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APPENDIX

A. SUMMARY OF NOTATION

Table S-I. Summary of Notation

Definition Unit Definition Unit

T pricing period hour k index of pricing period n/a
λk true price $/MWh λ′

k
compromised price $/MWh

λ∗

k
clearing price $/MWh bk baseline demand MW

w price-responsive demand MW d total demand MW
D a constant in CEO model MW ǫ price elasticity n/a
s scheduled total supply MW p linear supply slope MW/($/MWh)
h marginal demand-supply ratio n/a q linear supply intercept MW
ek generation scheduling error MW η price stabilization gain n/a
λo stabilization operating point $/MWh C all consumers n/a
C′ consumers under attack n/a S all suppliers n/a
S′ suppliers under attack n/a ρ ≃ |C′|/|C| or |S′|/|S| n/a
γ price scaling factor n/a τ time delay for price T
Fm branch power flow MW ω social welfare $/hour

Note: We omit the physical unit of a quantity in the paper if it has been specified in this table.

B. STABILITY OF DIRECT FEEDBACK APPROACH

B.1. An Analysis

PROPOSITION B.1. When the total supply is given by s(λk) = p · λk + q and the total
demand is given by d(k, λk) = bk + D · λǫ

k, where ǫ ∈ (−1, 0) and bk is a non-negative
constant b, the system λk = s−1(d(k − 1, λk−1)) is not globally stable.

PROOF. From [Roozbehani et al. 2012], the Market’s Maximal Relative Price Elas-

ticity is θ∗(l) = −ǫD
p supλ>0 f(λ, l), where f(λ, l) = λǫ−1

(

pλ+q
Dλǫ+b

)l

. From Corollary 3 in

[Roozbehani et al. 2012], the system is not globally stable if ∀l ≥ 0, θ∗(l) ≥ 1. We now
examine the value of θ∗(l):

Case 1. If l = 0, θ∗(0) = −ǫD
p supλ>0 λ

ǫ−1 = +∞.

Case 2. If l > 0 and b = 0,

f(λ, l) =
1

Dl

(

pλ
(1−ǫ)(l−1)

l + qλ
ǫ(1−l)−1

l

)l

.

For 0 < l ≤ 1, limλ→0+ f(λ, l) = +∞; for l > 1, limλ→+∞ f(λ, l) = +∞. Hence, ∀l > 0,
θ∗(l) = +∞.
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Fig. S-1. Stability of direct feedback approach under the linear supply and CEO demand models.

Case 3. If l > 0 and b > 0,

lim
λ→0+

f(λ, l)
z=1/λ
=

( q

D

)l

lim
z→+∞

z1−ǫ(1−l).

For l ∈ (0, 1− 1/ǫ), the above limit is positive infinity and hence θ∗(l) = +∞.

lim
λ→+∞

f(λ, l) =
1

bl
lim

λ→+∞

(

pλ
ǫ−1
l

+1 + qλ
ǫ−1
l

)l

.

For l ∈ (1 − ǫ,+∞), the above limit is positive infinity and hence θ∗(l) = +∞. As
ǫ ∈ (−1, 0), (0, 1− 1/ǫ) ∪ (1− ǫ,+∞) = (0,+∞). Hence, ∀l > 0, θ∗(l) = +∞.

As a result, ∀l ≥ 0, θ∗(l) = +∞ and the system is not globally stable.

B.2. Numerical Experiments

As the direct feedback approach is not globally stable, its convergence highly depends
on the system state. If bk is time-varying, it can push the system to a state that eventu-
ally leads to divergence. A few realistic constraints may affect the system stability. For
instance, even if the system is not globally stable, the system may converge when the
initial price is within the allowed range [λmin, λmax]. Moreover, if a tentative price is out
of the range [λmin, λmax], it will be rounded to λmin or λmax. Hence, we conduct numer-
ical experiments that account for these realistic constraints for better understanding.
We focus on the case where bk is constant over time, i.e., bk = b. We extensively eval-
uate the convergence of the direct feedback approach under a wide range of settings
for D, ǫ, and b. Specifically, we run a large number of time-domain simulations with
different settings for D, ǫ, and b. In each single time-domain simulation, the settings
for D, ǫ, and b are fixed. The settings of the supply model are p = 152 and q = 4503,
which are obtained in Fig. 1 in the paper. Given any settings for ǫ and b, the setting for
D needs to ensure that the resulting clearing price λ∗ is within [λmin, λmax]. For ease of
evaluation, instead of setting D directly, we set λ∗ to be a value within [λmin, λmax] and

calculate the corresponding D by solving s(λ∗) = d(λ∗). The solution is D = pλ∗+q−b
λ∗ǫ ,

where b ∈ [0, pλmin + q) to ensure D > 0 for any valid λ∗. Fig. S-1(a) shows a map of
the probability that the system is converging when b = 0. To calculate the probability,
the initial price sweeps the range [λmin, λmax] and the probability is calculated as the
fraction of the initial prices that lead to system convergence. Fig. S-1(a) shows that the
probability is mostly either 0 or 1 and the transition region with the probability within
(0, 1) is sharp. Fig. S-1(b) plots the boundaries between the converging and diverg-
ing regions under various settings of b, where its valid range is [0, 4503). For instance,
when b = 4000, the system can be diverging if ǫ = −0.8 and λ∗ < 20. For the data shown
in Fig. S-1, about 20% of the prices are lower than 20. Therefore, the direct feedback
approach can be unstable with significant probabilities.
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C. IMPACT OF INACCURACY IN ESTIMATING Ẇ (λO)

As the price-dependent demand model w(·) is unknown to the ISO, we derive an upper
bound for the error in estimating ẇ(λo), to ensure the stability of the algorithm in

Proposition 4.1. Let ˜̇w(λo) denote the estimated ẇ(λo), and Ew = ẇ(λo)−˜̇w(λo)
ẇ(λo)

denote

the relative estimation error. The stability condition 0 < η < 1 can be rewritten as
0 < 2η

ṡ(λo)−ẇ(λo)
< 2

ṡ(λo)−ẇ(λo)
. As long as 0 < 2η

ṡ(λo)−˜̇w(λo)
< 2

ṡ(λo)−ẇ(λo)
, the system

is stable. This condition can be derived as Ew < (1− η)
(

1− ṡ(λo)
ẇ(λo)

)

. As 1− ṡ(λo)
ẇ(λo)

> 1,

Ew<(1−η) is a sufficient condition for stability.

We now discuss the impact of inaccurate ˜̇w(λo) on the security analysis results in

Section 5. From the definition of Ew, we have ˜̇w(λo) = (1−Ew)ẇ(λo). Note that Ew < 1

since ˜̇w(λo) > 0. By replacing h with |1 − Ew| · h in Proposition 5.6, we have a new
result in the presence of the estimation error Ew. From the proofs of Propositions 5.7,
5.8, and 5.9, they are independent of h. Therefore, these propositions still hold in the
presence of estimation errors.

D. PROPERTIES OF CEO DEMAND MODEL

Assume wj(λk) = Dj · λ
ǫj
k and hence w(λk) =

∑

j∈C Dj · λ
ǫj
k . The hypothesis that w(λk)

follows w(λk) = D ·λǫ
k is equivalent to lnD+ ǫ · lnλk = ln

(

∑

j∈C Dj · λ
ǫj
k

)

. We now eval-

uate this linear relationship by numerical study. We simulate 20,000 consumers with
uniformly distributed parameters Dj ∼ U(0.2, 1.8) and ej ∼ U(−0.4, 0). Fig. S-2 plots

ln
(

∑

j∈C Dj · λ
ǫj
k

)

versus ln(λk) and the linear fitting, where the Pearson correlation

between them is −0.9987. Therefore, w(λk) well conforms to the CEO model. When we
vary the number of consumers from 1,000 to 100,000, the Pearson correlation keeps be-
low −0.998. Hence, the linear relationship well scales with the number of consumers.
From the Y -intercept of the linear fitting (i.e., ln(D)) shown in Fig. S-2, the estimated
D deviates only 4.5% from

∑

j∈C Dj. From the slope of the linear fitting, the estimated

ǫ is −0.164, while the average value of ǫj is −0.201. Two important observations in-
clude: (i) the CEO model is a nearly aggregable model, and (ii) the D highly depends
on the number of customers while the ǫ does not.

We also use this numerical example to evaluate the constancy of ρ defined by

ρ =

∑

j∈C′ wj(λ
′
k)

∑

j∈C wj(λ′
k)

=

∑

j∈C′ wj(λ
′
k)

w(λ′
k)

(S1)
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in Section 5.1.1 and the approximation accuracy of the following equation in Sec-
tion 5.1.1:

∑

j∈C\C′

wj(λk) ≃ (1− ρ)
∑

j∈C

wj(λk) = (1 − ρ)w(λk). (S2)

We randomly choose a subset C′ and calculate ρ using Eq. (S1) by iterating λ′
k from 1 to

100. The solid curve in Fig. S-3 is the difference between the maximum and minimum
of ρ. We can see that the variation of ρ is smaller than 0.003. Note that ρ is centered
at |C′|/|C|. For each λ′

k and the associated ρ, we calculate the range of the relative
approximation error of Eq. (S2) by iterating λk from 1 to 100. The dashed curve in
Fig. S-3 plots the maximum relative error, which is generally below 1%.

We have also run numerical experiments when Dj and ǫj are drawn from the normal
and gamma distributions. We obtained similar results, which, however, are omitted in
this paper due to limited space.

E. PROOF OF PROPOSITION 4.1

PROOF. By denoting a = 2η
ṡ(λo)−ẇ(λo)

and applying the z-transform to the RTP algo-

rithm, we can derive Λ(z) = a
1−z · E(z), where Λ(z) and E(z) are the z-transforms of

λk and ek. According to Fig. 3, we have Gc(z) = Λ(z)
0−H(z)E(z) = a

1−z−1 . The closed-loop

transfer function, denoted by Tc(z), is Tc(z) =
Gc(z)Gp(z)

1+Gc(z)Gp(z)H(z) = 2ηz
z−1+2η . The closed-

loop system has a single pole (i.e., the root of the denominator of Tc(z)) at z = 1 − 2η.
As η ∈ (0, 1), this pole is within the unit circle centered at the origin in the z-plane.
Therefore, the system is stable. Moreover, as Tc(z)|z=1 = 1, the controlled variable e
must converge to zero if the disturbance bk is a constant.

F. PROOFS FOR SECTION 5

F.1. Proof of Proposition 5.6

PROOF. As ẇ(·) is decomposable, Gw(z) = ργµẇ(λo) + (1 − ρ)ẇ(λo). Thus, Gp(z) =
Gs(z) − Gw(z) = ṡ(λo) − ργµẇ(λo) − (1 − ρ)ẇ(λo). The closed-loop transfer function

[Ogata 1995] under the attack is Tc(z) =
Gc(z)Gp(z)

1+Gc(z)Gp(z)H(z) =
2η(1+ργµh+h−ρh)z

P (z) , where the

system characteristic function P (z) = (h + 1)(z − 1) + 2η(1 + ργµh+ h − ρh). If all the
poles of Tc(z) (i.e., roots of P (z)) are within the unit circle centered at the origin of the
z-plane, the system is stable [Ogata 1995]. If η < η̄, the pole is within the circle. As
η ∈ (0, 1), η takes the minimum of 1 and η̄.

F.2. Proof of Proposition 5.7

PROOF. When γµ ∈ (0, 1], η̄ ≥ 1. From Proposition 5.6, if 0 < η < 1, the system
is stable regardless of h. When γµ > 1, η̄ is a bounded decreasing function of h. Its
infimum infh>0 η̄ = limh→+∞ η̄ = 1

1+ρ(γµ−1) . Therefore, if 0 < η < infh>0 η̄, the system is

stable regardless of h.

F.3. Proof of Proposition 5.8

PROOF. In the Jury test, the following four conditions are necessary for stability:
(i) (h + 1) > 0, (ii) P (z)|z=1 = 2η(h + 1) > 0, (iii) (−1)τ+1 · P (z)|z=−1 = 2(h + 1) −
2η(1 + h − ρh) + 2ηρh(−1)τ+1 > 0, and (iv) 2ηρh < (h + 1). It is easy to verify that the
first three inequalities always hold for h > 0, 0 < η < 1, and 0 < ρ ≤ 1. Therefore,
the ROS is given by the intersection of the fourth condition and conditions derived
from the odd-numbered rows of the Jury stability table [Ogata 1995, p. 185]. To make
the presentation concise, we remove the even-numbered auxiliary rows from the Jury
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stability table. When the delay is τ , it is easy to verify that the ith (i ∈ [2, τ ]) row of
the Jury stability table is Rτ

i = [Ji,1, Ji,2, 0, 0, · · · , 0, Ji,3], where Ji,1, Ji,2, and Ji,3 are
expressed with ρ, η, and h, and there are (τ − i) zeros between Ji,2 and Ji,3. When
the delay is τ + 1, it is easy to verify that the ith (i ∈ [2, τ ]) row of the Jury stability

table, i.e., R
(τ+1)
i , is given by inserting a zero in Rτ

i before Ji,3. Therefore, the stability
conditions derived from the ith (i ∈ [2, τ ]) row for different delays are exactly the same,
i.e., |Ji,1| > |Ji,3|. The last row of the Jury stability table for the system with delay
τ + 1 is not included in that for the system with delay τ . As a result, ROS(ρ, τ + 1) ⊆
ROS(ρ, τ).

F.4. Proof for Proposition 5.9

PROOF. Denote u1=h+1, u2=2η+2η(1−ρ)h−h−1,u3=2ηρh, and P (z)=u1z
τ+1+u2z

τ+u3,
where u1 > 0 and u3 > 0. Express any system pole (i.e., root of P (z) = 0) in polar
coordinates: z = A(cos θ + i sin θ), where A > 0. P (z) = 0 can be rewritten as two
equations: Aτ (u1A cos(τ + 1)θ + u2 cos τθ) = −u3 and Aτ (u1A sin(τ + 1)θ + u2 sin τθ) =
0. Adding the squares of the two equations yields g(A) = 0, where g(A) = u2

1A
2τ+2+

2u1u2 cos θA
2τ+1+u2

2A
2τ −u2

3. Thus, any pole satisfies g(A) = 0. We can verify g(1) > 0
when ρ ∈ (0, 0.5]. Moreover, ġ(A) = A2τm(A), where m(A) = u2

1(2τ + 2)A + 2u1u2(2τ +

1) cos θ+
2τu2

2

A is a convex function with its minimum at A∗ =
∣

∣

∣

u2

u1

∣

∣

∣

√

τ
τ+1 . We can verify

that
∣

∣

∣

u2

u1

∣

∣

∣
< 1 if ρ ∈ (0, 0.5]. Thus, A∗ < 1 and the minimum of m(A) for A ≥ 1 is m(1),

which satisfies m(1)≥u2
1(2τ+2)−2u1|u2|(2τ+1)+2τu2

2=2(u1−|u2|)(τ(u1−|u2|)+u1). If
u2 < 0, u1−|u2| = 2η+2η(1−ρ)h > 0; if u2 ≥ 0, u1−|u2| = 2(1−η)+2h(1−η(1−ρ)) > 0.
Hence, m(A) > 0 and ġ(A) > 0 for A ≥ 1. Recalling g(1) > 0, we have g(A) > 0 for A≥1.
Hence, A<1 for all poles and the system is stable.

Algorithm 1 Compute ROS(ρ, τ) when ρ ∈ (0.5, 1]
Input: ρ and τ
Output: limh→+∞ η̄(h|ρ, τ)

1: if τ = 1 then
2: return 1/(2 · ρ)
3: end if
4: X = 1, Y = 2ηρ, Z = 2ηρ(1 − 2η(1 − ρ))
5: for i = 1 to τ do
6: U = X · X − Y · Y, V = Z, W = (X · Z · Z)/Y
7: X = U, Y = V, Z = W

8: end for
9: Q(η|ρ) = X · X − Y · Y − Z

10: return minimum root of Q(η|ρ) = 0 over η ∈ (0, 1)

Note: Line 4 to Line 9 are symbolic calculation, where the bold capitals are symbolic expressions of η and ρ.

G. INTEGRITY ATTACKS ON REAL-TIME PRICES FOR SUPPLIERS

This section studies the impact of the two integrity attacks on the real-time prices for
suppliers. Although the price signals sent to the suppliers are often well protected,
they may become the targets of the adversary because she needs to focus on a limited
number of centralized suppliers only, in contrast to a large number of geographically
distributed consumers. As this section follows the analysis approach in Section 5, we
will keep the analysis procedures concise and focus on presenting the results.

Similar to Section 5.1.1, we define the following notation. Let S′ denote the set of
suppliers whose price signals are compromised, where S′ ⊆ S, and s′(λk) denote the
total supply in the presence of an attack. Thus, s′(λk) =

∑

i∈S′ si(λ
′
k) +

∑

i∈S\S′ si(λk).
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Fig. S-4. Stability boundaries under delay attack on prices for suppliers.

The ρ is re-defined as ρ =
∑

i∈S′ si(λ
′

k)∑
i∈S

si(λ′

k
) =

∑
i∈S′ si(λ

′

k)

s(λ′

k
) . We also make the following ap-

proximation:
∑

i∈S\S′ si(λk) ≃ (1− ρ)
∑

i∈S si(λk) = (1− ρ)s(λk). Therefore, we have

s′(λk) ≃ ρs(λ′
k) + (1 − ρ)s(λk). (S3)

The results in this section require that the total supply model satisfies the following
property:

Definition G.1. The first derivative of the total supply model, i.e., ṡ(x), is said to be
decomposable, if ṡ(x)|x=γλ = ṡ(x)|x=λ ·ν(γ|Ξ), where Ξ is the set of model parameters of
s(x), γ and ν(γ|Ξ) are independent of λ. For simplicity of exposition, we denote ν(γ|Ξ)
as ν in the rest of this paper.

G.1. Impact of Scaling Attacks on Prices for Suppliers

The transfer function of the local linearization of Eq. (S3) with λ′
k = γλk is Gs(z) =

ργṡ(x)|x=γλo
+ (1 − ρ)ṡ(λo). We have the following proposition, which is a counterpart

of Proposition 5.6.

PROPOSITION 6.2. For the scaling attacks on the prices for suppliers and the
linearized system based on a fixed operating point λo and a decomposable ṡ(·),
ROSλo

(ρ, γ) = {(h, η)|0 < η < min{1, η̄}, ∀h > 0}, where η̄ = h+1
h+1+ρ(γν−1) and ν is

defined in Definition G.1.

PROOF. As ṡ(·) is decomposable, Gp(z) can be further derived as Gp(z) = Gs(z) −
Gw(z) = ργνṡ(λo) + (1 − ρ)ṡ(λo) − ẇ(λo). The system characteristic function can be
derived as P (z) = (h + 1)(z − 1) + 2η(1 + ργν + h − ρ). If η < η̄, the sole pole of P (z)
is within the unit circle centered at the origin of z-plane and the system is stable. As
η ∈ (0, 1), η takes the minimum of 1 and η̄.

The following proposition is a counterpart of Proposition 5.7.

PROPOSITION 6.3. For the scaling attacks on the prices for suppliers and the lin-
earized system based on a decomposable ṡ(·), when γν ∈ (0, 1], ROS(ρ, γ) = {η|0 < η <
1}; when γν > 1, ROS(ρ, γ) = {η|0 < η < infh>0 η̄}, where infh>0 η̄ = 1

1+ρ(γν−1) . Note

that ν is defined in Definition G.1.

PROOF. When γν ∈ (0, 1], η̄ ≥ 1. From Proposition 6.2, if 0 < η < 1, the system
is stable regardless of h. When γν > 1, η̄ is a bounded increasing function of h. Its
infimum infh>0 η̄ = limh→0+ η̄ = 1

1+ρ(γν−1) . Therefore, if 0 < η < infh>0 η̄, the system is

stable regardless of h.
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G.2. Impact of Delay Attacks on Prices for Suppliers

The transfer function of the local linearization of Eq. (S3) with λ′
k = λk−τ is Gs(z) =

z−τρṡ(λo) + (1− ρ)ṡ(λo). Therefore, Gp(z) = Gs(z)−Gw(z) = z−τρṡ(λo) + (1− ρ)ṡ(λo)−
ẇ(λo). The system characteristic function can be derived as P (z) = (h+1)zτ+1+((2η−
1)(h+1)− 2ηρ)zτ +2ηρ. Similar to Section 5.3, we can use the Jury test to compute the
ROSλo

. Fig. S-4 plots the stability boundaries, where the ROSλo
are the regions below

the boundaries. Similar to Proposition 5.9, we have the following proposition.

PROPOSITION 6.4. For the delay attacks on the prices for suppliers and the lin-
earized system, if ρ ∈ (0, 0.5], ∀τ ∈ Z+, ROS(ρ, τ) = {η|0 < η < 1}.

PROOF. The proof is same as the proof for Proposition 5.9 in Appendix F.4, except
that: (1) u2 and u3 are defined as u2 = (2η − 1)(h+ 1)− 2ηρ and u3 = 2ηρ; (2) if u2 < 0,
u1 − |u2| = 2η(h+ 1− ρ), otherwise, u1 − |u2| = 2(h+ 1)(1− η) + 2ηρ.

Proposition 6.4 suggests that the adversary has to compromise no less than a half
of the suppliers to successfully destabilize the system. Fig. S-5 plots the upper bound
of ROS versus τ when ρ ∈ (0.5, 1]. This result is close to Fig. 5, i.e., the counterpart for
the delay attack on the prices for consumers.

G.3. Numerical Results based on Specific Demand and Supply Models

As a counterpart to Section 5.4, this section presents numerical results obtained under
the CEO demand and linear supply models. Note that, under the linear supply model,
ṡ(·) is decomposable and ν = 1. The settings are same as in Section 5.4.
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Under the linear supply model, by replacing ν = 1 in Proposition 6.2, we have η̄ =
h+1

h+1+ρ(γ−1) . Fig. S-7 plots the stability boundaries, where the ROSλo
are the regions

below the boundaries. We can see that the ROSλo
shrinks with increased ρ, which

is consistent with intuition. Moreover, ROSλo
shrinks with increased γ, which is in

contrast to the observation in Section 5.4.1 for scaling attacks on prices for consumers.
This is because the supply and demand models have inverse monotonicity.

Moreover, replacing ν = 1 in Proposition 6.3 yields the following result. When γ ∈
(0, 1], ROS(ρ, γ) = {η|0 < η < 1}; when γ > 1, ROS(ρ, γ) = {η|0 < η < infh>0 η̄}, where
infh>0 η̄ = 1

1+ρ(γ−1) . Therefore, under the linear supply model, if the adversary scales

down the price, the system remains stable. This result is in contrast to the result
in Section 5.4.1, which, however, is consistent with intuition because of the inverse
monotonicity of supply and demand models. Fig. S-6 plots limh→0+ η̄. We can see that
ROS shrinks with increased γ and ρ.

H. PROOFS FOR SECTION 6

H.1. Proof for Proposition 6.1

PROOF. By following the procedure in the proof of Proposition 4.1, the system char-
acteristic function is derived as P (z) = (h+1)z2+((2η−α− 1)h+(2− 2α)η−α− 1)z+
(α− 2αη)h+ α. The Jury test conditions are: (1) h+ 1 > |(α− 2αη)h+ α|; (2) P (1) > 0;
and (3) P (−1) > 0. These conditions always hold. Thus, the system is stable.

H.2. Proof for Proposition 6.2

PROOF. By following the analysis approach in Section 5.2, the system characteristic
function under the scaling attack is given by

P (z)=(h+1)z2+(2ηρh(γµ−1)+(2η−α−1)h+2(1−α)η−α−1)z+α((2ηρ(1−γµ)−2η+1)h+1).

The Jury test conditions are: (1) h + 1 > α|(2ηρ(1 − γµ) − 2η + 1)h + 1|; (2) P (1) =
2(1 − α)η(h + 1 + ρh(γµ − 1)) > 0; (3) P (−1) > 0, where the third condition can be
derived as η < η̄. The second condition always holds. Moreover, if η < η̄, the first
condition also holds. As η ∈ (0, 1), η takes the minimum of 1 and η̄.

H.3. Proof for Proposition 6.4

PROOF. The system characteristic function is derived as P (z) = (h + 1)z2 + ((2η −
1)h + (2 − 2α)η − 1)z − 2αηh. Jury test conditions are: (1) h + 1 > 2αηh; (2) P (1) =
2(1−α)(h+1)η > 0; (3) P (−1) = 2(h+αη−αηh− ηh− η+1) > 0. The second condition
always holds. If the third condition holds, the first condition holds. The third condition
is derived as η < h+1

α(h−1)+h+1 . This upper bound for η decreases with h and its limit is

1/(1 + α) when h → +∞. Thus, if η ∈ (0, 1
1+α ), the system is stable.

H.4. Proof for Proposition 6.5

PROOF. Under the scaling attack, the scheduled total supply is Sk = α · (bk−1 +
w′(λk−1)) + (1 − α) · s(λk), where w′(λk−1) is the total price-responsive demand in
the presence of an attack. The Gp(z) and P (z) can be derived as Gp(z) = (αz−1 −
1)(ργµẇ(λo)+(1−ρ)ẇ(λo))+(1−α)s and P (z) = (h+1)z2+(2ηhµργ−2ηhρ+2ηh−h−2αη+
2η−1)z−2αηh(µργ−ρ+1). The Jury test conditions are: (1) h+1 > 2αηh|(µγ−1)ρ+1|;
(2) P (1) = 2(1 − α)η(hµργ − hρ + h + 1) > 0; (3) P (−1) > 0. The third condition can be
derived as η < η̄. The second condition always holds. If the third condition holds, the
first condition holds. From Proposition 6.4, η takes the minimum of 1

1+α and η̄.
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Fig. S-8. Stability boundaries under scaling attack on prices for consumers and CEO demand model (ǫ =

−0.8, ρ = 1, γ = 0.3, ROSλo
are the regions below the boundaries).

I. NUMERICAL RESULTS FOR SECTION 6

As a counterpart to Section 5.4, this section presents numerical results obtained under
the CEO demand and linear supply models. The settings are the same as in Section 5.4.

When the consumers fully handle the generation scheduling errors, Fig. S-8(a) plots
the stability boundaries under the scaling attacks and different settings for α. From
the figure, we can see that the ROSλo

expands with α. This is consistent with the
intuition that the system becomes more resilient when the suppliers are more price-
inelastic because of a larger α.

When the suppliers fully handle the generation scheduling errors, Fig. S-8(b) plots
the stability boundaries under the scaling attacks and different settings for α. From
the figure, we can see that the ROSλo

shrinks with α. This result is contrary to Fig. S-
8(a) for Case 1. It is because in Case 2, the stateful supply model is a composite of
the stateless supply and demand models. Therefore, a larger α increases the price-
elasticity of supply, thereby making the system less resilient.

J. LMP UNDER GENERAL COST FUNCTION AND PRICE-RESPONSIVE DEMAND

This section describes how the LMPs are computed, where the demand is price-
responsive. Let N and M denote the numbers of buses and branches in the transmis-
sion system, respectively. Let λB

n , dBn , bBn , sBn , vBn (·), and cBn (·) denote the LMP, demand,
baseline demand, supply, value function, and cost function, respectively, at the nth bus.
We assume that the demand and supply are determined by the value and cost func-
tions as follows: dBn = (v̇Bn )−1(λB

n ) + bBn and sBn = (ċBn )
−1(λB

n ) [Roozbehani et al. 2012].
We extend an LMP formulation based on the dc optimal power flow (DCOPF) in [Li
and Bo 2007] to address a general cost function and price-responsive demand:

minimize ω =
∑N

n=1
vBn (dBn − bBn )− cBn (s

B
n ), (S4)

subject to
∑N

n=1
δn · sBn −

∑N

n=1
δn · dBn +

∑M

m=1
(Fm/V )2Rm = 0, (S5)

δn = 1−
∑M

m=1

2RmFmHmn

V 2
, ∀n ∈ [1, N ], (S6)

Fm =
∑N

n=1
Hmn(s

B
n − dBn ), ∀m ∈ [1,M ], (S7)

− Lm ≤ Fm ≤ Lm, ∀m ∈ [1,M ], (S8)

smin
n ≤ sn ≤ smax

n , ∀n ∈ [1, N ], (S9)

where ω in Eq. (S4) is the social welfare; Eq. (S5) is the power balance equation; δn
in Eq. (S6) is the delivery factor for the nth bus; Fm in Eq. (S7) is the power flow over
the mth branch; Eq. (S8) is the transmission line capacity constraint; Eq. (S9) is the
generation capacity constraint; V is the voltage magnitude; Hmn is the power trans-



:40

fer distribution factor to the mth branch from the nth bus; Lm, Rm, and (Fm/V )2Rm

are the capacity, resistance, and power loss of the mth branch, respectively. Note that
{Hmn|n ∈ [1, N ],m ∈ [1,M ]} can be calculated from the reactances of the branches and
the incidence matrix (i.e., topology) of the transmission system, using various tools
such as MATPOWER.
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