in dy-

namic environments. Specifically, we make the following

major contributions in this paper.

1. We propose a novel problem formulation for the

fidelity-aware utilization control problem where a

given upper bound on the CPU utilization is enforced

while system detection error rate is minimized. Our

formulation is based on two rigorous performance

models that characterize the fusion-based detection

performance and the expected CPU utilization induced

by processing stochastic detection results.

2. We develop Fidelity-Aware Utilization Controller

(FAUC) that adaptively adjusts the data fusion thresh-

old to bound the CPU utilization according to user re-

quirement. At the same time, FAUC minimizes the

system detection error rate while ensuring real-time

schedulability.

3. We have implemented FAUC on a small-scale WCS

testbed consisting of TelosB motes, Iris motes, and

cameras. Our extensive experiments on light and

acoustic target detection show that FAUC can achieve

robust fidelity and utilization control in the presence of

significant physical dynamics.

The rest of the paper is organized as follows. Section

2 reviews related work. Section 3 presents the background

on sensing and data fusion models. Section 4 describes our

problem and provides an overview of our approach. Section

5 and 6 model system performance and present the design

of FAUC, respectively. Section 7 presents the experimental

results and Section 8 concludes the paper.

2 Related Work

Data fusion [8] is an effective signal processing tech-

nique that improves the fidelity of sensing systems by mit-

igating the impact of noise. Most previous studies [8]focus

on analyzing the optimal fusion strategy of a given sensing

system. In our earlier work [9] [10], we study the impact of

data fusion on spatial and temporal coverage of large-scale

sensor networks. Sensor calibration can also improve sys-

tem fidelity by correcting sensor biases. In [11], the biases

of light sensors are estimated by solving the equations that

correlate their measurements. Similarly, in [7], the param-

eters of ranging sensors are estimated based on pair-wise

range measurements. In [12], sensors are jointly calibrated

to improve the system-level performance of fusion-based

sensor networks. The above approaches calibrate sensors

according to known ground truth inputs and hence work in

an open-loop fashion. In our recent work [12], we develop a

feedback-based calibration algorithm that maintains system

sensing fidelity in the presence of environmental dynamics.

However, data fusion and sensor calibration are not con-

cerned with meeting timing constraints.

Feedback control techniques have shown great promise

in providing real-time guarantees for CPSs by adapting to

workload variations based on dynamic feedback. For in-

stance, feedback-based CPU utilization control [4–6] has

been demonstrated to be an effective way of meeting the

end-to-end deadlines for real-time systems. However, most

of these algorithms rely on task rate adaptation and hence

cannot handle unpredictable task rate variations that may

be caused by low system fidelity. Different from these stud-

ies, we aim to jointly address the requirements on system

fidelity and CPU utilization of WCS systems.

3 Preliminaries

3.1 Sensor Measurement Model

We assume that sensors measure the energy of received

signals for event detection. Let si denote the signal energy

received by sensor i, which is affected by several factors and

varies for different sensors. First, each sensor may have its

hardware bias. Second, the measurement value is stochas-

tic as it inevitably contains environmental noise. Third, the



signal path loss between the event and sensor varies with

distance and terrain. Depending on the hypothesis that the

target is absent (H0) or present (H1), the measurement of

sensor i, denoted by yi, is given by

H0 : yi = ni, H1 : yi = si + ni,

where ni is the energy of noise in sensor i’s measurement.

We assume that the noises of sensors are independent and

follow the normal distributions, i.e., ni ∼ N (µi, σ
2
i ), where

µi and σ2
i are the mean and variance of ni, respectively.

The sensor measurement model described above has been

widely adopted in the literature of event detection [13] and

also have been empirically verified [14] [15]. However,

many previous studies assume that the parameters of the

above model, i.e., si, µi and σi, are known a priori. Un-

fortunately, this assumption often does not hold in reality

because of the stochastic nature of sensing. In this paper,

we assume that these parameters are unknown.

3.2 Data Fusion Model

Data fusion [8] has been proposed as an effective signal

processing technique to improve the system performance of

sensing systems. A system based on data fusion is usually

organized into multiple clusters. Each cluster has a clus-

ter head that gathers information from member sensors and

makes the system decision regarding the presence of the tar-

get. We adopted a simple data fusion model where the sys-

tem decision is made by comparing the sum of member sen-

sors’ measurements against a threshold T , which is referred

to as the fusion threshold hereafter. The cluster head makes

a positive decision if the sum of measurements exceeds the

threshold. Such a model has been adopted by several pre-

vious studies [9] [12]. Suppose there are N sensors in a

cluster. The sum of measurements, denoted by Y , is given

by Y =
∑N

i=1 yi. Let H̃0 and H̃1 represent the detection

decisions that the target is absent and present, respectively.

Denote S =
∑N

i=1 si, µ =
∑N

i=1 µi and σ2 =
∑N

i=1 σ
2
i .

Depending on whether the target is present, the sum of

sensor measurements follows the normal distribution, i.e.,

Y |H0 ∼ N (µ, σ2) or Y |H1 =
∑N

i=1 ∼ N (µ + S, σ2). A

target is detected only if the sum of sensor measurements is

greater than the threshold T , i.e., Y > T . The detection of a

target is inherently stochastic because of the random noises

in sensor measurements. The system detection performance

is characterized by two metrics, namely, the false alarm

rate (denoted by PF ) and missing probability (denoted by

PM ). PF is the probability of deciding H̃1 when no tar-

get is present, and PM is the probability of deciding H̃0

when a target is present. PF and PM can be computed by

PF = Q
(

T−µ
σ

)
and PM = Q

(
−T−µ−S

σ

)
, where Q(x)

is the Q-function of the standard normal distribution, i.e.,

Q(x) = 1√
2π

∫ +∞
x

exp
(
− t2

2

)
dt.

4 Problem Statement

4.1 System Model

We assume that a Wireless Cyber-physical Surveillance

(WCS) system consists of a base station and multiple sen-

sor clusters. Each cluster is composed of low-end and high-

quality sensors. The low-end sensors (e.g., acoustic and in-

frared sensors) usually have a low manufacturing cost and

low energy consumption. As a result, their sensing capabil-

ity is often limited. As we discussed in Section 3.2, the sys-

tem performance can be improved by employing data fusion

on the measurements of low-end sensors. The high-quality

sensors (e.g., pan-tilt-zoom cameras [16] and active radars )

can provide high-accuracy sensing and detection at the price

of higher manufacturing cost and energy consumption. In

the following, we assume that there is only one high-quality

sensor in each cluster. However, our approach can be eas-

ily extended to the case of multiple high-quality sensors,

where they may fuse their measurements to yield a detec-

tion result.

In accordance with the heterogeneous system architec-

ture, we adopt a two-phase target detection process. Ini-

tially, the low-end sensors periodically sense the environ-

ment while the cameras remain asleep because their power

consumption is typically several orders of magnitude higher

than low-end sensors [3]. The cluster head fuses data from

low-end sensors and makes a decision according to the

threshold T . If it is a positive decision, the cluster head then

activates the camera to capture an image of the surveillance

region, and sends the image to the base station. Finally, a

target recognition algorithm is executed by the base station

to process the images and detect whether a target of interest

is present. The key advantage of such a two-phase target de-

tection scheme is that the system power consumption can be

significantly reduced without sacrificing the detection per-

formance. In particular, most false alarms can be filtered

out by the data fusion of low-end sensors and hence the

high-quality sensors (i.e., cameras) can sleep for most of the

time and be switched on only when the probability of target

presence is high. As a result, the system can achieve high-

fidelity surveillance for extended lifetime in unplanned en-

vironments without wired power infrastructure. We note

that, our approach is not restricted to the particular WCS

system architecture described above. It can be applied to

similar heterogeneous system architectures where compu-

tation intensive tasks are triggered by the sensing results of

low-power sensors.

4.2 Problem Formulation

Our objective is to achieve satisfactory timeliness and fi-

delity of WCS systems. We now describe the formulation of



our problem and provide a brief overview of our approach.

To guarantee the end-to-end timeliness required by a

WCS system, the delay of each stage of the entire process of

sensing, communication, and computing must be carefully

considered. In previous studies [17], achieving real-time

sensor sampling, data fusion, and wireless communications

in surveillance systems has been extensively studied. In

this paper, we focus on providing the real-time guarantee on

target detection in base station that must run computation-

intensive tasks to process high-quality sensor data such as

images. Specifically, we control the CPU utilization to en-

force appropriate schedulable utilization bounds, e.g., the

Liu and Layland bound for rate-monotonic scheduling [18],

despite significant uncertainties in system workloads. In the

meantime, utilization control can also enhance system sur-

vivability by providing overload protection against work-

load fluctuation [19]. Our approach can be integrated with

previous solutions [17] to ensure the end-to-end timeliness

of a WCS system. For instance, the deadline of target detec-

tion can be ensured by enforcing sub-deadlines for sensing,

communication, and computing separately. We note that

the delay of computation is often significant when complex

sensing data such images need to be processed.

Several challenges must be addressed to satisfy both

timeliness and fidelity requirements simultaneously for

WCS systems. First, the timeliness and fidelity perfor-

mance of a system are highly dependent of each other. For

instance, although the false alarms of low-end sensors can

be dealt with by turning on the camera more frequently,

it inevitably increases CPU workload and impedes system

timeliness. On the other hand, reducing CPU workload and

camera activity aggressively may lead to an increased target

missing rate. Second, system CPU workloads are highly

variable because of several factors such as uncertain im-

age processing time and stochastic detection performance

of low-end sensors. The probability that the camera is acti-

vated and an image needs to be processed is highly depen-

dent on the data fusion results, which in turn are affected

by time-varying noise and target characteristics in dynamic

environments.

In this paper, we propose a control-theoretic solution

called Fidelity-Aware Utilization Controller (FAUC) to ad-

dress these challenges. FAUC employs a feedback con-

troller to enforce the specified upper bound on CPU uti-

lization of base station while minimizing the overall system

detection error rate. By taking advantage of the adaptivity

of the controller, FAUC allows a WCS system to achieve

robust assurance on timeliness and fidelity in dynamic envi-

ronments. We formally formulate our problem as follows.

Problem 1 (Fidelity-Aware Utilization Control). To find

a stable and converging control algorithm for the fusion

threshold T at the cluster head based on the feedback of the

base station, such that the expected CPU utilization E[u]
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Figure 1. The architecture of FAUC controller.

is upper bounded by us while the detection error rate Pe

is minimized, where us is a constant that ensures system’s

real-time schedulability.

In the above formulation, the CPU utilization bound us

is a predefined user input to the controller, and we focus on

the utilization control of only one cluster. When there exist

multiple clusters in the system, their CPU utilization bounds

can be determined by schedulability analysis [18] and then

separately enforced by multiple FAUC controllers. The de-

tection error rate Pe in Problem 1 is the probability that the

system makes a wrong detection decision, which jointly ac-

counts for false alarms and misses. Such a metric is widely

adopted in the literature of sensing systems [8]. We choose

fusion threshold T as the control input as it affects both the

system detection performance and timeliness. Specifically,

when T is lower, the missing rate is lower while more false

alarms may be triggered by noise leading to higher system

workload. On the other hand, a higher T reduces both false

alarm rate and system workload while a target is more likely

to be missed.

Figure 1 illustrates the architecture of FAUC and a WCS

system. We now describe the three main components in

the system architecture. (1) Two-phase fusion-based target

detection (Section 5). The measurements of low-end sen-

sors are first fused by the cluster head. If a positive deci-

sion is made, the camera is activated and the captured im-

age is then processed by the base station for target recog-

nition. (2) Utilization feedback control loop (Sections 6.1

). The FAUC utilization controller adaptively calibrates the

fusion threshold T to enforce a user-specified utilization up-

per bound when the system workloads vary significantly as

a result of stochastic camera activations and uncertain im-

age processing time. The utilization monitor measures the

average CPU utilization and provides feedback for calibrat-

ing the fusion threshold. The controller design is based on

analytical models of CPU utilization and system fidelity. (3)

Detection performance optimization loop (Section 6.2 and

6.3). FAUC employs the k-means clustering algorithm [20]

to periodically estimate system parameters (e.g., target and



noise models) from sensor measurements. The results are

used to optimize the fusion threshold and adjust the control

objective of CPU utilization. In the presence of physical dy-

namics (e.g., variations of target/noise energy), such an op-

timization mechanism adapts utilization control objectives

and maintains satisfactory system fidelity.

5 Performance Modeling

In this section, we formally model the performance of

WCS systems. The results provide a foundation for the de-

sign of FAUC controller in Section 6. We first model the

system detection error rate in Section 5.1. Then, we model

system CPU utilization in Section 5.2.

5.1 System Detection Performance

Before formally modeling the system detection perfor-

mance, we first make the following assumptions. First, the

probability that a target is present at any time instance is

Pa, which is unknown but can be estimated from detection

history. Second, the false alarm rate and missing probabil-

ity of the high-quality sensor, denoted by PFH and PMH ,

are known. PFH and PMH can often be measured via of-

fline experiments. Because of the high accuracy of the high-

quality sensor, both PFH and PMH are close to zero. In

addition, we let PFL and PML denote the false alarm rate

and missing probability of low-end sensors. The system de-

tection error rate Pe is the weighted sum of the joint false

alarm rate and missing probability of high-quality and low-

end sensors. Specifically,

Pe = (1−Pa)·PFL ·PFH+Pa ·(PML+(1−PML) · PMH) , (1)

where PFL · PFH corresponds to the case that both the

low-end sensors and the camera raise a false alarm, and

PML + (1 − PML) · PMH corresponds to the case that

the low-end sensors make a correct detection but the ac-

tivated camera misses the event. We now discuss how to

achieve the minimal Pe. In Section 3.2, we have derived

the expressions for the false alarm rate and missing prob-

ability of low-end sensors, i.e., PFL = Q
(

T−µ
σ

)
and

PML = Q
(
−T−µ−S

σ

)
. By replacing PFL and PML in

Eqn. (1) with these expressions and solving the condition

for minimal Pe, i.e., ∂Pe

∂T
= 0, the optimal fusion threshold

Topt that minimizes Pe is given by

Topt =
δ · σ2

2S
+ µ+

S

2
,

where δ = 2 ln
(

1−Pa

Pa
· PFH

1−PMH

)
. Note that the perfor-

mance modeling above is based on the assumption that all

the packets sent by low-end sensors are correctly received.

We have extended the derivation of PML and PFL to ac-

count for the lossy links of low-end sensors. The extension

can be found in [21].

5.2 System CPU Utilization

To guarantee the real-time schedulability (e.g., by rate-

monotonic scheduling [18]), the CPU utilization of each

task at the base station shall be maintained at a certain level.

In this section, we derive the CPU utilization model. The

CPU workload of the base station is mainly generated by

processing the images captured by the camera. As the cam-

era is activated by the stochastic decisions of data fusion,

the CPU workload is hence subject to change over time. We

define that a control cycle consists of m detections. In each

detection, low-end sensors send their measurements to the

cluster head for data fusion. We now derive the expected

CPU utilization in m detections of a control cycle, denoted

by E[u], by accounting for the workload generated by both

correct decisions and false alarms.

We define the following notations subject to a control cy-

cle: 1) nf1 and nd1 are the numbers of false alarms and cor-

rect detections made by the cluster head, respectively. Note

that they are unknown to the system; 2) nf2 and nd2 are the

numbers of positive decisions made by the cluster head but

regarded as false alarms and correct detections by the cam-

era, respectively. These two numbers can be counted by the

base station after processing the images of the camera. We

have the following relationships:

nf1 + nd1 = nf2 + nd2, (2)

nf2 = nf1 · (1− PFH) + nd1 · PMH , (3)

nd2 = nf1 · PFH + nd1 · (1− PMH). (4)

Eqn. (2) holds because either a correct decision or false

alarm from data fusion would trigger an image processing

task at the base station. The result of image processing can

then again be classified as correct decision or false alarm.

In Eqn. (3), nf1 · (1−PFH) represents the number of false

alarms that are correctly identified by the high-quality sen-

sor, and nd1 · PMH represents the number of correct de-

tections that are incorrectly decided as false alarms. In (4),

nf1 ·PFH represents the number of false alarms that are in-

correctly decided as correct detections, and nd1 ·(1−PMH)
represents the number of detections that are correctly iden-

tified. From (3) and (4), the unknown nf1 and nd1 can be

estimated as

nf1=
nf2(1−PMH)−nd2PMH

1−PFH−PMH

, nd1=
nd2(1−PFH)−nf2PFH

1−PFH−PMH

.

Therefore, the estimates of PFL and PML, denoted by P̃FL



and P̃ML, respectively, are given by

P̃FL =
nf1

m−m · Pa

, P̃ML =
m · Pa − nd1

m · Pa

. (5)

The high-quality sensor sends the data to the base station

for image processing, which consumes the CPU resource.

We assume that the average CPU execution time with or

without processing an image is e or e′, respectively. Note

that e′ may equal zero if no processing is required when

the data fusion produces a negative result. Let Td represent

the duration of a control cycle and u represent the CPU uti-

lization of the base station. The expected CPU utilization,

denoted by E[u], is given by

E[u] = (nf1 + nd1) ·
e

Td

+ (m− nf1 − nd1) ·
e′

Td

. (6)

By replacing nf1 and nd1 in Eqn. (6) with Eqn. (5), we

have

E[u] =
m · e′

Td

+
m · (e− e′)

Td

(
(1− Pa) · P̃FL + Pa · (1− P̃ML)

)

≃ K1+K2 ·

(
(1−Pa)Q

(
T−µ

σ

)
+ PaQ

(
T−µ−S

σ

))
,

(7)

where K1 = m·e′

Td
and K2 = m·(e−e′)

Td
. From Eqn. (7), the

expected CPU utilization monotonically decreases with T

because both PFL and 1−PML decrease with T .

6 Fidelity-Aware CPU Controller

Based on the performance modeling presented in Sec-

tion 5, we first design the fidelity-aware CPU controller in

Section 6.1. After that, we discuss the estimation of plant

parameters in Section 6.2 and the approach to optimizing

the detection error rate in Section 6.3.

6.1 The Design of FAUC

The objective of Problem 1 is to ensure E[u] ≤ us while

minimizing system detection error rate Pe, where E[u] is a

function of the fusion threshold T given by Eqn. (7) and

us is a user-specified utilization bound. As the threshold

T is calibrated every control cycle, Problem 1 is a typical

discrete-time control problem, in which us is the reference,

T is control input and E[u] is the controlled variable. In

the following, we present the design of Fidelity-Aware Uti-

lization Controller (FAUC). We first discuss how FAUC en-

sures the utilization bound, i.e., E[u] ≤ us. In Section 6.3,

we discuss how to minimize the system detection error rate

Pe under the given utilization bound.

The block diagram of the FAUC feedback control loop is

shown in Figure 2. The key challenge of deriving the trans-

fer function Gp(z) is that Q(x) in Eqn. (7) is a nonlinear

Figure 2. The closed-loop system to control
the fusion threshold according to the CPU

utilization feedback.

function. In this paper, we adopt the linear approximation of

Eqn. (7), which is given by E[u](T ) ≃ E[u](T0)+
∂E[u]
∂T

∣∣∣
T0

·

(T − T0), where the derivative
∂E[u]
∂T

can be derived as

∂E[u]

∂T
=−

K2

σ
√
2π

(
(1−Pa) · e

−
(T−µ)2

2σ2 + Pa · e
−

(T−µ−S)2

2σ2

)
.

(8)

T0 is referred to as the operating point, which greatly affects

the control performance. We will discuss how to choose T0

in Section 6.2. Hereafter, we denote F (T0) = ∂E[u]
∂T

∣∣∣
T0

.

By taking z-transform to the linear approximation, we have

Gp(z) = F (T0). Therefore, the system to be controlled is a

zero-order system. We can estimate E[u] based on the sam-

ples of CPU utilization at the base station in a control cycle.

This estimate is then fed back to compare with the reference

us. As the estimation takes one control cycle, H(z) = z−1

which represents a delay of one cycle. We now design

Gc(z) to solve Problem 1. As Gp(z) is zero-order, a first-

order controller is sufficient to meet stability and conver-

gence requirements. Therefore, we let Gc(z) = a
1−b·z−1 ,

where a > 0 and b > 0. The coefficients a and b should be

chosen to ensure the system stability and convergence. We

have rigorously analyzed the conditions of system stability

and convergence. The analysis is omitted here because of

space limitation and can be found in [21].

6.2 Online Plant Parameter Estimation

There exists a fundamental trade-off between the stabil-

ity and transient response performance of a control sys-

tem [22]. In our problem, the system converges faster for

a larger a at the price of greater system oscillations. There-

fore, the best setting for a is a value close to its lower bound
2

F (T0)
. The stability can be enforced if we can on-line es-

timate the F (T0). We now discuss how to choose T0 and

estimate F (T0). According to Eqn. (8), in order to com-

pute F (T0), several parameters, i.e., e, e′, µ, σ, and S, need

to be estimated. Because e and e′ are subject to change

because of the stochastic task execution time, we calculate

the average execution time for the tasks for the estimation.

Assuming that µ, σ, and S can slowly change over time be-

cause of the uncertainty of the environment, we employ the



k-means [20] clustering algorithm to estimate these param-

eters. Specifically, the k-means algorithm iteratively con-

structs two clusters of sensor measurements which corre-

spond to the cases of target absence and presence, respec-

tively. The noise mean µ is estimated by averaging the mea-

surements in the cluster representing the noise. The target

energy S can be calculated by subtracting µ from the av-

erage of measurements in the cluster representing the case

of target presence. Note that if the impact of packet loss

can be ignored, the variance σ2 is estimated by averaging

the variances from two clusters; otherwise, we use the sepa-

rate variances from the two clusters. As the CPU utilization

shall be controlled around us, the operating point T0 of the

linearization is obtained by solving E[u] = us where E[u]
is given by (7) with the estimated µ, σ2 and S. With the

chosen T0, we can compute F (T0).

6.3 Optimizing Detection Error Rate

So far, our discussion is only concerned with controlling

the utilization bound while the impact on detection error

rate is not considered. Although such a solution can meet

the deadline once a target is detected, it may lead to low

system fidelity such as excessive false alarms and consume

unnecessary energy. In this section, we discuss how to op-

timize system detection performance without violating the

utilization bound.

According to our performance modeling in Section 5.1,

the detection performance is optimized if the fusion thresh-

old T is set to Topt. However, we cannot simply adjust the

current threshold to Topt without accounting for the impact

on CPU utilization. FAUC addresses this issue by imple-

menting a dual-cycle control strategy. In each control cy-

cle, CPU utilization is enforced to the utilization bound u

that is initially set to the user-specified constant us. Each

optimization cycle consists of multiple control cycles. The

plant parameters are estimated every optimization cycle as

discussed in Section 6.2 and then used to update Topt and

compute the expected utilization u∗ according to our uti-

lization model (Eqn. (7)). If the estimated utilization is

lower than the initial utilization bound, i.e., u∗ < us, it will

be set as the new control objective for the following con-

trol cycles until the start of next optimization cycle. There-

fore, the optimization process opportunistically lowers the

utilization bound if the system detection performance can

be optimized. In other words, the CPU utilization never

exceeds the initial value specified by user. Hence, the real-

time schedulability is always satisfied.

7 Experimentation

To evaluate the performance of FAUC, we have con-

ducted two testbed experiments for detecting light and

acoustic targets, respectively. The results allow us to eval-

uate the effectiveness of our approach for different sensor

modalities. Section 7.1 discusses the experimental method-

ology. Section 7.2 and 7.3 present the experimental results

of detecting light and acoustic targets, respectively.

7.1 Experimental Methodology

We adopt a baseline approach referred to as fixed-step

closed-loop heuristic for performance comparison. In this

heuristic algorithm, the expected CPU utilization E[u] is fed

back to compare with the referenceus. As E[u] is a decreas-

ing function of threshold T , if E[u] > us, the new threshold

T [n] is calculated by adding a fixed step ∆T to the previous

threshold T [n−1]; otherwise, ∆T is subtracted from previ-

ous T [n− 1] to calculate new threshold T [n] if E[u] < us.

However, this approach does not consider system stability

and convergence. In the experiment, we employ different

∆T for this approach to evaluate the impact of step size on

the system performance.

Our evaluation focuses on two performance metrics: uti-

lization error and average detection error rate. The utiliza-

tion error is the error between the measured CPU utilization

and the reference in each control cycle. In order to calculate

the detection error rate, we log the ground truth information

regarding the target appearance to compute the system false

alarm and missing rates in each control cycle. The detection

error rate is then computed as the sum of the false alarm and

missing rates.

7.2 Light Spot Detection

In the light spot detection experiment, four TelosB motes

[3] and a webcam are attached against the LCD screen of

a desktop computer to detect a light spot that is randomly

displayed on the screen (see Figure 3). The display of the

light spot is controlled by a computer program, simulat-

ing the random presence of the target at a probability of

Pa = 50% in each one-second time slot. Note that a similar

method has been adopted by previous work [12]. We vary

the light intensity of each pixel on the LCD screen to sim-

ulate the changeable characteristics of noise and target. To

create noise in sensor measurements, each pixel is assigned

a small random light intensity value IN with the mean of µ.

IN varies over time to simulate the changing environmental

noise. To create the target, a constant light intensity value

IT is added to the noise for each pixel. Note that IT de-

creases with the distance from the center of the light spot.

Similarly, IT varies to simulate the change of target profile.

The TelosB motes measure the light intensity every 250 mil-

liseconds via the on-board Hamamatsu S1087-01 light sen-

sors [3] and transmit the measurements to the cluster head

that is connected to a base station laptop. The cluster head



Figure 3. Testbed for

light spot detection. 4
TelosB motes and a we-

bcam detect the light

spot.

Figure 4. Testbed

for acoustic target
detection. 3 Iris

motes and a web-

cam detect the mov-
ing toy car
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Figure 5. The CDF of
the light intensity mea-

surements of a TelosB

mote.

fuses the readings received within every 250 milliseconds

and detects the light spot. When the cluster head makes a

positive decision, the webcam is triggered to take an im-

age and compare the average intensity over all pixels with

a threshold. The false alarm and missing rates of the web-

cam are 5.1% and 3.9%, respectively, which are estimated

in a separate offline experiment. We evaluate the utilization

control algorithms under a variety of settings. Moreover,

each experiment consists of two phases. Specifically, in the

first phase, the mean of IN as well as IT remain at their

initial values. The second phase starts after 12 control cy-

cles, where we vary the mean of IN or IT to simulate the

changes of noise or target profile.

7.2.1 Sensor Measurement Performance

We first verify the Gaussian noise assumption made in

Section 3. Figure 5 plots the Cumulative Distribution Func-

tion (CDF) of a light sensor’s measurements in office envi-

ronment. We can see from the figure that the sensor mea-

surements well match the normal distribution. We then

evaluate the performance of the k-means algorithm that is

used to estimate the online noise and target profiles. Note

that the FAUC adjusts the control reference based on the

estimates given by the k-means algorithm. Therefore, the

estimation accuracy can affect the performance of FAUC.

Figure 7 plots the CDF of relative errors of the estimated µ,

σ2 and S with respect to their ground truths, respectively.

We can see that all of them can be estimated accurately. For

instance, about 40% of the estimated σ2 has a near-zero er-

ror and the maximum error is only about 2%.

7.2.2 Stability and Convergence

We now evaluate the stability and convergence of FAUC

in dynamic environments. Figure 6 shows the temporal evo-

lution of the system when noise mean is increased at the 12th
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Figure 6. The temporal evolution of the light
spot detection in dynamic environments.

control cycle. Each optimization cycle comprises five con-

trol cycles. The initial CPU utilization reference is set to

be 0.62. Based on this setting, FAUC computes an initial

fusion threshold T , which is very low as shown in the top

sub figure in Figure 6. As a result, the noise occasionally

exceeds the fusion threshold causing a false alarm rate of

about 5%. At the end of the first optimization cycle, i.e.,

the 5th control cycle, FAUC computes the optimal fusion

threshold Topt based on the estimated target/noise param-

eters. As Topt > T , there exists an opportunity to reduce

system false alarms. FAUC thus computes a new utilization

bound of 0.38 based on Topt, which causes the controller to

increase T . The bottom two sub figures in Figure 6 show

that the measured utilization quickly converges to the new

reference and system error rate drops to zero.

When the noise energy is increased at the 12th control cy-

cle, the CPU utilization increases accordingly because false

alarms from low-end sensors trigger extra image process-

ing tasks. FAUC then attempts to lower the utilization by

increasing T . At the next optimization cycle, i.e., the 15th
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control cycle, FAUC estimates the target/noise parameters

and computes a new Topt that is lower than T . As the uti-

lization reference (about 0.6) that corresponds to the new

Topt is still lower than the initial bound 0.62, FAUC in-

creases the reference to reduce false alarms, as discussed

in Section 6.3. At the next optimization cycle, i.e., the 20th

control cycle, Topt exceeds the current T . FAUC then low-

ers the utilization reference again, which frees more CPU

resources. The above results demonstrate several salient

features of FAUC when it operates in dynamic environ-

ments. First, it yields satisfactory control performance as

the CPU utilization quickly converges to the reference even

when false alarms introduce unpredictable system work-

loads. Second, FAUC can effectively adapts the utilization

reference to minimize system error rate.

7.2.3 Effectiveness

We now compare the performances of various ap-

proaches in seven groups of experiments with a variety of

target and noise dynamics. In the first four groups of ex-

periments, we increase the noise mean from 20 to 80 with

a step of 20. In the last three groups of experiments, we

decrease the target signal by 30, 50 and 70, respectively.

Figure 8 shows the average detection error rate in differ-

ent group of experiments. We can see that all three ap-

proaches can maintain small detection error rates when the

noise increases. Although the increasing noise causes more

false alarms for low-end sensors, the false alarms can be

effectively filtered out by the image-based target detection.

When the target signal decreases, all three approaches yield

higher error rates. In particular, the heuristic algorithm with

a step size of 5 misses about 16% targets. When the step

size is 20, it has fewer misses because the controller set-

tles faster. FAUC achieves the minimal error rate under all

settings.

Figure 9 plots the CDF of the utilization errors in the

seven groups of experiments. We can see that FAUC sig-

nificantly outperforms the heuristic algorithm with various

settings. In particular, about 80% of errors of FAUC fall

within 10%. In contrast, the heuristic algorithm does not ex-

ploit the relationship between the control input and the con-

trolled variable and hence yields considerable steady-state

errors. We can conclude from Figures 8 and 9 that FAUC

yields excellent control performance while maintaining sat-

isfactory fidelity even when target/noise have dynamic char-

acteristics.

7.3 Acoustic Target Detection

In the second set of testbed experiments, we use three

Iris motes [3] and a webcam to detect a radio-controlled toy

car. Figure 4 illustrates the setup of the experiments. The

cluster head is connected to the base station laptop. The mi-

crophone of MTS300 sensor board [3] on Iris mote samples

at 100Hz to detect acoustic signals from the toy car. Each

mote calculates the acoustic signal energy every 50 samples

and transmits to the cluster head every 500 milliseconds.

The cluster head fuses the measurements received from the

Iris motes and activates the webcam to capture an image

if a positive decision is made. The base station compares

the image with the stored background image to detect the

target using the ImageMagick tool [23]. Note that another

webcam connected to another computer records the ground

truth information. It is challenging to detect the toy car us-

ing the low-cost Iris motes because of the significantly dy-

namical characteristics of the toy car. Specifically, as the

toy car moves through the surveillance region quickly, the

acoustic signal emitted by the car varies significantly with

the car’s location and speed.

Figure 10 shows the evolution of system performance

over 16 control cycles. The CPU utilization reference is

set to be 0.3. We intentionally adopt such a low refer-

ence to study the trade-off between utilization and detec-

tion performance. Each optimization cycle comprises four

control cycles and each control cycle comprises 70 detec-

tions. The toy car moves along a circular path that crosses

the surveillance region. The target appearance probability
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Figure 10. The temporal evolution of the

acoustic target detection in dynamic environ-
ments.

varies during the experiment as shown in the bottom sub

figure of Figure 10. The fusion threshold is initially set to

a low value, which leads to many false alarms and image

processing tasks. This in turn causes higher CPU utilization

which exceeds the required CPU utilization reference. In re-

sponse, FAUC increases the fusion threshold and hence the

CPU utilization quickly drops to the reference at the second

control cycle. Afterward, the CPU utilization is well con-

trolled at the reference. The slightly changing target appear-

ance probability leads to slightly changing CPU utilization

and fusion threshold. In addition, the car’s acoustic sig-

nal happens to decrease at the 13th cycle, which causes a

higher false alarm rate and may increase the CPU utiliza-

tion. However, the target appearance probability is slightly

reduced at that time so that the CPU utilization does not in-

crease substantially. To adapt to this change, the threshold

also slightly decreases. Overall, the results of this exper-

iment show that the system is robust to the variations of

target energy and appearance probability.

8 Conclusion

In this paper, we propose a holistic approach called

Fidelity-Aware Utilization Controller (FAUC) to address

both fidelity and timeliness requirements of Wireless Cyber-

physical Surveillance (WCS) systems. FAUC integrates

data fusion with feedback control to enforce CPU utiliza-

tion upper bound although system workloads vary signif-

icantly at runtime because of stochastic detection results.

FAUC also optimizes system fidelity and adjusts the control

objective of CPU utilization adaptively in dynamic environ-

ments. We have implemented FAUC on a small-scale WCS

testbed consisting of TelosB/Iris motes and cameras. Our

experiments on light and acoustic target detection show that

FAUC can achieve robust fidelity and enforce desired uti-

lization bounds in the presence of significant variations of

target/noise characteristics.
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