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Wireless Energy Auditing 
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• Wireless appliance submetering 
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Wireless Energy Auditing 

• Buildings account for 40% electricity use 

• Wireless appliance submetering 

– Efficiency analysis 
56% energy wasted in our office[Jung 2013] 
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Costly encryption 
No crypto for smart meters [Rouf 2012] 
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Conventional Scheme (Pipeline) 

compress encrypt sensor decrypt decompress 

Power meter Base station 

Radio 

reduce bandwidth use prevent eavesdropping 

• Inefficient for resource-constrained plugs 
– Computation-intensive compressor and cipher 
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Compressive Sensing 

• Efficient compression 
– Simple matrix multiplication 
– Most computation to recovery side 

• Weakly encrypt signal [Rachlin 2008] 
– Shared secret random matrix 

= x 
Compressed Random matrix 

Original Smart plug 

Recovery 
 

Constrained 
optimization 

Base station 

Radio 

6/19 



Compressive Sensing 

• Efficient compression 
– Simple matrix multiplication 
– Most computation to recovery side 

• Weakly encrypt signal [Rachlin 2008] 
– Shared secret random matrix 

= x 
Compressed Random matrix 

Original Smart plug 

Recovery 
 

Constrained 
optimization 

Base station 

Radio 

O(n) 

6/19 



Outline 

• Motivation 

• Design of JICE 

• Secrecy of JICE 

• Experiment 

7/19 



Compressive Sensing Basics 
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Compressive Sensing Basics 

• Compression 

 

• Recovery: compute x from y by 

 

 

• For better recovery 

– Ψ sparsify x  
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Ψ-1x has many zeros 
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Trace-Driven Design 

Duty-cycled 
(fridge) 

Periodic (projector) 

Fluctuating 
(desktop) 

Spiky (server) 

Time (seconds) Time (seconds) 

Time (seconds) Time (seconds) 

• Select Φ and Ψ based on traces  

– Data traces from 40 branches for 18 hours 

– Classify power consumption patterns 
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• Representation basis dominates recovery performance 
• Use binary random matrix 
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Representation Basis Ψ 
• Differential transform (Diff) 
• Cosine transform (Cos) 
• Haar wavelet transform (Haar) 

Average 
sparsity 

duty-cycled periodic fluctuating spiky 

length signal

nonzeros of #
sparsity 

11/19 



Representation Basis Ψ 
• Differential transform (Diff) 
• Cosine transform (Cos) 
• Haar wavelet transform (Haar) 

Diff Best choice: Cos Haar Diff 

Average 
sparsity 

duty-cycled periodic fluctuating spiky 

length signal

nonzeros of #
sparsity 

11/19 



Representation Basis Ψ 
• Differential transform (Diff) 
• Cosine transform (Cos) 
• Haar wavelet transform (Haar) 

Diff Best choice: Cos Haar Diff 

Average 
sparsity 

duty-cycled periodic fluctuating spiky 

length signal

nonzeros of #
sparsity 

Changing power pattern: 
• TV 
• A plug monitors multiple appliances 
 

Adapt Ψ to changing power pattern 
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Adaptive Representation Basis 

• Machine learning approach 

– Plug selects Ψ based on shape features 
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Adaptive Representation Basis 

• Machine learning approach 

– Plug selects Ψ based on shape features 

– Base station learns decision boundaries 

  

Ψ = Diff 

Ψ = Cos 

Ψ = Haar 

Shape feature 1 

Smart plug Base station 

Compressed signal 

 Choice of Ψ  

learn and update to plug 
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Shape Feature & Decision Table 

# of zero crossings > Δ1 ? N N N N Y Y Y Y 

# of sharp changes > Δ2 ? N N Y Y N N Y Y 

Standard deviation > Δ3 ? N Y N Y N Y N Y 

Choice of basis ADT ADT HWT DCT HWT HWT ADT DCT 
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Shape Feature & Decision Table 

# of zero crossings > Δ1 ? N N N N Y Y Y Y 

# of sharp changes > Δ2 ? N N Y Y N N Y Y 

Standard deviation > Δ3 ? N Y N Y N Y N Y 

Choice of basis ADT ADT HWT DCT HWT HWT ADT DCT 

• Trained at base station 

– Minimize recovery error 

  

# of zero crossings 
# of sharp changes 
standard deviation 

shape feature vector = 

13 
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Statistics Leak and Perturbation 
• Φ is unknown to attacker 

– “Provide a computational guarantee of secrecy” 
[Rachlin 2008] 

• Leak ℓ2-norm, mean and variance 
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Statistics Leak and Perturbation 
• Φ is unknown to attacker 

– “Provide a computational guarantee of secrecy” 
[Rachlin 2008] 

• Leak ℓ2-norm, mean and variance 

• Statistics depend on k 

• Little (no) change to sparsity 

– Little impact on recovery 
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Recap of JICE 

perturb & 
compress 

y = Φ · (x + n) 

recover & 
de-perturb 

x = Ψ argmin|z| - n 
s.t. y = ΦΨz 

Feature 
extraction 

Decision 
table 

Decision table 
training 

Recovered 
signals 

power 
signal x 

Smart plug Base station 

y 

Ψ choice 
(2 bits) 

updates 
(14 B) 

executed every a few hours 

• Seed for generating Φ 
• Key for generating n 
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Implementation 

• Smart plug 
– Kmote (8MHz MCU, 10KB RAM, ZigBee, TinyOS) 

 

• Baselines 
– Pipeline: Lossy compressor [Liu 2013] + AES 
– Downsampling 
– Lossless pipeline: SLZW + AES 

Smart plug 
[Sonnonet] Kmote 
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Implementation 

• Smart plug 
– Kmote (8MHz MCU, 10KB RAM, ZigBee, TinyOS) 

 

• Baselines 
– Pipeline: Lossy compressor [Liu 2013] + AES 
– Downsampling 
– Lossless pipeline: SLZW + AES 

Smart plug 
[Sonnonet] Kmote 

Same compression ratio with JICE 
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Data Fidelity and Scalability 

JICE supports 50% more plugs 

Pipeline 

JICE Background 
traffic node 

= 12 X 
20/19 

# of background traffic nodes 
4 8 12 16 

Pipeline 
JICE 

Project to 
144 plugs 

Project to 
96 plugs 



Conclusion & Future work 

• JICE 

– Supports more nodes for same data fidelity 

– Better data secrecy than pure compressive sensing 

– Adaptive to changing power pattern 

 

• Future work 

– Other applications 
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