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Modern information and communication technologies used by electric power grids are subject to cyberse-
curity threats. This paper studies the impact of integrity attacks on real-time pricing (RTP), an emerging
feature of advanced power grids that can improve system efficiency. Recent studies have shown that RTP
creates a closed loop formed by the mutually dependent real-time price signals and price-taking demand.
Such a closed loop can be exploited by an adversary whose objective is to destabilize the pricing system.

Specifically, small malicious modifications to the price signals can be iteratively amplified by the closed loop,
causing highly volatile price, fluctuating power demand, and increased system operating cost. This paper
adopts a control-theoretic approach to deriving the fundamental conditions of RTP stability under basic
demand, supply, and RTP models that characterize the essential behaviors of consumers, suppliers, and
system operators, as well as two broad classes of integrity attacks, namely, the scaling and delay attacks.
We show that, under an approximated linear time-invariant formulation, the RTP system is at risk of being
destabilized only if the adversary can compromise the price signals advertised to consumers, by either re-
ducing their values in the scaling attack, or by providing old prices to over half of all consumers in the delay
attack. The results provide useful guidelines for system operators to analyze the impact of various attack
parameters on system stability, so that they may take adequate measures to secure RTP systems.

Categories and Subject Descriptors: B.8.2 [Performance and Reliability]: Performance Analysis and De-
sign Aids; K.6.5 [Management of Computing and Information Systems]: Security and Protection

General Terms: Economics, Security
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1. INTRODUCTION

Electric power grids are increasingly using modern information and communication
technologies (ICTs) to improve system reliability and efficiency. However, these com-
puterized and networking technologies are subject to security threats that range from
personal breaches [McLaughlin et al. 2010] to sophisticated cyber attacks launched by
hostile organizations to cause widespread outages [The Wall Street Journal 2009]. As
a sophisticated cyber-physical system, a power grid features complex closed-loop feed-
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back controls in various physical [Grainger and Stevenson 1994] and economic compo-
nents [Alvarado 1999], which maintain desirable system performance in the presence
of dynamics and uncertainties. However, the impacts of cyber attacks against these
closed loops on power grids have received limited research attention. Without a sys-
tematic understanding of these impacts, system designers and operators will not be
able to truly assess how these attacks may undermine the system’s ability to provide
mission-critical services, and hence take appropriate defensive measures against the
possible threats. This paper makes a step in this direction by quantifying, through
both analysis and simulations, the impact of cyber attacks on real-time pricing (RTP),
an emerging feature of advanced power grids that involves closed-loop controls to sta-
bilize the electricity market.

Dynamic pricing [Barbose et al. 2005] is a widely adopted means to balance electric-
ity generation and consumption. The electricity price in the wholesale market is up-
dated periodically (e.g., every 5 minutes) to match generation with dynamic demand.
In contrast, many current retail markets adopt static pricing schemes such as fixed
and time-of-use tariffs, under which the consumers have limited incentives to adapt
their electricity consumption to market conditions. This lack of incentives results in
high peak demands that strain infrastructure capacities and unnecessarily increase
operational costs. By relaying the real-time wholesale prices to end customers, RTP
has been considered a key feature of the grids of tomorrow, which can reduce over-
provisioning and improve system efficiency. In practice, utilities have provided RTP
programs to large commercial and industrial customers for more than ten years [Bar-
bose et al. 2005]. Currently, they are increasingly extending RTP programs to small
residential customers, as exemplified by Commonwealth Edison Company (ComEd)
[ComEd 2014] and Ameren Corporation [Ameren 2014] in Illinois. Moreover, RTP is
becoming a legally required option for consumers [Public Act 094-0977 2014].

Unfortunately, as analyzed in [Roozbehani et al. 2012a], there exists a fundamen-
tal information asymmetry between the system operators and consumers under RTP.
Specifically, a system operator needs to determine the price, which is supposed to clear
the market, prior to the consumption decisions made by consumers. As the system
operator typically has limited knowledge about the consumers, its best practice is to
determine the price based on historical demand. As a result, RTP creates a closed loop
formed by the mutually dependent real-time prices and price-taking demand [Roozbe-
hani et al. 2012a]. Such a closed loop can increase the system’s sensitivity to dynamics
and lower its robustness against situational uncertainties. As such, it can be exploited
by an adversary whose objective is to destabilize the RTP system. Specifically, small
modifications to the signals in the closed loop made by the adversary can be iteratively
amplified by the feedback, causing highly volatile price, fluctuating power demand,
and increased system operating cost.

In advanced power grids, the real-time price signals are exposed to different secu-
rity threats at the source, during network transmissions, and at the consumer-level
smart meters. Recent studies [McLaughlin et al. 2010; Rouf et al. 2012] have shown
that many smart meters lack basic security measures to ensure the integrity and au-
thenticity of their input/output data. Moreover, a Blackhat demonstration [Davis 2009]
showed that a worm was able to control 15,000 emulated smart meters in 24 hours. In
light of these infrastructure vulnerabilities, imperative questions regarding RTP secu-
rity include, “Can the malicious compromise of real-time price signals destabilize the
system and cause undesirable consequences such as unacceptably high price volatility?
If so, to what extent do the price signals need to be compromised?” A main challenge
in answering these questions stems from the complex coupling between the attacker
actions and the closed-loop RTP system. For instance, an attack to a few smart meters
can cause monetary losses to individual victims, but it will not be able to destabilize
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the whole system. But if the adversary is able to compromise a sufficiently large num-
ber of consumers, the pricing mechanisms, which are designed to stabilize the system,
may fail to mitigate the attack’s impact. This impact may then pervade the whole sys-
tem due to the iterative feedback. However, it is challenging to quantify these critical
stability boundaries accurately, in order to characterize the impact of the attacks.

In this paper, we adopt a control-theoretic approach, which captures the closed-
loop nature of the RTP, to deriving fundamental stability conditions under credible
integrity attacks. Based on the linearization of general abstract models of supply and
demand, the RTP problem is formulated as a classical control problem for a linear
time-invariant (LTI) system. We develop a basic pricing algorithm that sets the price
adjustment proportional to the observed error between supply and demand. It ensures
stability and captures the essence of stability-ensuring RTP systems. Therefore, the
security analysis based on this algorithm provides a baseline understanding of the
security of these systems. We adopt a control-theoretic metric, namely, the region of
stability, to characterize the resilience of the closed-loop RTP system with respect to
important and practical adversary models. Specifically, we consider two common and
broad classes of integrity attacks, which we call the scaling and delay attacks. In the
scaling attacks, the prices advertised to consumers are compromised by a scaling fac-
tor, so that the consumers will use scaled prices to make power consumption decisions.
In the delay attacks, timing information of prices is corrupted, so that the consumers
will use old prices. In addition to directly tampering with data traffic sent to the con-
sumers, these attacks can be accomplished by indirect techniques that are less effort
intensive. For instance, the delay attack can be realized by compromising the time
synchronization of consumers’ smart meters. Note that current commercial smart me-
ters [Schneider Electric 2014] synchronize their clocks by either built-in Global Posi-
tioning System (GPS) receivers or a network time protocol (NTP) supported by time
servers [Schneider Electric 2014]. Both approaches have been shown to be vulnerable
to realistic attack methods [Oracle 2012; Nighswander et al. 2012].

Based on our analytical framework, we derive the region of stability for both the
scaling and delay attacks. We show that, under the LTI formulation, the RTP system
remains stable if (i) the compromised prices advertised to consumers are amplified ver-
sions of the true prices under the scaling attack, or (ii) less than half of the consumers
in the pricing system are compromised in the delay attack. On the other hand, if the
adversary can break either of these two conditions, the system may experience highly
volatile prices and severely fluctuating demand arising from the system instability. To
verify our analysis, we conduct several sets of simulations using 1,405 houses, a 4-bus
transmission system, and an IEEE 118-bus system, respectively. We demonstrate pos-
sible system emergencies (e.g., line overload) and system efficiency degradation (e.g.,
increased power losses in transmission) caused by the attacks. The insights based on
our results are two-fold. First, to destabilize the system and cause system-wide catas-
trophic consequences, the adversary needs to compromise the price signals to a large
number (at least 50% under the delay attack) of the consumers. Although this is indica-
tive of the resilience of RTP systems, the possibility of compromising a large number
of smart meters cannot be ignored given known smart meter vulnerabilities and the
aforementioned Blackhat demonstration [Davis 2009]. On the other hand, our results
suggest that, to achieve the necessary breadth of coverage, the adversary may focus on
compromising shared support infrastructures such as NTP time servers. Such attacks
are credible as evidenced by existing security incidents such as the Dragonfly viruses
[Symantec 2014] that penetrated power grids’ ICT systems. Thus, our results highlight
the importance of securing these time servers.

The rest of this paper is organized as follows. Section 2 reviews related work. Sec-
tion 3 presents the market model. Section 4 defines the RTP stability problem, and de-
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velops a control-theoretic formulation of the problem. Sections 5 analyzes the impact
of the integrity attacks against the real-time prices for consumers. Section 6 studies
the impact of limiting factors in generation on our analytic results. Section 7 discusses
other attack models and the impact of various system uncertainties on our analytic
results. Section 8 presents simulation results. Section 9 concludes this paper.

2. RELATED WORK

The security of power grids is attracting increasing research attention. In particu-
lar, false data injection attacks against the state estimation of power grids have been
extensively studied. In [Liu et al. 2011], Liu et al. systematically examine the condi-
tions for bypassing a bad data detection mechanism of state estimation. Later studies
[Yuan et al. 2011; Lin et al. 2012; Xie et al. 2011; Jia et al. 2012; Kosut et al. 2011]
show that the false data injection attacks can lead to increased system operating costs
due to inordinate generation dispatch [Yuan et al. 2011] or energy routing [Lin et al.
2012], as well as economic losses due to misconduct of electricity markets [Xie et al.
2011; Jia et al. 2012; Kosut et al. 2011]. In particular, the studies in [Xie et al. 2011;
Jia et al. 2012; Kosut et al. 2011] focus on false data injection attacks on real-time
wholesale markets. They primarily focus on the attacks on critical measurements in
a power system, which are often well protected by system operators. Moreover, they
ignore demand response of end customers to prices. In contrast, we consider integrity
attacks that may target distributed smart meters that are much more vulnerable, and
also accounts for demand response involving the end customers. Moreover, we focus on
how a series of attacks over a time period will affect the pricing system stability. All
these related studies [Liu et al. 2011; Yuan et al. 2011; Lin et al. 2012; Xie et al. 2011;
Jia et al. 2012; Kosut et al. 2011] analyze attacks on systems using constrained opti-
mization formulations such as economic dispatch. The closed loop characterizing the
RTP system in our work imposes specific challenges in the security analysis due to its
iterative nature. To address these challenges, we adopt a control-theoretic formulation.

The security of a broader class of cyber-physical systems that feature complex closed
loops has been studied recently. In [Cárdenas et al. 2008], Cárdenas et al. identify
challenges in the security analysis of these systems. In [Cárdenas et al. 2011], the au-
thors use simulations to study the impacts of integrity and denial-of-service attacks
on a chemical reactor with multiple sensors and control loops. In [Amin et al. 2013],
the authors perform security threat assessment of supervisory control and data acqui-
sition systems for water supply. These studies focus on demonstrating the possibility
of pushing the system to a certain state (e.g., unsafe pressure in a chemical reactor) by
tampering with the sensor and/or control signals. In contrast, this paper aims at char-
acterizing the fundamental critical stability conditions of closed-loop RTP systems.

3. MARKET MODEL

This section presents the market model adopted in this paper, which comprises an in-
dependent system operator (ISO), consumers, and suppliers. This section also presents
a basic set of assumptions about the RTP, demand, and supply models. The following
sections (Section 4 to Section 8) will introduce necessary variations to these basic as-
sumptions (e.g., linearization and instantiation). Table V in the conclusion section of
this paper summarizes these variations. The notation used in this paper and the de-
fault physical units of symbols are summarized in Appendix A of the supplementary
file containing appendices of this paper.1 We also use the following mathematical no-

1Due to space limitations, all appendices are omitted and can be found in the supplementary file of this
paper.
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Fig. 1. Total supply vs. wholesale price [Austrilian Energy Market Operator 2014].

tation: R+/R− denotes the set of positive/negative real numbers; Z+ denotes the set of
positive integers; ḟ(x) denotes the first derivative of function f(x).

3.1. ISO Model and RTP Schemes

The ISO is a profit-neutral agent, which aims to clear the market, i.e., match supply
and demand. It determines a clearing price every T hours and announces it to the sup-
pliers and consumers. Specifically, the price for the kth pricing period [k · T, (k+1) · T ],
denoted by λk, is announced at time instant k ·T . Hence, this scheme corresponds to ex-
ante pricing. We assume that the price must be within a range, i.e., λk ∈ [λmin, λmax],
where λmax > λmin ∈ R

+. Note that in many electricity markets, suppliers sell elec-
tricity to utilities in wholesale markets, and utilities sell electricity to end consumers
in retail markets. The market model adopted in this paper directly relays real-time
wholesale prices to end consumers, which preserves the principles of RTP and sim-
plifies the analysis. This model has been employed in previous studies [Roozbehani
et al. 2012a] and is consistent with the essence of several experimental RTP programs
provided by utilities [Barbose et al. 2005; ComEd 2014; Ameren 2014], which include
Board of Public Utilities in New Jersey, Baltimore Gas and Electric Company in Mary-
land, Duquesne Light in Pennsylvania, ComEd and Ameren in Illinois. In these pro-
grams, the hourly wholesale prices published by PJM Interconnection LLC are used
directly as retail prices (T = 1), where the utilities make profit from fixed service
charges only [ComEd 2014; Ameren 2014]. In particular, the ComEd’s RTP program,
which was developed based on an experimental program [Allcott 2009], had more than
5,000 household participants by 2008 [Allcott 2009] and has been continuously growing
in size. A few other RTP programs give customers advance notice of hourly prices. For
instance, in the RTP-HA-2 program of Georgia Power [Georgia Power 2014], the price
is announced one hour before. To simplify the discussion, we focus on RTP schemes
without advance notice. However, our analysis can be easily extended to encompass
advance notice. The ISO may apply ex-post price adjustments. In this paper, we as-
sume that the consumption and generation are scheduled according to the ex-ante
price only.

In reality, locational prices can be applied to address location-dependent transmis-
sion costs. That is, different locations in a transmission system adopt different prices.
In this paper, we assume that the transmission lines have high enough capacities such
that they are not congested. Under this assumption, as generation cost often dom-
inates transmission cost, variations of prices across different locations at the same
moment are small. For instance, according to PJM’s operational data [PJM 2014], the
relative standard deviation of the locational prices for 219 locations at the same mo-
ment is often around 5% only. Note that the price for a location can change significantly
over time (e.g., from 10 $/MWh to 55 $/MWh as shown in Fig. 1) . As this paper focuses
on the impact of integrity attacks on RTP systems, we ignore the small variations in
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the locational prices. Thus, we assume that all the suppliers and consumers are sub-
ject to the same real-time price at any time instant. Section 8.2 will evaluate the loss
of accuracy due to this simplification of assuming identical real-time prices across all
the locations. It also discusses the impact of integrity attacks on the power grid when
a few transmission lines are already congested before the launch of the attacks.

3.2. Consumers

Let C denote the set of consumers in the system. In the kth pricing period, the de-
mand of a consumer j ∈ C, denoted by dj(k, λk), is the sum of the baseline demand
and price-responsive demand, which are denoted by bk,j and wj(λk), respectively. By
denoting bk =

∑
j∈C bk,j and w(λk) =

∑
j∈C wj(λk), the total demand d(k, λk) is

d(k, λk) =
∑

j∈C dj(k, λk) = bk + w(λk). We make the following assumptions:

— The baseline demand bk,j and the total baseline demand bk are exogenous, bounded,
dependent on time, but independent of λk. For instance, for a household, the baseline
demand can characterize the minimum necessary power usage, such as cooking and
a minimum level of illumination.

— We assume that w(λk) is a decreasing function of λk, which is consistent with intu-
ition. Human-induced demand response to price change has been observed in previ-
ous studies [Allcott 2009; Sweeny 2002]. In particular, an experiment conducted with
693 household consumers [Allcott 2009] showed that households exhibited significant
price elasticity, and energy management and information technology could signifi-
cantly increase this elasticity. With the increasing adoption of smart appliances and
home automation systems, this demand response will become more automated. For
instance, in the Load Guard Automatic Price Response Service provided by ComEd
[ComEd 2014], a cyber-enabled controller automatically regulates the duty cycling of
a central air conditioner based on ComEd’s real-time prices.

— As there are a large number of consumers, we assume that bk,j and wj(·) are unknown
to the ISO. However, the ISO knows the historical total demand {d(h, λh)|∀h < k}.

A subset of analytic results in this paper require that the price-responsive demand
model satisfies the following property:

Definition 3.1. The first derivative of the price-responsive demand model, i.e., ẇ(x),
is said to be decomposable, if ẇ(x)|x=γλ = ẇ(x)|x=λ ·µ(γ|Θ), where Θ is the set of model
parameters of w(x), γ and µ(γ|Θ) are independent of λ. For simplicity of exposition, we
denote µ(γ|Θ) as µ in the rest of this paper.

3.3. Suppliers

Let S denote the set of suppliers in the system. Let si(λk) denote the quantity of power
that a supplier i ∈ S schedules to generate in the kth pricing period given price λk.
Let s(λk) denote the scheduled total supply in the kth pricing period, i.e., s(λk) =∑

i∈S si(λk). We make the following assumptions:

— We assume that s(λk) is an increasing function of λk. This assumption can be vali-
dated using published electricity market data. For instance, using half-hourly sup-
ply data of New South Wales (NSW), Australia, provided by the Australian Energy
Market Operator (AEMO) [Austrilian Energy Market Operator 2014], Fig. 1 shows
a histogram of the total supply versus the wholesale price in January, 2012. We can
see that the total supply increases with the price. Such a monotonic relationship can
also been seen in the electricity market of California [Sweeny 2002, p. 112]. Note that,
in current electricity wholesale markets, the supply and price are often determined
through a bidding process [Fleten and Pettersen 2005], which is generally governed

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.



A:7

0
20
40
60
80

λ
k

Clearing price

-30
-20
-10

0
10
20

0 4 8 12 16 20 24
s
−

d
Time (hour)

Fig. 2. An example of unstable solution [Roozbehani et al. 2012a]. Top figure: Evolution of price. Bottom

figure: Generation scheduling error in GW. (Settings: s(λk) = 152λk + 4503, w(λk) = 33447 · λ−0.6
k

, bk =
2000, λ∗

k
= 20, λ0 = 21, λmin = 1, λmax = 100)

by generation costs. In a competitive bidding-based wholesale market, the resultant
supply and price will well reflect the supply model s(λk) derived from the generation
cost model.

— In this paper, we consider centralized bulk generation rather than distributed gener-
ation. As there are typically a limited number of suppliers, we assume that the ISO
can estimate the total supply model s(·).

— We assume that the generation capacity of the supplier i is at least si(λmax).

4. THE RTP PROBLEM AND SOLUTIONS

This section formally states the RTP problem, examines an existing solution, and de-
scribes a basic control-theoretic solution with provable bounded-input bounded-output
stability (referred to as stability for short in this paper). Based on the solution, the
security analysis in Sections 5 and 6 lays the foundation for understanding the impact
of attacks on feedback-based RTP systems.

4.1. The RTP Problem and Solution Stability

At time instant k·T , the ISO aims to find the clearing price for the period [k·T, (k+1)·T ],
denoted by λ∗

k, such that the scheduled supply matches demand, i.e., s(λ∗
k) = d(k, λ∗

k).
Existing studies often assume a known or a learned demand model (i.e., d(k, λk)) such
that the clearing price can be solved in closed form or obtained by a search algorithm
[Yu et al. 2012; Samadi et al. 2014; Choi et al. 1998; Siddiqi and Baughman 1993].
The effectiveness of these open-loop approaches rely on an accurate demand model,
which is often difficult to obtain in practice. Recent studies attempt to reduce the re-
liance on an accurate demand model by multiple rounds of communications between
the consumers and suppliers to converge to the clearing price in each pricing period
[Samadi et al. 2010; Qian et al. 2013; Li et al. 2011]. However, this requires the two-
way communication capability of consumers, which is still largely unavailable for end
customers in today’s power grids.

Researchers also start to examine the applicability of the current RTP schemes em-
ployed in today’s wholesale markets to the scenario that the wholesale real-time prices
are relayed to end consumers [Roozbehani et al. 2012a]. In the current practice, the
ISO sets the price to match the scheduled supply and predicted demand (denoted by

d̃(k, λk)). Formally, the ISO solves the following problem:

RTP Problem: Find λk such that s(λk) = d̃(k, λk).

Current demand prediction algorithms often include an autoregressive component.
As shown in [Roozbehani et al. 2012a], such an autoregression-based prediction may
lead to significantly fluctuating prices. For instance, the simplest form of the autore-

gression, which uses d(k − 1, λk−1) as the predicted demand d̃(k, λk), can yield oscil-
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lating prices as shown in Fig. 2. This simplest RTP scheme is called direct feedback
approach [Roozbehani et al. 2012a] in the rest of this paper. The root cause of the
oscillation is the unstable closed-loop system formed by the direct feedback.

As a fundamental requirement for any physical or economic component of a power
grid, stability ensures that the component is resilient to certain exogenous distur-
bances and inaccuracies in the system models. These disturbances and inaccuracies
are often inevitable. Therefore, instability is highly undesirable in the design and
operation of a system. Particularly, in an unstable RTP system, the price set by the
ISO will oscillate or diverge, even if the initial price is very close to the true clear-
ing price, where the tiny error may be caused by exogenous factors such as temporal
variation of baseline demand. The oscillations may lead to undesirable consequences.
For instance, when the diverging prices reach low values, the increased demand may
cause overload of the transmission and distribution networks. Moreover, as shown in
Fig. 2, the unstable system may experience significant generation scheduling errors
(i.e., s(λk) − d(k, λk)). If the suppliers are responsible for handling these errors, re-
serve generating capacities can help compensate for the errors. However, their use
may increase the cost of operating the system. We note that the exact impact of the
instability on the grid depends on many operational regulations of the grid, such as
the approach to handling generation scheduling errors, the ISO’s ability to detect price
oscillation, and its follow-up mitigation policies. However, the system complexity and
the increased operating cost caused by these countermeasures will offset or even inval-
idate the RTP’s promise of improving system efficiency. Therefore, ensuring stability of
RTP is a first priority for system designers and ISOs. Moreover, the fundamental con-
ditions for ensuring the RTP stability in the presence of certain cybersecurity attacks
are also of great interest, due to the increasing exposure of grids to cyberspace.

To study the impact of integrity attacks on the RTP systems, we should start with
RTP schemes that are stable in the absence of attacks. Our analysis and extensive
numerical experiments show that, the direct feedback approach [Roozbehani et al.
2012a] is unstable and diverging with significant probability. Moreover, according to
[Roozbehani et al. 2012a], if the direct feedback approach is not stable, it is difficult to
stabilize those systems based on autoregressive demand prediction. The details of the
analysis and numerical experiments are omitted due to space constraints and can be
found in Appendix B of the supplementary file of this paper.

4.2. Control-Theoretic Price Stabilization

The results in Section 4.1 show the necessity of control laws for stabilizing RTP sys-
tems, which was also pointed out in [Roozbehani et al. 2012a]. We note that the design
of RTP algorithms to meet various specific requirements (e.g., stability, efficiency, etc)
under the scenario that the end consumers are provided real-time wholesale prices is
still under active research. In this paper, we do not aim to design specific RTP algo-
rithms. Instead, we aim to analyze the impacts of integrity attacks against the vulner-
able real-time price signals on the stability of the RTP systems that are stable in the
absence of attacks. To achieve this, in this section, we describe a basic control-theoretic
RTP algorithm as a baseline system for the security analysis in the following sections.
We expect our security analysis can provide a baseline for understanding the security
properties of other sophisticated RTP algorithms that are expected to have better sta-
bility. Moreover, we also hope our results will inform RTP designers to take potential
security threats into consideration.

The objective of price stabilization is to minimize the generation scheduling error
and adapt to the time-varying baseline load. We reformulate the RTP problem as a
classical discrete-time feedback control problem. Under this formulation, the ISO ob-
serves the generation scheduling error in the previous pricing period, and then uses it
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to guide the setting of the price in the next pricing period. Specifically, let ek denote the
generation scheduling error, i.e., ek = s(λk)− d(k, λk). The objective is to maintain the
controlled variable ek close to its reference, which is zero. The manipulated variable is
λk, and s(λk)−d(k, λk) is the controlled system. The block diagram of the feedback con-
trol loop is shown in Fig. 3. We let Gc(z), Gp(z), and H(z) denote the transfer functions
of the RTP algorithm, the controlled system, and the observation system, which are ex-
pressed in the z-transform domain. The z-transform [Ogata 1995] provides a compact
representation for discrete-time functions, where z represents a time shift operation.
As bk is bounded and independent of λk, it can be modeled as a disturbance.

We now derive the expressions of Gp(z) and H(z). Note that the supply and price-
responsive demand models, i.e., s(λ) and w(λ), can be non-linear. In controller de-
sign, a common approach to dealing with non-linear systems is to adopt local lin-
earization [Ogata 1995]. Specifically, s(λ) ≃ s(λo) + ṡ(λo) · (λ − λo) and w(λ) ≃
w(λo)+ ẇ(λo) · (λ−λo), where λo is a fixed operating point. By denoting sp(λ) = ṡ(λo)λ,
so = s(λo)−ṡ(λo)λo, wp(λ) = ẇ(λo)λ, and wo = w(λo)−ẇ(λo)λo, we have s(λ) ≃ sp(λ)+so
and w(λ) ≃ wp(λ) + wo. As so and wo are independent of λ, as shown in Fig. 3, we can
collect them with the price-independent bk. The transfer functions of the proportional
models sp(λ) and wp(λ) are Gs(z) = ṡ(λo) and Gw(z) = ẇ(λo), respectively. Therefore,
Gp(z) = Gs(z)−Gw(z) = ṡ(λo)− ẇ(λo). As the RTP algorithm uses the observed gener-
ation scheduling error in the previous pricing period to adjust the price for the current
pricing period, H(z) = z−1, which represents the delay of one pricing period.

The analysis in the rest of this paper is based on the above linearized abstract supply
and demand models at a fixed operating point. Moreover, in Section 5, we will develop
an approximate formula in Eq. (1) to characterize the total demand when a fraction
of the consumers receive compromised price signals. The linearization and approxima-
tion enable us to study the RTP’s susceptibility to malicious attacks under LTI set-
tings. For systems that involve highly non-linear and/or time-variant components, the
LTI treatments in this paper may lead to inaccuracies in characterizing such systems.
However, the analysis in this paper provides insights into understanding the problem
under real-world settings that are often non-linear; it also gives a basis for finer analy-
sis based on piecewise linearization, as we discuss for future work in Section 9. We also
note that the simulations in Section 8 are driven by a non-linear demand model intro-
duced in Section 5.4. The simulation results are consistent with the analysis based on
linearized models.

Based on the above modeling, we have the following proposition. The proof is omitted
due to space constraints and can be found in Appendix E of the supplementary file of
this paper.

PROPOSITION 4.1. For the linearized system Gp(z) = ṡ(λo) − ẇ(λo) with λo fixed

and the observation system H(z) = z−1, the following RTP algorithm ensures stability:

λk = λk−1 −
2η

ṡ(λo)−ẇ(λo)
· ek−1, where η ∈ (0, 1).
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The intuition of the algorithm in Proposition 4.1 is as follows. Due to the monotonic-
ity of s(·) and w(·), the coefficient 2η

ṡ(λo)−ẇ(λo)
in the proposition is a positive constant. If

the observed generation scheduling error ek−1 is positive (i.e., the scheduled generation
is larger than the demand), the ISO should decrease the price such that the scheduled
generation will decrease and the demand will increase; otherwise, the ISO should in-
crease the price. In Proposition 4.1, the decrease or increase in price is proportional to
the error ek−1. This ensures that the system can converge to an equilibrium where the
generation scheduling error is zero, if bk is a constant over time. When bk is a variable
over time, the algorithm can adapt to the change of bk. To illustrate, assume that the
system has converged in the (k− 2)th pricing period (i.e., ek−2 = 0) and bk−1 is smaller
than bk−2. Then, ek−1 is positive due to the decreased baseline demand. As a result, the
algorithm will decrease the price to in turn decrease the scheduled supply and achieve
a new equilibrium. As the algorithm is bounded-input bounded-output stable, if bk is a
bounded variable over time, the ek is also bounded.

We note that an RTP algorithm proposed by Dalkilic et al. [Dalkilic et al. 2013] also
tunes the price based on the immediate past generation scheduling error. Compared
with other RTP algorithms [Yu et al. 2012; Samadi et al. 2014; Choi et al. 1998; Sid-
diqi and Baughman 1993; Samadi et al. 2010; Qian et al. 2013; Li et al. 2011], our
and Dalkilic’s algorithms require neither an accurate demand model nor the two-way
communication capability of consumers. The difference between the two algorithms is,
in addition to ensuring stability, Dalkilic’s algorithm also minimizes generation cost
by a different approach to determine the gain for the generation scheduling error. As
this paper focuses on the impact of attacks on the stability of RTP only, our algorithm
in Proposition 4.1 is a good baseline.

From control theory, when bk is a constant, the system converges fastest when
η = 0.5, as the system’s pole is at the origin. The convergence speed is important
for adapting to fast time-varying baseline load so that the convergence is achieved be-
fore a significant change of baseline load. However, our analysis in Sections 5 and 6
shows that we generally need to set a smaller η to reduce the impact of attacks. In
other words, we have to sacrifice convergence speed for resilience to attacks.

As discussed in Section 3.2, w(·) is unknown to the ISO. In practice, the ISO can
estimate ẇ(λo) based on the history of price-demand pairs. Our analysis shows that,
if the relative error in estimating ẇ(λo) is less than 100 × (1 − η)%, the algorithm
given by Proposition 4.1 remains stable. The details of the analysis are omitted due
to space constraints and can be found in Appendix C of the supplementary file of this
paper. For instance, if η = 0.5, the relative error bound is 50%, which is a tractable
requirement for most estimation algorithms. Moreover, for a smaller η that is set to
increase resilience to attacks, the error bound will be larger. As the focus of this paper
is to analyze the fundamental impact of integrity attacks on system stability under
the control law in Proposition 4.1, we do not elaborate on the estimation algorithm,
and the security analysis in Sections 5 and 6 assumes that the ISO can estimate ẇ(λo)
accurately.

5. INTEGRITY ATTACKS ON REAL-TIME PRICES FOR CONSUMERS

This section studies the impact of scaling and delay attacks on the real-time prices
for consumers under the RTP scheme given by Proposition 4.1. Section 5.1 defines the
attack impact metrics. Sections 5.2 and 5.3 present the analytic results for the impact
of scaling and delay attacks, respectively. Section 5.4 presents numerical results ob-
tained under specific demand and supply models. The proofs for all the propositions in
this section are omitted due to space constraints and can be found in Appendix F of
the supplementary file of this paper. Note that the analysis framework in this section
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can be extended to address the attacks on the prices for suppliers (cf. Appendix G of
the supplementary file).

5.1. Attack Models and Impact Metrics

We consider integrity attacks on the price signals received by a subset of consumers.
If the price signal received by a consumer is subject to attack, the price signal ap-
plied for the current pricing period (denoted by λ′

k) is different from the true price
λk. The integrity attacks on the price signals can be launched in different ways. For
instance, once the adversary has compromised the intermediate nodes in the communi-
cation network of the power grid (e.g., routers) and obtained the decryption/encryption
keys held by the ISO and/or smart meters, the adversary can intercept and forge price
data packets. Moreover, recent reverse engineering and penetration tests [McLaughlin
et al. 2010; Rouf et al. 2012] have shown that many smart meters lack basic security
measures to ensure integrity and authenticity of the input/output data. These secu-
rity vulnerabilities can be exploited to maliciously change the price signals. We would
like to point out that the integrity attacks do pose strong requirements for the adver-
sary. They require that the adversary is able to modify the price information, either
at the source, during transmissions, or at the smart meters. However, these attacks
in a cyber environment are certainly feasible and credible, and it would be wrongfully
complacent to ignore their possibility.

5.1.1. Attack Models. As the number of consumers in a grid is often large, the num-
ber of compromised consumers is an important metric for the adversary’s capability
and resource availability. Let C′ denote the set of consumers whose price signals are
compromised, where C′ ⊆ C, and w′(λk) denote the total price-responsive demand in
the presence of an attack. Thus, w′(λk) =

∑
j∈C′ wj(λ

′
k) +

∑
j∈C\C′ wj(λk). We define

ρ =
∑

j∈C′ wj(λ
′

k)∑
j∈C

wj(λ′

k
) =

∑
j∈C′ wj(λ

′

k)

w(λ′

k
) , which characterizes the fraction of consumers receiv-

ing the compromised price signals. If the consumers are homogeneous (i.e., wj(·) is
same for all j), ρ is a constant, i.e., ρ = |C′|/|C|. If they are heterogeneous, ρ is a func-
tion of λ′

k. The extensive numerical evaluation in Appendix D of the supplementary
file of this paper shows that ρ ≃ |C′|/|C| with a variation of less than 0.003 and hence,
it can be practically treated as a constant. Moreover, we make the following approxi-
mation:

∑
j∈C\C′wj(λk) ≃ (1−ρ)

∑
j∈Cwj(λk) = (1−ρ)w(λk). The numerical evaluation

in Appendix D of the supplementary file shows that the relative approximation error
of the above approximation is less than 1%. Therefore, we have

w′(λk) ≃ ρw(λ′
k) + (1− ρ)w(λk). (1)

If the price signals can be arbitrarily modified, the capability requirements of an
adversary would be high. In this paper, we consider “constrained” integrity attacks,
where the malicious modifications follow certain rules and can be realized with lower
capability and resource requirements. Note that the adversary must be able to cause
more severe damage to the system if she is assumed to be able to modify the price
signals arbitrarily. An attack can be characterized by the parameters for the rule,
which is denoted by A. We consider two kinds of integrity attacks.

Definition 5.1. Under the scaling attack A = (ρ, γ), the compromised price is a
scaled version of the true price, i.e., λ′

k = γλk, γ ∈ R
+.

Definition 5.2. Under the delay attack A = (ρ, τ), the compromised price is an old
price, i.e., λ′

k = λk−τ , τ ∈ Z
+.

These two attacks can be launched in various ways. The price values or time stamps
in data packets sent to the smart meters can be maliciously modified during trans-
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missions in vulnerable communication networks. Moreover, they can be launched in
indirect ways. For instance, the delay attack can be launched by modifying the smart
meters’ internal clocks. Smart meters typically assign a memory buffer to store re-
ceived prices. If a smart meter’s clock has a lag, it will likely store newly received
prices in the buffer and apply an old price for the present. Furthermore, attacks on
the clocks can be realized by compromising vulnerable time synchronization protocols
or the time servers that provide timing information to the smart meters. A few smart
meter products [Schneider Electric 2014] synchronize their clocks via a built-in GPS
receiver, which is vulnerable and subject to remote attacks that are effective across
large geographic areas [Nighswander et al. 2012].

In this paper, we assume that at most one kind of attack is in effect. Moreover, we
assume that the attack parameters are the same for all the compromised consumers.
For instance, if a delay attack with τ = 2 is launched, all the compromised consumers
experience the same delay of two pricing periods. These simplifications allow us to
better understand the impact of each attack on the RTP system, which is the basis for
understanding more complex scenarios such as heterogeneous attack parameters and
combinations of attack types. In Section 7.2, we will briefly discuss how to extend our
analysis to address these more complex cases.

5.1.2. Attack Impact Metrics. This section defines two metrics for the impact of the in-
tegrity attacks on system stability. We first define the marginal demand-supply ratio,
which is a quantity that can significantly affect the system stability under attacks.

Definition 5.3. Marginal demand-supply ratio is h =
∣∣∣ ẇ(λo)
ṡ(λo)

∣∣∣.

From Definition 5.3, h depends on the operating point λo. As discussed in Section 4.2,
the gain coefficient η of the RTP algorithm affects the system stability in a major way.
Therefore, we define the following metric:

Definition 5.4. Given attack A, the region of operating point stability under attack,
denoted by ROSλo

(A), is ROSλo
(A) = {(h, η)|The system is stable under attack A}.

The above metric depends on λo. We define a second metric that is independent of λo:

Definition 5.5. Given attack A, the region of stability under attack, denoted by
ROS(A), is ROS(A) = {η|The system is stable under attack A, ∀h > 0}.

The above two metrics are important for understanding the impact of integrity at-
tacks on the stability of the RTP system under the RTP algorithm in Proposition 4.1.
In particular, the ROS(A) specifies the range of η that ensures system stability under
attack A. Hence, the ROS allows us to compare the impacts of different integrity at-
tacks. For two attacks A1 and A2, if ROS(A1) ⊂ ROS(A2), the ISO has more flexibility
in setting η under A2 than A1, to achieve faster convergence. Thus, the system is more
resilient to A2 than A1. From the adversary’s perspective, A1 is more effective than
A2. Note that, when the RTP system with η ∈ ROS(A) is stable under attack A, the
compromised consumers may still experience monetary losses and the system may run
at low efficiency. However, this paper focuses on the impact of attacks on the system
stability, which is a fundamental system requirement. In Sections 5.2 and 5.3, we will
derive the ROSλo

and ROS for the scaling and delay attacks.

5.2. Impact of Scaling Attacks on Prices for Consumers

The local linearization of Eq. (1) with λ′
k = γλk is

w′(λk) ≃ ρ · (w(γλo) + ẇ(x)|x=γλo
· (γλk − γλo)) + (1− ρ) · (w(λo) + ẇ(λo) · (λk − λo)).
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Fig. 4. Stability boundaries under delay attack on prices for consumers. (In the left figure, the curve with
τ = 1 and γ = 0.6 is for combined attack discussed in Section 7.2.)

By collecting the price-independent terms with bk, the transfer function of the price-
dependent component is Gw(z) = ργẇ(x)|x=γλo

+ (1 − ρ)ẇ(λo). The propositions in
the following two subsections give the region of operating point stability and region
of stability when ẇ(·) is decomposable as defined in Definition 3.1. The proofs can be
found from Appendix F.1 and F.2 of the supplementary file of this paper.

PROPOSITION 5.6. For the scaling attacks on the prices for consumers and the
linearized system based on a fixed operating point λo and a decomposable ẇ(·),
ROSλo

(ρ, γ) = {(h, η)|0 < η < min{1, η̄}, ∀h > 0}, where η̄ = h+1
h+1+ρh(γµ−1) and µ is

defined in Definition 3.1.

PROPOSITION 5.7. For the scaling attacks on the prices for consumers and the lin-
earized system based on a decomposable ẇ(·), when γµ ∈ (0, 1], ROS(ρ, γ) = {η|0 < η <
1}; when γµ > 1, ROS(ρ, γ) = {η |0 < η < infh>0 η̄ }, where infh>0 η̄ = 1

1+ρ(γµ−1) . Note

that µ is defined in Definition 3.1.

5.3. Impact of Delay Attacks on Prices for Consumers

The local linearization of Eq. (1) with λ′
k = λk−τ is

w′(λk) ≃ ρ · (w(λo) + ẇ(λo) · (λk−τ − λo)) + (1− ρ) · (w(λo) + ẇ(λo) · (λk − λo)).

By collecting the price-independent terms with bk, the transfer function of the price-
dependent component is Gw(z) = z−τρẇ(λo) + (1 − ρ)ẇ(λo), where z−τ represents a
delay of τ pricing periods. Therefore, Gp(z) = Gs(z)−Gw(z) = ṡ(λo)− z−τρẇ(λo)− (1−

ρ)ẇ(λo). The closed-loop transfer function under the attack is Tc(z)=
Gc(z)Gp(z)

1+Gc(z)Gp(z)H(z) =

2η(1+(1−ρ)h)zτ+1+2ρηhz
P (z) , where the system characteristic function is P (z) = (h + 1)zτ+1 +

(2η + 2η(1− ρ)h− h− 1) zτ + 2ηρh.

5.3.1. Region of Operating Point Stability. As P (z) is a (τ + 1)-order polynomial, it is ex-
tremely difficult to derive the closed-form formulas for the poles of Tc(z). Various meth-
ods have been developed to test the stability without explicitly solving for the poles
[Ogata 1995]. Among them, the Jury test [Ogata 1995, p. 185] is preferred because
the coefficients of P (z) are real numbers. The Jury test constructs a table based on
the coefficients of P (z) and derives the stability conditions from the table. Given ρ,
we can derive the closed-form ROSλo

for different τ from the Jury test. However, the
expressions become more complicated for larger τ . We numerically compute the ROSλo

based on the Jury test for various settings of τ and ρ. Fig. 4 plots the stability bound-
aries under various settings of h, τ , and ρ, where the ROSλo

are the regions below the
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Fig. 5. Upper bound of ROS under delay attacks on prices for consumers.

boundaries. From Fig. 4, the ROSλo
shrinks with τ and ρ, which is consistent with in-

tuition. We have the following proposition. The proof is based on the Jury test, which
can be found in Appendix F.3 of the supplementary file of this paper.

PROPOSITION 5.8. For the delay attacks on the prices for consumers and the lin-
earized system with a fixed operating point λo, ROSλo

(ρ, τ + 1) ⊆ ROSλo
(ρ, τ).

5.3.2. Region of Stability. We observe from Fig. 4(b) that, when ρ = 0.5, the system is
stable for η ∈ (0, 1). We have the following proposition.

PROPOSITION 5.9. For the delay attacks on the prices for consumers and the lin-
earized system, if ρ ∈ (0, 0.5], ∀τ ∈ Z

+, ROS(ρ, τ) = {η|0 < η < 1}.

The proof can be found in Appendix F.4 of the supplementary file, where we prove that
if ρ ∈ (0, 0.5], all the roots of P (z) are within the unit circle centered at the origin
in the z-plane and hence the system is stable [Ogata 1995]. From Proposition 5.9, to
launch a successful delay attack that destabilizes the system, the adversary has to
compromise no less than half of the consumers. The intuition behind this result is
that the compromised price-responsive load must predominate to affect the operation
of the system. This result poses strong requirements for the adversary. However, she
could accomplish the goal by targeting shared infrastructures such as time servers
that provide timing information to all the smart meters. On the other hand, the need
for the adversary to compromise a large fraction of the meters in order to be effective
is indicative of the resilience of the RTP algorithm in Proposition 4.1 to delay attacks.

We now discuss the ROS when ρ ∈ (0.5, 1]. From Fig. 4, the stability boundary curves
are non-increasing and converge to limits when h → +∞. Let η̄(h|ρ, τ) denote the
stability boundary curve for particular ρ and τ . Therefore, ROS(ρ, τ) = {η|0 < η <
limh→+∞ η̄(h|ρ, τ)}. When τ = 1, the limit is simply 1

2ρ . However, for larger τ , it is

extremely difficult to derive the closed-form formula for the limit, primarily because of
the iterative nature of the Jury test. We have developed a symbolic algorithm to define
ROS(ρ, τ) based on key observations from the Jury test procedure. The algorithm is
omitted in this paper and can be found in Algorithm 1 of the supplementary file of
this paper. Fig. 5 plots limh→+∞ η̄(h|ρ, τ), which is computed by the algorithm, versus
τ under various settings of ρ. From the figure, we can see that the ROS shrinks with ρ
and τ , which is consistent with intuition.

5.4. Numerical Results based on Specific Demand and Supply Models

The previous sections presented analytic results based on the general demand and
supply models. To illustrate and validate these results, this section presents numer-
ical results obtained under specific instantiations of the demand and supply models,
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Fig. 6. A numerical example under the linear supply and CEO demand models (Settings: T = 0.5, p=152,
q=4503, D=60893, ǫ=−0.8, bk=2000, λ∗=20, λ0=21). (a) Price stabilization; (b) Scaling attack on prices for
consumers (η=0.8, ρ=1, γ=0.57); (c) Delay attack on prices for consumers (η=0.2, ρ=1, τ=12).

namely a constant elasticity of own-price (CEO) demand model, a linear supply model,
and a quadratic supply model. We now define these three models.

— The CEO model [Fleten and Pettersen 2005] is defined by w(λk) = D · λǫ
k, where D

and ǫ are positive and negative constants, respectively. The ǫ, often referred to as
price elasticity of demand, is typically within (−1, 0) [Filippini 2011; Lijesen 2007].
In this section, we set D = 60893 and ǫ = −0.8. Moreover, ẇ(·) is decomposable and
µ = γǫ−1. Note that as µ under the CEO model is independent of D, all the analytic
results in Sections 5.2 and 5.3 are independent of D as well.

— The linear supply model is defined by s(λk) = p · λk + q, where p and q are two
constants. A linear fitting to the supply and price data in Fig. 1 yields p = 152 and
q = 4503, which are adopted in this section.

— The quadratic supply model is defined by s(λk) = p2 · λ2
k + p1 · λk + p0, where p2,

p1, and p0 are three constants. A quadratic curve fitting to the data in Fig. 1 yields
p2 = −3.0478, p1 = 329.89, and p0 = 2095.2, which are adopted in this section.

5.4.1. CEO Demand Model and Linear Supply Model. We first discuss the numerical results
obtained under the CEO demand and linear supply models.

Numerical Example of Price Stabilization. We start by a numerical example to illus-
trate the control-theoretic price stabilization algorithm in Proposition 4.1. The algo-
rithm assumes a fixed operating point λo. However, intuitively, if the operating point
λo adapts to the current price, the linear approximations to s(λ) and w(λ) are more
accurate. Specifically, by setting λo = λk−1, we have the following algorithm:

λk = λk−1 −
2η

ṡ(λk−1)− ẇ(λk−1)
· ek−1. (2)

Although there is a lack of rigorous theory to support the technique of adapting λo

to the current price, our numerical experiments show that the algorithm in Eq. (2) is
always stable under all model parameter settings for evaluating the direct feedback
approach in Section 4.1. The numerical examples and simulations conducted in the
rest of this paper employ the algorithm in Eq. (2). Fig. 6(a) shows the evolution of price
with fixed baseline load. When η = 0.5, λk converges to λ∗ after two pricing periods.
When η = 0.2, the system has a longer settling time. When η = 0.8, the price oscillates
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Fig. 8. Upper bound of ROS under scaling attacks on prices for consumers and CEO demand model (ǫ =
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but converges. The oscillation is caused by a negative pole. Fig. 6 will also be used as
a running example in the rest of this section to illustrate the impact of attacks.

Numerical Results of Scaling Attacks. We first present the numerical results of
ROSλo

for scaling attacks. By replacing µ = γǫ−1 in Proposition 5.6, we have η̄ =
h+1

h+1+ρh(γǫ−1) . Fig. 7 plots the stability boundaries, where the ROSλo
are the regions be-

low the boundaries. We can see that the ROSλo
shrinks with increased ρ and decreased

γ. This can be easily proved by the monotonicity of η̄. Moreover, it is consistent with the
intuitions that (i) the system becomes more unstable when more consumers are com-
promised, and (ii) the increased demand due to a decreased γ poses more challenges to
the system.

We also use the numerical example in Fig. 6(b) to verify our analysis. Fig. 6(b) shows
the price signals received by the suppliers and consumers, respectively, when γ = 0.57.
We can see that the price does not converge. The average value of h is 0.850, which
falls in the unstable region (h > 0.786) according to the analytical ROSλo

. Note that
when γ = 0.59, the price converges and the average value of h is 0.862, which falls in
the stable region (h < 0.908) according to the numerical results of ROSλo

in Fig. 7.
Therefore, Proposition 5.6 successfully characterizes the critical stability boundary.
Note that, as the settings for Fig. 6(b) are close to the stability boundary, the price
oscillates in a small range. For smaller γ, the price can severely oscillate, as shown in
Section 8.

We then present the numerical results of ROS for scaling attacks. Replacing µ =
γǫ−1 in Proposition 5.7 yields the following result. When γ ≥ 1, ROS(ρ, γ) = {η|0 <
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Fig. 9. A numerical example under the quadratic supply and CEO demand models (Settings: T=0.5,
p2=−3.0478, p1=329.89, p0=2095.2, ǫ=−0.8, bk=2000, λ∗=20, λ0=21). (a) Price stabilization; (b) Scaling at-
tack on prices (η=0.8, ρ=1, γ=0.56); (c) Delay attack on prices (η=0.55, ρ=1, τ=13).

η < 1}; when γ ∈ (0, 1), ROS(ρ, γ) = {η |0 < η < infh>0 η̄ }, where infh>0 η̄ = 1
1+ρ(γǫ−1) .

Therefore, if the adversary amplifies the price, the system remains stable. This result
is consistent with the intuition that decreased demand due to the amplified price poses
no challenges to the system. Fig. 8 plots infh>0 η̄. We can see that ROS shrinks with
increased ρ and decreased γ. This can be proved by the monotonicity of infh>0 η̄.

Numerical Example of Delay Attacks. We use the numerical example in Fig. 6 to
verify our analysis in Section 5.3. Fig. 6(c) shows the price signals received by the
suppliers and consumers, respectively, when η = 0.2, ρ = 1, τ = 12. We can see that the
price diverges. The average value of h is 1.455390, which falls in the unstable region
(h > 1.447) according to the Jury test approach presented in Section 5.3.1. Note that
when τ = 11, the price converges and the average value of h is 1.455335, which falls in
the stable region (h < 1.522) according to the Jury test. Thus, the Jury test successfully
characterizes the critical stability boundary. As the settings for Fig. 6(c) are close to the
stability boundary, the price diverges slowly. For larger τ , the price can diverge quickly.

5.4.2. CEO Demand Model and Quadratic Supply Model. This section presents the numer-
ical results obtained under the CEO demand the quadratic supply models. Fig. 9(a)
shows evolution of price in the absence of attacks, which is similar to Fig. 6(a).

Fig. 9(b) shows the price signals received by the suppliers and consumers, respec-
tively, when γ = 0.56. We can see that the price does not converge. The average value
of h is 0.792, which falls in the unstable region (h > 0.734) according to the analytical
ROSλo

. Note that when γ = 0.58, the price converges and the average value of h is
0.789, which falls in the stable region (h < 0.844) according to the numerical results of
ROSλo

in Fig. 7.
Fig. 6(c) shows the price signals received by the suppliers and consumers, respec-

tively, when η = 0.55, ρ = 1, τ = 13. We can see that the price diverges. The average
value of h is 1.053, which falls in the unstable region (h > 1.035) according to the Jury
test approach presented in Section 5.3.1. Note that when τ = 11, the price converges
and the average value of h is 1.053, which falls in the stable region (h < 1.062) according
to the Jury test.

In summary, under the scaling (or delay) attacks, the average values of h under
critical settings of γ (or τ ) that lead to marginally converging and diverging prices, fall
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Table I. Mean absolute percentage error (MAPE) of the linear regression model.

RS 0 1 2 3
Rλ 0 1 2 0 1 2 0 1 2 0 1 2

MAPE (%) 12.61 12.60 12.60 2.05 1.97 1.92 1.06 1.02 1.02 1.06 1.02 1.02

in the stable and unstable regions given by the analytic ROSλo
. Hence, Proposition 5.6

and the Jury test accurately characterize the critical stability boundaries.

6. ADDRESSING STATEFUL SUPPLIERS

Previous sections are based on a stateless supply model (i.e., s(λk)), in which the sched-
uled generation depends on the price only. This model captures the general supply-
versus-price trend, as shown in Fig. 1. However, in practice, the generation has var-
ious limiting factors such as ramp-up constraints. Their effect can also be observed
from Fig. 1. Specifically, in the data set used for plotting the figure, with a certain
price, the total supply in different pricing periods can be different, leading to consid-
erable variances as represented by the error bars in the figure. In this section, we aim
to investigate the impact of these limiting factors in generation on the analytic results
obtained in previous sections. However, the attempt to model each possible limiting
factor would be tedious and even intractable. In this section, we will learn their ag-
gregated effect, through an extensive empirical study to the supply-versus-price data
from AEMO [Austrilian Energy Market Operator 2014] for one year. The study yields
a new stateful supply model, which can well capture the variances observed in Fig. 1.
Then, we extend our analysis to address this new supply model. The proofs for all the
propositions in this section are omitted due to space constraints and can be found in
Appendix H of the supplementary file of this paper.

6.1. Stateful Supply Model

As discussed in Section 5.4, the linear supply model can well approximate the rela-
tionship between the total supply and price. Motivated by this, in the following empir-
ical study, we employ a linear regression model for total supply with an autoregressive

component. Specifically, Sk = α0+
∑RS

i=1 αiSk−i+
∑Rλ

i=0 βiλk−i, where Sk is the total sup-
ply in the kth pricing period, RS and Rλ are non-negative integers, {αi|i ∈ [0, RS ]} and
{βi|i ∈ [0, Rλ]} are the coefficients to be fitted. We conduct extensive regression anal-
ysis with different settings of RS and Rλ based on a data set consisting of half-hourly
supply-versus-price pairs from AEMO [Austrilian Energy Market Operator 2014] in
the whole year of 2012. The mean absolute percentage errors (MAPE) of the fitted
models are shown in Table I. Note that with the settings RS = 0 and Rλ = 0, the
regression model reduces to the stateless linear supply model in Section 5.4. From Ta-
ble I, we can see that, including the immediate previous supply into the model (i.e., by
setting RS = 1) can improve the model accuracy significantly. However, including his-
tory prices (i.e., by setting Rλ ≥ 1) just improves the model accuracy slightly. Thus, the
regression model with the settings RS = 1 and Rλ = 0 achieves a satisfactory trade-off
between model complexity and accuracy. Based on this observation, in this section, we
adopt a general stateful supply model as follows:

Sk = α · Sk−1 + (1− α) · s(λk), (3)

where s(λk) is the stateless supply model in Section 3.3, and α ∈ [0, 1) is a constant.
In Eq. (3), the weights (i.e., α and (1 − α)), which sum to one, ensure that the model
preserves the trend captured by the stateless model s(·).
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6.2. Impact of Memory Effect in Supply on the Analytic Results in Section 5

Although we can develop a new pricing algorithm based on the stateful supply model
to replace the one presented in Proposition 4.1, the resultant algorithm will require
knowledge about α. In this section, we are interested in how the memory effect in
the stateful supply model affects our previous analysis. Specifically, we will investi-
gate, i) whether the RTP algorithm in Proposition 4.1 developed without the consid-
eration of supply memory effect can tolerate the effect in the absence of attacks, and
ii) whether our main results on the impact of attacks (especially, Propositions 5.7 and
5.9) still hold. Under the stateful supply model in Eq. (3), the approach to handling
generation scheduling errors will affect the analysis. As two extreme cases, if the con-
sumers or suppliers fully compensate the errors, the scheduled total supply Sk will be
α · Sk−1 +(1−α) · s(λk) or α · dk−1 +(1−α) · s(λk), respectively. We note that, the power
grids nowadays often adopt a supply-follows-demand scheme, in which, the suppliers
compensate the scheduling errors. In the grids of tomorrow, the consumers may be
responsible for handling a portion of the scheduling error through demand response
programs such as load curtailment. Sections 6.2.1 and 6.2.2 study these two extreme
cases. The results provide insights into understanding the cases where the consumers
and suppliers jointly compensate the errors. Section 6.2.3 summarizes our results in
this section and discusses memory effect in demand.

6.2.1. Case 1: Consumers Fully Handle Generation Scheduling Errors.

(1) Tolerance of RTP algorithm. By following the linearization approach in Section 4.2,
the stateful model in Eq. (3) can be approximated by Sk ≃ αSk−1+(1−α)ṡ(λo)λk− (1−
α)ṡ(λo)λo and the corresponding transfer function is Gs(z) = (1 − α)ṡ(λo)/(1 − αz−1).
Therefore, in the absence of attack, Gp(z) = Gs(z)−Gw(z) = (1− α)ṡ(λo)/(1− αz−1)−
ẇ(λo). The following proposition shows that the pricing algorithm in Proposition 4.1
can tolerate the memory effect in supply.

PROPOSITION 6.1. Under the linearized system Gp(z) = (1 − α)ṡ(λo)/(1 − αz−1) −
ẇ(λo), the pricing algorithm in Proposition 4.1 ensures stability.

(2) Impact of Scaling Attacks. We first derive the region of operating point stability
under the stateful supply model. We have the following proposition.

PROPOSITION 6.2. Under the stateful supply model in Eq. (3), Proposition 5.6 holds

with a new η̄ given by η̄ = (α+1)(h+1)
(α+1)(ρ(γµ−1)+1)h−α+1 .

If α = 0, the stateful supply model in Eq. (3) reduces to the stateless supply model
s(λk), and Proposition 6.2 reduces to Proposition 5.6.

By simply following the procedure in the proof of Proposition 5.7 with the new η̄ in
Proposition 6.2, we have the following proposition, which shows that the memory effect
in supply does not change our main result for scaling attack.

PROPOSITION 6.3. Under the stateful supply model Eq. (3), Proposition 5.7 holds.

(3) Impact of Delay Attacks. By following the analysis approach in Section 5.3, the
system characteristic function under the delay attack is given by

P (z)=(h+1)zτ+2+(−2ηhρ+2ηh−αh−h−2αη+2η−α−1)zτ+1+(2αηhρ−2αηh+αh+α)zτ+2ηhρz−2αηhρ.

We numerically compute the ROSλo
based on the Jury test for various settings of α

and ρ. Fig. 10(a) plots the stability boundaries, where the ROSλo
are the regions below

the boundaries. We can see that the ROSλo
shrinks with α. Intuitively, due to the

maliciously introduced delays, the price-inelasticity induced by the memory effect in
supply makes the system less capable to respond to generation scheduling errors in
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Fig. 10. Stability boundaries under delay attack on price for consumers and stateful supply model (τ = 4).

time, thus downgrading the system resilience. Moreover, we can see that when ρ = 0.5,
the system is stable for η ∈ (0, 1). However, the proof of Proposition 5.9 under the
stateful supply model is difficult, because the much more complicated P (z) makes it
difficult to construct a function g(A) (cf. proof of Proposition 5.9) that can test the
magnitudes of poles. Extensive numerical experiments validate Proposition 5.9 under
the stateful supply model, ∀α ∈ (0, 1) and ∀τ ∈ [1, 48]. Moreover, under the stateful
supply model, numerical experiments yield a figure same to Fig. 5, regardless of α.
This suggests that the memory effect in supply does not affect the ROS in the presence
of delay attacks.

6.2.2. Case 2: Suppliers Fully Handle Generation Scheduling Errors.

(1) Tolerance of RTP Algorithm. If suppliers handle the errors, the realized generation
in the previous pricing period is dk−1. Thus, the scheduled total supply is Sk = α ·
(bk−1 + w(λk−1)) + (1 − α) · s(λk). By following the analysis approach in Section 4.2,
Gp(z) can be derived as Gp(z) = αẇ(λo)z

−1+(1−α)ṡ(λo)−ẇ(λo). We have the following
proposition.

PROPOSITION 6.4. Under the linearized system Gp(z) = αẇ(λo)z
−1 +(1−α)ṡ(λo)−

ẇ(λo), the pricing algorithm in Proposition 4.1 ensures stability if η ∈ (0, 1
1+α ).

As 1
1+α > 0.5, a sufficient stability condition for the pricing algorithm is η ∈ (0, 0.5],

which can be used if α is unknown or cannot be estimated accurately. From Proposi-
tion 6.4, the memory effect in supply under Case 2 changes the stability condition of
the pricing algorithm, in contrast to Case 1. Under Case 2, the memory effect creates
an additional closed loop between supply and demand (i.e., Sk depends on dk−1), which
changes the system structure and thus the stability condition.

(2) Impact of Scaling Attacks. The region of operating point stability under the stateful
supply model is given by the following proposition.

PROPOSITION 6.5. Under the stateful supply model in Eq. (3), the ROSλo
given by

Proposition 5.6 is revised as ROSλo
= {(h, η)|0 < η < min{ 1

1+α , η̄}, ∀h > 0}, where

η̄ = h+1
(α+1)(ρ(γµ−1)+1)h−α+1 and µ is defined in Definition 3.1.

If α = 0, Proposition 6.5 reduces to Proposition 5.6. By simply following the pro-
cedure in the proof of Proposition 5.7 with the new η̄ in Proposition 6.5, we have the
following proposition.
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PROPOSITION 6.6. Under the stateful supply model and the linearized system based
on a decomposable ẇ(·), when γµ ∈ (0, 1], ROS(ρ, γ) = {η|0 < η < 1

1+α}; when γµ > 1,

ROS(ρ, γ) = {η|0 < η < infh>0 η̄}, where infh>0 η̄ = 1
(1+α)·(1+ρ(γµ−1)) . Note that µ is

defined in Definition 3.1.

Since (1, 1
1+α ) is the new stability condition for the pricing algorithm (cf. Proposi-

tion 6.4), Proposition 6.6 shows that the memory effect in supply does not change the
implication of our main result for the scaling attack discussed in Section 5.4.1.

(3) Impact of Delay Attacks. By following the analysis approach in Section 5.3, the
closed-loop system characteristic function under the delay attack is given by

P (z) = (h+1)zτ+2+(−2ηhρ+2ηh−h−2αη+2η−1)zτ+1+2αηh(ρ−1)zτ+2ηhρz−2αηhρ.

We numerically compute ROSλo
for various settings of α and ρ. Fig. 10(b) plots the

stability boundaries. We can see that the ROSλo
expands with α. As we just discussed,

a larger α increases the price-elasticity of supply under Case 2. Therefore, it makes
the system more capable of responding to generation scheduling errors in time, and
hence improves system resilience. Moreover, we can see that when ρ = 0.5, the system
is stable for η ∈ (0, 2/3). As discussed in Section 6.2.1(3), given the above complex
P (z), it is difficult to prove Proposition 5.9 under the stateful supply model. Extensive
numerical experiments show that, for ρ ∈ (0, 0.5], τ ∈ [1, 48], and α ∈ (0, 1), ROS(ρ, τ) =
{η|0 < η < 1

1+α}. Since (0, 1
1+α ) is the new stability condition for the pricing algorithm

(cf. Proposition 6.4), the numerical results suggest that the memory effect in supply
does not change our main result for the delay attack.

6.2.3. Summary. Sections 6.2.1 and 6.2.2 show that the memory effect in supply, which
can be observed in real supply-versus-price data traces, does not change the implica-
tions of the main results obtained in Section 5, under two extreme approaches to han-
dling the generation scheduling errors. Our analysis can be easily extended to address
the case where suppliers and consumers handle complementary portions of the errors.
Note that the memory effect could also exist in demand. For instance, the theoretic
analysis in [Roozbehani et al. 2012b] based on a load shifting model shows that the
aggregated demand is affected by price history. However, modeling stateful effects in
demand still remains an open issue. Thus, deviations from the general demand model
in Section 3.2 due to various demand-side factors including energy storage and load
shifting, as well as the impact of these deviations on our analytic results, are left for
future work. However, our analysis in this section that studies the memory effect in
supply sheds light on how to address these demand-side factors. Moreover, a set of sim-
ulations in Section 8.1.2 show that Proposition 5.9 is still valid when the consumers
can shift load according to a simple scheme.

7. DISCUSSIONS

7.1. Impact of Uncertainties in Demand and Supply Models

The previous sections assumed that the supply and price-responsive demand mod-
els, i.e., s(λk) and w(λk), are deterministic functions of λk. In practice, both demand
and supply may have uncertainties, such that they will deviate from the determin-
istic models. This section discusses the impact of these uncertainties on our ana-
lytic results. We assume that the demand and scheduled supply are d(k, λk) + uk and
s(λk) + vk, respectively, where uk and vk are the (price-independent, time-dependent,
and bounded) uncertainties in demand and supply, respectively. Thus, we can consider
(vk − uk) an exogenous bounded disturbance to the system and add it to the distur-
bance of (so − wo − bk) shown in Fig. 3. As the analytic results of this paper are based
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on bounded-input bounded-output stability, as discussed in Section 4, they are still
valid in the presence of the exogenous bounded disturbance (vk − uk). In Section 8.1,
the simulations using uncertain demand that follows a truncated normal distribution
validates this discussion.

7.2. Superimposed Attacks, Heterogeneous Attacks, and Other Integrity Attacks

In this section, we discuss how to extend our analysis framework to address a class of
integrity attacks that are the superimposition of scaling and delay attacks. We also dis-
cuss how to adapt our analysis to scenarios in which the attack models/parameters are
different for different compromised consumers. Lastly, we discuss three other integrity
attacks that have not been addressed in the previous sections.

From control theory [Ogata 1995], our analysis framework can be applied to derive
the ROSλo

and ROS under any integrity attack that can be modeled as a linear time-

invariant (LTI) system with the transfer function Λ′(z)
Λ(z) =

∑n
i=0

aiz
−i

∑
m
j=0

bjz−j , where the Λ(z)

and Λ′(z) are the z-transforms of λk and λ′
k. In the time domain, λ′

k is given by the
linear combination of λk−i and λ′

k−j , where 0 ≤ i ≤ n and 1 ≤ j ≤ m. The scaling and

delay attacks are special cases of this general attack model. For instance, under the
delay attack, b0 = 1, bj = 0 for j ≥ 1, aτ = 1, ai = 0 for i 6= τ . This general attack
model can also be regarded as the superimposition of scaling and delay attacks. We
now illustrate the enhanced impact of attack superimposition using a simple example:
λ′
k = γ · λk−τ . Under this attack superimposition on the prices for consumers and

the stateless supply model, the closed-loop system characteristic function of Eq. (1) is
P (z) = (h+1)zτ+1+(2η+2η(1−ρ)h−h−1)zτ+2ηρhγµ, where µ is defined in Section 5.2.
We can still apply the Jury test to derive the ROSλo

(ρ, γ, τ) and ROS(ρ, γ, τ). Fig. 4(a)
shows the stability boundary for this attack superimposition with ρ = 1, γ = 0.6, and
τ = 1. The ROSλo

of this attack superimposition is smaller than the delay attack with
ρ = 1 and τ = 1, which means stronger attack impact.

If two subsets of consumers are subject to two different attacks that happen simul-
taneously, Eq. (1) can be rewritten as w′(λk) = ρ1w(λ

′
k) + ρ2w(λ

′′
k) + (1− ρ1 − ρ2)w(λk),

where ρ1 and ρ2 are the fractions of consumers subject to the two attacks, and λ′
k and

λ′′
k are the corresponding compromised prices. Our analysis framework still applies

once the models of λ′
k and λ′′

k are specified. The attack with different parameters (e.g.,
consumers are subject to different delays) can be treated as simultaneous attacks.

Lastly, we discuss three integrity attacks that have not been addressed in the previ-
ous sections. In a pulse attack, random attack, and ramp attack, a price signal is added
with a temporally-spaced bounded pulse signal, a bounded random signal, and a signal
that increases or decreases with time over a bounded time period, respectively. The
formal definitions of these attacks can be found in [Sridhar and Govindarasu 2014].
Different from the scaling and delay attacks that can be modeled as transfer func-
tions (i.e., blocks in the feedback loop), these three attacks essentially correspond to
addition operations with exogenous bounded inputs. From control theory, they will not
affect the bounded-input bounded-output stability of the pricing system. But they can
cause transient effects that will increase the generation scheduling errors and system
operating cost. We now discuss their transient effects. The pulse attack will cause a
transient after each pulse, which can be corrected by the feedback-based pricing algo-
rithm. The random attack is an exogenous, bounded, and random disturbance to the
system, which increases the system volatility but does not diverge the prices because
the pricing system is stable. When the price signals to consumers are under a ramp-
up attack, the feedback-based pricing algorithm will continually decrease the price to
compensate for the generation scheduling error until the end of the attack.
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8. TRACE-DRIVEN SIMULATIONS

We conduct two sets of simulations to evaluate the performance of the RTP algorithm
in Eq. (2) and the impact of integrity attacks. The first set of simulations for 1,405
houses conforms to the assumptions in Section 3 and validates the analytic results of
this paper. Specifically, we assume that these 1,405 houses are all customers of an RTP
system and they are subject to the same real-time price at any time instant. We use
GridLAB-D [GridLAB-D 2014], a power distribution network simulator, by extending
it to capture the models presented in Section 3. GridLAB-D provides several advan-
tages. First, it captures various realistic factors that are not addressed in our analysis,
including physical characteristics of power equipment (e.g., power line capacities and
impedances) and power loss. Second, it can record emergency events that occur when
the ratings of lines and transformers are exceeded. These events indicate important
physical consequences of the integrity attacks such as line trips and service interrup-
tions. The second set of simulations simulates a 4-bus transmission system [Grainger
and Stevenson 1994, p. 337] and the IEEE 118-bus system, where the load at each
bus is equivalent to that of the 1,405 houses. This set of simulations evaluates the
optimality of the RTP algorithm in the absence and presence of attacks, by comparing
with the optimal locational marginal prices (LMPs) that are often used to account for
locational line losses and congestion in transmission systems. In this section, we focus
on integrity attacks on the prices for consumers.

8.1. Simulations for 1,405 Houses

8.1.1. Simulation Methodology and Settings. We use a distribution feeder specification
[Schneider et al. 2008] with default settings. This feeder covers a moderately popu-
lated urban area and comprises 1,405 houses, 2,134 buses, 3,314 triplex buses, 1,944
transformers, 1,543 overhead lines, 335 underground lines, and 1,631 triplex lines. For
this small-scale distribution feeder, LMPs are usually not applicable and hence all the
houses are subject to the same price as discussed in Section 3.1. By leveraging the
extensibility of GridLAB-D, we develop new modules that implement the CEO model
for each single house, the RTP algorithm in Eq. (2), and the attack strategies. We mea-
sure the instantaneous power of the entire feeder at the root node. Its peak value over
the previous pricing period is used as d(λk−1) in Eq. (2). As we focus on evaluating
the physical consequences of attacks, we do not simulate the logistics of the attacks
and assume that the adversary can gain access to the meters of his choosing. Specifi-
cally, if a house is not subject to attacks, it directly reads the real-time price from the
ISO module; otherwise, it reads the price from an adversary module that modifies the
price according to the attack models. All the attacks are launched after the system has
converged.

We adopt the CEO demand model for each single house, where the parameters are
drawn from normal distributions. Specifically, for each consumer i, Di ∼ N (6.84, 3.422)
(unit: kW) and ǫi ∼ N (−0.8, 0.12). Under this setting, if the price is within [10, 20], the
per-house price-responsive demand is within [0.65, 1.1] kW. Moreover, the sum of mul-
tiple CEO models is a decreasing function of the price, thus conforming to the assump-
tion in Section 3.2. To improve the realism of the simulations, we use a half-hourly
trace of total demand from March 1st to 22nd, 2013, in NSW, Australia (provided by
AEMO [Austrilian Energy Market Operator 2014]) as the baseline load. The baseline
load of a single house is set to be a scaled version of the real trace data. The resultant
range of the per-house baseline load is [0.276, 0.488] kW. Hence, when the price is within
[10, 20], the demand of a household is within [0.9, 1.6] kW, which is consistent with the
average demand of a household in reality. In our simulations, the price is updated
every half an hour, to be consistent with the setting of the demand data traces [Aus-

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.



A:24

5

10

15

20

0 5 10 15 20
0
1
2
3
4
5

P
ri

ce
($

/M
W

h
)

D
em

an
d

(M
W

)

Time (day)

price λ
power loss

responsive demand

baseline demand
total demand

Fig. 11. Price stabilization without attack.

0
20
40
60

0 1 2
0
2
4
6
8

P
ri

ce
($

/M
W

h
)

D
em

an
d

(M
W

)

Time (day)

launch of attack

true price
compromised price

Fig. 12. Scaling attack (ρ = 65%, γ = 0.1).
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Fig. 13. Impact of delay attack (ρ = 100%, τ = 9).

trilian Energy Market Operator 2014]. In each pricing period, the simulated demand
remains constant. For the supply model, the settings obtained in Fig. 1 (i.e., p = 152
and q = 4503) are for the whole NSW region. They must be scaled down to fit the simu-
lated feeder with 1,405 houses. Since there are 2.8 million households in NSW and 57%
of AEMO’s supply is for residential demand [Australian Energy Market Operator 2011,
p. 15], the two parameters are scaled as follows: p = 57%×152

2800000/1405 = 43.638 × 10−3 and

q = 57%×4503
2800000/1405 = 1.287. Other default settings include: T = 0.5, λmin = 1, λmax = 200,

and η = 0.5.

8.1.2. Simulation Results. The first simulation evaluates the effectiveness of the direct
feedback approach [Roozbehani et al. 2012a] and our RTP algorithm in Eq. (2). In
the simulations, the direct feedback approach is unstable, where the price oscillates
between λmin and λmax. The total demand reaches 10 MW a few hours after the start
of the simulation, and GridLAB-D reports that four power lines are overloaded. Fig. 11
plots the price and resultant demands under our RTP algorithm in Eq. (2). We can see
that the price fluctuates slightly for a few hours after the start of the simulation, due
to an inappropriate initial price. After the system converges, it can well adapt to the
time-varying baseline load. The generation scheduling error is close to zero, which
means that the clearing price is achieved. Moreover, we can see that the power loss is
insignificant.

The second simulation evaluates the impact of a scaling attack. Fig. 12 plots the true
and compromised prices, as well as the breakdown of demand under the scaling attack.
We can see that the price and the demand fluctuates severely. Moreover, the power
loss is insignificant. GridLAB-D reports excessive power line overload events after the
launch of the attack. We also extensively evaluate the impact of the scaling attack
with different settings of ρ and γ. We use the standard deviation of the generation
scheduling error after the launch of the attack, denoted by σ(e), as the system volatility
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Fig. 15. System volatility under attacks.

metric. A near-zero σ(e) means convergence, while a considerably large σ(e) means
oscillation or divergence. Fig. 15(a) plots σ(e) versus γ under various settings of ρ. We
can see that the system volatility increases with ρ and decreases with γ.

The third simulation evaluates the impact of delay attacks. Fig. 13(a) and Fig. 14(a)
show the evolution of price and the breakdown of demand under the delay attacks
with different parameters. We can see that the power loss is insignificant. Thus, it is
safe to ignore power loss in the analysis. We also investigate the emergency events
reported by GridLAB-D. The overload of a line or a transformer is defined as the per-
centage of the exceeded current/power with respect to the rated value. Fig. 13(b) and
Fig. 14(b) plot the emergency frequency and maximum overload in each day. The emer-
gency frequency is defined as the ratio of the number of pricing periods with reported
emergency events to the number of pricing periods per day (i.e., 48). In Fig. 13, a small
generation scheduling error caused by the time-varying baseline load will be amplified
iteratively along the control loops, after the launch of the attack. The overload can be
up to 350%. In practice, such a high overload will cause circuit breakers to open and
hence regional blackouts. In Fig. 14, the system appears to diverge and then converge
again without causing any emergencies. However, it diverges again from the 12th day
due to the changing baseline load, causing excessive emergencies. This illustrates the
stealthiness of the delay attack that causes marginal system stability. We also evalu-
ate the impact of the delay attack with different settings of ρ and τ . The results are
shown in Fig. 15(b). We can clearly see that when ρ < 0.5, the system remains stable,
which is consistent with Proposition 5.9.

The fourth simulation evaluates the impact of demand uncertainties. For each house,
in addition to the baseline demand and the price-responsive demand, we generate a
random demand every pricing period and add it to the total demand. Denote by u the
uncertainty index. The random demand is sampled from a truncated normal distri-

bution with a zero mean and a standard deviation of
u·bk,j

3 , where bk,j is the baseline
demand of a household. The random demand is bounded within [−u·bk,j, u·bk,j]. Fig. 16
shows the system volatility under different settings for the uncertainty index u and the
delay τ . We can see that, without attacks (i.e., ρ = 0), the system experiences volatility
caused by the demand uncertainty. Moreover, under the two settings for τ in Fig. 16,
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Fig. 18. System volatility under stateful suppliers and attacks.

the system volatility exhibits a similar trend as in Fig. 15(b), i.e., σ(e) keeps flat when
ρ < 0.5 and increases drastically with ρ when ρ > 0.6.

The fifth simulation evaluates the impact of load shifting. Each consumer follows a
load shifting scheme as follows. In the kth pricing period, consumer j shifts 100 × x%
of his price-responsive load, i.e., x · wj(λk), to the (k + d)th pricing period, where x
is a random variable uniformly distributed within (0, X) and d is a random integer
uniformly distributed within [0, dmax]. To simulate the consumers’ incentive to shift
load, we update the upper bound X every pricing period by X = Xmax ·

λk−λmin

λmax−λmin
such

that it is proportional to the price λk. Thus, the actual demand of consumer j in the
kth pricing period, dj(k, λk), is the sum of the baseline demand bk,j , the remaining
price-responsive load (1 − x) · wj(λk), and the sum of previous loads shifted to the kth
period. Fig. 17 shows the system volatility under different settings for Xmax and dmax,
when the prices to consumers are under the delay attack with ρ = 1 and τ = 20. When
ρ < 0.5, the load shifting introduces little extra volatility. When ρ is large such that
the system is unstable, the system volatility increases with both Xmax and dmax. This
is because, when the price reaches high values in the oscillations, the demand is more
uncertain due to larger Xmax and dmax. Nevertheless, the results in Fig. 17 are still
consistent with Proposition 5.9.
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Fig. 20. 4-bus system: the price given by our approach and the optimal LMPs in the 2nd day (base
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We lastly evaluate the impact of memory effect in the supply. This set of simulations
considers Case 2 in Section 6, i.e., the suppliers fully handle the generation scheduling
error. From Proposition 6.4, η is set to 0.3 to ensure the stability of the RTP algorithm
in the absence of attacks. Fig. 18(a) and 18(b) plot σ(e) under the scaling and delay
attacks, respectively, with different settings for α (i.e., the weight in Eq. (3)). The σ(e)
increases or decreases with α under the scaling and delay attacks, respectively, which
is consistent with the discussions in Section 6.2.2. Moreover, if ρ < 0.5, the system
remains stable under the delay attack.

8.2. Simulations for A 4-Bus Transmission System and the IEEE 118-Bus System

8.2.1. Simulation Methodology and Settings. In this section, the first set of simulations is
based on the 4-bus transmission system [Grainger and Stevenson 1994, p. 337] shown
in Fig. 19. We assume that a load equivalent to 1,405 houses in Section 8.1 is con-
nected to each bus. There are two generators connected to the buses B1 and B4. LMPs
are often applied to buses to account for power losses and congestion caused by lines’
impedances and limited capacities [Li and Bo 2007]. Our RTP algorithm assumes that
the whole system uses the same price, which may lead to a loss of optimality. In this
section, we assess the optimality of our algorithm by comparing its results with the
corresponding optimal LMPs. We extend an LMP formulation based on the dc opti-
mal power flow (DCOPF) in [Li and Bo 2007] to address a general cost function and
price-responsive demand. The details of the formulation are omitted due to space con-
straints and can be found in Appendix B of the supplementary file of this paper. Note
that the optimal solution to LMP problem cannot be known if the ISO has limited
knowledge about the demand models and value functions. Under our RTP algorithm,
the generators at bus B4 and bus 69 in the 4-bus and 118-bus systems, respectively,
are designated to compensate for the generation scheduling error such that the power
balance is satisfied. We set large capacities for all the branches such that they are not
congested. This setting allows us to evaluate the required line capacity under attacks.
The second set of simulations is based on the IEEE 118-bus system.
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Table II. 4-bus system: optimality of our control-theoretic RTP algorithm.

Base impedance Our RTP Optimal LMPs ∆ω

(ohm) λ Loss λB
1

λB
2

λB
3

λB
4

Loss ($/hour)
529a 12.2 3.78% 11.6 13.3 13.4 11.6 3.45% 0.18

2× 529 12.7 7.19% 11.4 14.8 15.0 11.8 6.11% 0.63
4× 529 13.7 13.5% 10.8 17.6 17.9 12.3 10.1% 2.36
6× 529 15.0 20.2% 10.4 20.4 20.7 12.8 13.0% 6.03
8× 529 17.4 30.2% 9.93 23.1 23.4 13.3 15.2% 16.8

Note: This table reports average results over 22 days.
aThe value 529 ohms is from [Grainger and Stevenson 1994, p. 337].

Table III. 4-bus system: the power flows under attacks.

Attack Algorithm F1 F2 F3 F4 Loss ∆ω

No Our RTP 0.79 1.15 1.03 0.66 3.78% 0.18
Optimal LMPs 0.74 1.08 0.96 0.61 3.45% n/a

Scaling attack Our RTP 3.25 3.43 4.08 3.01 14.1% 316
(γ=0.1) LMPs with partial knowledge 4.04 1.43 12.19 9.49 40% 13304

LMPs with full knowledge 0.64 0.89 0.83 0.54 1.42% n/a
Delay attack Our RTP 4.80 5.34 7.98 6.12 15.7% n/a

(τ=4) LMPs with partial knowledge 0.77 1.09 1.09 0.72 3.45% n/a

Note: Attacks are launched at the start of the 2nd day. The power flows (unit: MW) in this table are
the maximums of abstract values over 20 days from the 3rd day. The base impedance is 529 ohms and
ρ = 1. The ∆ω is with respect to the ω achieved by the LMPs with full information.

8.2.2. Simulation Results for the 4-Bus System. First, we evaluate the optimality of our
RTP algorithm in the absence of attacks. Fig. 20 shows the price given by our algorithm
and the optimal LMPs on the second day. As the buses B2 and B3 draw power from
B1 and B4, they need to pay the costs for the power losses in transmission. Thus,
their LMPs are higher than those of B1 and B4. Table II shows statistical results for
the prices and total power losses, under different settings of base impedance. Note
that the impedance of a branch is the product of the per-unit value in Fig. 20 and the
base impedance. The power losses in Table II are the ratios of total power loss to the
total supply. When the power loss is below 10%, which is commonly seen in practice
(e.g., 7% in U.S. [U.S Energy Information Administration 2014]), the power loss under
our approach is at most 1% more than that under the optimal LMPs. Thus, in the
absence of attack, our algorithm yields near-optimal performance. Table II also lists
the reduction of social welfare, denoted by ∆ω, with respect to that of LMPs.

Second, we evaluate the impact of attacks on the 4-bus transmission system. Ta-
ble III lists the power flows on the four branches in the absence versus presence of
attacks. When solving the LMPs in the presence of attacks, we make different as-
sumptions regarding the ISO’s knowledge. By partial knowledge, we mean that the
ISO knows the value functions and demand models of the consumers. By full knowl-
edge, we mean that the ISO further knows the attack parameters (e.g., ρ and γ). Note
that, as discussed in Section 3.2, in practice, it is difficult to know the consumer models
and attack parameters. The LMP results only help understand the performance limit.
Under the scaling attack, the prices under our RTP approach oscillate within the range
[30, 80] and the power flows increase, causing a power loss rate of up to 14%. Under the
LMP approach with partial knowledge, the scaling attack will significantly increase
the power flows and loss rate, because we lack a feedback mechanism to correct the
large generation scheduling errors and the associated high power flows caused by the
increased demand. As it is extremely difficult to solve the LMPs with full knowledge
under the delay attack since the social welfares in different pricing periods are cor-
related, we skip the evaluation of LMPs with full knowledge under the delay attack.
From Table III, under our RTP approach, the delay attack results in increased power
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Table IV. 118-bus system: Average power loss rates without or under
attacks.

Attack Algorithm Loss

No Our RTP 4.8%
LMPs 4.0%

Scaling attack (γ=0.4) Our RTP 6.2%
LMPs with full knowledge 5.2%

Delay attack (τ = 4) Our RTP 9.5%
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Fig. 21. 118-bus system: all branches’ maximum power flows.

flows and loss rates due to price oscillations caused by instability. Under the LMP ap-
proach with partial knowledge, which has no closed loops and thus no stability issues,
the delay attack introduces little impact to power flows and loss rates. However, as just
discussed, this LMP approach cannot be implemented in practice. In summary, under
our RTP approach, the price oscillations caused by attacks can cause significantly in-
creased power flows and power losses on transmission lines in a physical system.

8.2.3. Simulation Results for the IEEE 118-Bus System. We also evaluate our RTP algo-
rithm using the IEEE 118-bus system. Table IV summarizes the average power loss
rates under the different approaches. Similar to the results for the 4-bus system, our
algorithm yields near-optimal performance in the absence of attacks. In the presence of
a scaling attack with γ = 0.4, the RTP system under our approach is still stable. Thus,
our approach yields a power loss rate close to the LMP approach with full knowledge.
We note that, if γ = 0.1 as in Section 8.2.2, the price will diverge, leading to a high
power loss rate. In the presence of a delay attack, the power loss rate increases to
9.5%. Fig. 21 plots the maximum power flow of each branch in the simulation. We can
see that in the presence of the delay attack, the branch power flows increase signifi-
cantly, resulting in the high power loss rate in Table IV.

8.2.4. Discussion. As stated in Section 3.1, this paper assumes that the transmission
lines are not congested. We now use the scaling attack on consumers’ price signals
as an example to discuss its impact on a power grid when some transmission lines are
already congested before the launch of the attack. Before the attack, the solution to the
LMP problem fully utilizes the capacities of some of the transmission lines (i.e., these
lines are congested). When the consumers’ price signals are under a scaling attack with
γ < 1, the consumers will increase demand, causing increased line flows as observed in
Table III. Depending on which consumers’ price signals are compromised, the attack
may increase the power flows of the congested lines beyond the line capacities. In
practice, the overloads may lead to line trips and cascading failures. Note that our
analysis of the stability of closed-loop RTP systems is applicable before any line trips
and cascading failures happen.
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Table V. Summary of Assumptions

Section Demand model Supply model Pricing model

§4 §4.1 general demand model in §3.2 general supply model in §3.3 direct feedback
§4.2 linearization to the general linearization to the general Proposition 4.1

§5 §5.1-§5.3 demand model in §3.2 supply model in §3.2
§5.4 CEO demand model linear & quadratic supply models Eq. (2)

§6 §6.1-§6.2 linearization to the general Eq. (3), where s(λk) is given Proposition 4.1
demand model in §3.2 by the linearized supply model

§8 §8.1 CEO demand model with demand linear supply model & Eq. (3) Eq. (2) &
uncertainties & load shifting direct feedback

§8.2 CEO demand model linear supply model Eq. (2) & LMP

9. CONCLUSION AND DISCUSSIONS

This paper investigates the impact of scaling and delay attacks on the stability of RTP
systems. The analysis and results of this paper are based on a basic set of assumptions
presented in Section 3 and necessary variations made in Section 4 to Section 8. These
variations are summarized in Table V. We characterize the impact using a control-
theoretic metric, namely the region of stability. We show that, to destabilize the RTP
system, it is necessary for the adversary to reduce the prices for consumers in a scaling
attack or compromise more than half of the prices for consumers in a delay attack. We
conduct trace-driven simulations to validate our analysis. The results of this paper
improve our understanding of the security of RTP systems so that suitable defensive
measures can be taken in response.

9.1. Limitations, Discussions, and Future Work

In this paper, we have made several simplifying assumptions that enable us to fo-
cus on the essence of the problem. This section summarizes these simplifications and
discusses future work directions to address them. These simplifications can be sum-
marized into the following aspects:

Simplified demand and supply models. The deterministic demand and supply mod-
els in Sections 3.2 and 3.3 do not capture several realistic factors such as uncertainties
in consumer and supplier behaviors, generation ramp constraints, load shifting, and
energy storage. In this paper, we have discussed and evaluated the potential impacts
of some of these factors on our results. Specifically, we have discussed the impact of
bounded additive deviations from the models (Section 7.1) and evaluated the impact of
specific types of random demand and load shifting through simulations (Section 8.1).
We have also incorporated stateful effect in supply, which can be a result of generation
ramp constraint (Section 6). However, further analysis is still required to explicitly
address these affecting factors, by integrating new results on a few open and active
research topics (e.g., demand-side energy storage and load shifting).

Linearization and approximation. The results of this paper are obtained under lin-
earized demand and supply models as well as an approximation of total demand when
a fraction of consumers receive compromised prices (Eq. (1)). The linearization will
lead to inaccuracies in characterizing systems with non-linear supply and/or demand
models. We expect our linearization-based analysis provides insights into understand-
ing the problem under non-linear settings, as well as a basis for finer analysis based
on piece-wise linearization that can be a focus of future work.

Simplified market model and simple RTP algorithm. This paper adopts a simplified
market model that preserves the principle of RTP, i.e., the real-time wholesale price
is directly relayed to end consumers. This model does not address various practical
factors such as bidding markets, advance notice of price, and ex-post price adjustment.
Future research is still needed to incorporate these factors into the analysis. The de-
sign of RTP algorithms is still under active research and an academic consensus has
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not been achieved. The security analysis and results in this paper are based on a sim-
ple RTP algorithm (Proposition 4.1), which is similar to the one in [Dalkilic et al. 2013].
We note that our and Dalkilic’s algorithms are different from those adopted in the cur-
rent wholesale markets, which often solve the clearing prices based on autoregression-
based demand predictors. As discussed in Section 4.1 and [Roozbehani et al. 2012a],
the stability of these autoregression-based RTP algorithms still needs further careful
examinations and may need substantial retrofits when more end consumers are ex-
posed to real-time prices. Thus, the results of this paper cannot be directly applied to
the current wholesale markets using autoregression-based RTP algorithms, since we
focus on the scenario where all end consumers are exposed to real-time prices.

No transmission system constraints and identical prices across locations. Our analy-
sis does not account for specific affecting factors of transmission systems that are often
addressed by locational prices. Such factors include transmission cost and line conges-
tion. Because of this simplification, we assume that the real-time prices are identical
across all locations. Although in Section 8.2.4 we use an example to discuss the attack
impact on a congested transmission system, the baseline design of stable locational
RTP algorithms and whether our results still hold for these algorithms remain open
and interesting research problems. The simulations in Section 8.1 based on the distri-
bution system simulator, GridLAB-D, provide a validation for our analysis that ignores
transmission system constraints. To validate the analytic results that address trans-
mission system constraints, GridLAB-D will not be appropriate.

Specific attack models. The results of this paper are specific to two attack models
(scaling and delay attacks). In Section 7.2, we have also discussed three other integrity
attacks (pulse, random, and ramp attacks). All these attacks discussed in this paper
follow certain rules to change the price signals. They may be accomplished by indirect
techniques that are less effort-intensive. It is also interesting to study the impact of the
attacks that do not have to conform to certain rules, if the attacker gains the privilege
of directly changing the price signals.

Others. The following aspects are worth further studies. First, our analysis assumes
that the ISO can estimate ω̇(λo) accurately. A bounded estimation error for ω̇(λo) can
be integrated into the analysis. Second, in addition to stability that is the focus of this
paper, the transient of an RTP system under attack is also an important aspect. Third,
it is interesting to develop attack detection algorithms based on those proposed for
general closed-loop systems (e.g., [Eyisi and Koutsoukos 2014]).
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