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Residential Electricity in U.S.

• Residential electricity
– Largest sector

• Rising cost

Industrial
25.5%

Residential
36.7%

Commercial
34.2%

Others

• Rising cost
– Increase by 75% in 10 years

• Understanding usage
– Real-time power readings
– Fine-grained usage info

Electricity retail sales in 
U.S. 2011

[US EIA-861, EIA-923]
Appl. Joul % When?

Bed light 5% 7pm-11pm

Fridge 8% Every 1h

Space 
heater

30% Jan 1 …

…. …. ….
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Related Work
• Direct sensing

– ACme [IPSN’09]
Per-appliance inline meter, intrusive
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Related Work
• Direct sensing

– ACme [IPSN’09]
Per-appliance inline meter, intrusive

• Indirect sensing

[Jiang IPSN’09]

• Indirect sensing
– At-the-flick [UbiComp’07]

High-rate ADC, in-situ training

– ViridiScope [UbiComp’09]
Labor-intensive sensor installation

6 / 23

[Kim UbiComp’09]



Objective & Challenge
• Fine-grained usage monitoring

– Accurate energy disaggregation
– Inexpensive and easy-to-install sensors
– Training-free, ad hoc system deployment (“place 
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Objective & Challenge
• Fine-grained usage monitoring

– Accurate energy disaggregation
– Inexpensive and easy-to-install sensors
– Training-free, ad hoc system deployment (“place 

sensor on shelf facing light to be monitored”)sensor on shelf facing light to be monitored”)

• High-degree sensing uncertainty
– Noises from environment and human activities
– Source appliance identification

• A sensor can sense multiple appliances
• An appliance can be sensed by multiple sensors
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Supero
Smart meter

Base station

Light and acoustic sensors
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Event Detection & Correlation
light sensor reading

exponential diff

Time (second)

• Exponential difference filter
– Diff between long-/short-term moving averages
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Event Detection & Correlation
light sensor reading

exponential diff

Time (second)Light on

Report 
event

Light off

Report 
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movements

• Exponential difference filter
– Diff between long-/short-term moving averages
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Event Detection & Correlation
light sensor reading

exponential diff

Time (second)Light on

Report 
event

Light off

Report 
eventHuman 

movements

• Exponential difference filter
– Diff between long-/short-term moving averages

• Event correlation
– Simultaneous events have same source
– False alarm if no power reading change

18 / 23

Time (second)Light on movements



Light Event Clustering

Light 1

Light 3

Sensor 1
Sensor 2

• Feature: change of light intensity
 

Floor plan Clustering on intensity changes
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Light Event Clustering

Cluster A

Cluster B

Cluster C

Light 1

Light 3

Sensor 1
Sensor 2

• Feature: change of light intensity
 

Cluster C

Floor plan Clustering on intensity changes
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Light Event Clustering

Cluster A

Cluster B

Cluster C

Light 1

Light 3

Sensor 1
Sensor 2

• Feature: change of light intensity

• {Cluster A, B, C} ↔ {Light 1, 2, 3}?

Cluster C

Floor plan Clustering on intensity changes
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Light 2



Power Law Decay of Light
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Cluster-Light Association
• Error of associating cluster m and light j

∑
∈

− −⋅⋅=
mRi

mijimjm dPe ,,, µβ α
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Cluster-Light Association (cont’d)
• For given light decay model, find a binary matrix [am,j]
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am,j=1: cluster m is associated with light j
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Cluster-Light Association (cont’d)
• For given light decay model, find a binary matrix [am,j]
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am,j=1: cluster m is associated with light j
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Cluster-Light Association (cont’d)
• For given light decay model, find a binary matrix [am,j]

∑∑

∑
∀∀

⋅=
jm

jmjm eaE ),(    min
,

,,βα Total association error

am,j=1: cluster m is associated with light j

– Hungarian algorithm

• Iterate α and β to further minimize E(α, β)
– Adaptively calibrate environment-dependent α

and β
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Adaptive Acoustic Sampling

Signal energy

Slow sampling
(1 KHz)

Signal energy
> T1

Signal energy

Signal energy
# zero crossings

base
station

Fast sampling (12 KHz)

Signal energy
< T2
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Low pass
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Clustering -based Event Detection
• Multiple phases (fan, microwave)

– Unknown and unpredictable

• K-means clustering
– Automatically identify K scattercluster within 

scattercluster between 
max
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Clustering -based Event Detection
• Multiple phases (fan, microwave)

– Unknown and unpredictable

• K-means clustering
– Automatically identify K scattercluster within 

scattercluster between 
max

Detect the phase changes of 3-speed fan
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Implementation & Deployments

TelosB (light)
Iris (acoustic) Kill -A-Watt Apartment -1 deployment

• System
– TelosB/Iris + TED5000 + KAW ground truth 

meters

• Five deployments
– Three apartments (40~150 m2), two houses
– 9 ~ 22 sensors

Iris (acoustic) Kill -A-Watt Apartment -1 deployment
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Supero in Action

• Video demonstrating installation and setup
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Evaluation
• 10 days experiment in Apartment-1
• Impact of sensor deployment in Apartment-2
• Compare with ViridiScope [UbiComp’09]

(Regression on appliance states + power readings)

– Oracle: ground truth appliance states– Oracle: ground truth appliance states
– Baseline: closest appliance is source
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10-day Results
Appliance Supero Oracle Baseline

kWh Error (%) kWh Error (%) kWh Error (%)

Light 1 4.17 0.5 4.11 0.9 4.11 0.9

Light 2 4.96 0.1 4.92 0.8 4.92 0.8

Light 3 6.24 1.4 6.25 1.7 6.25 1.7

Light 4 1.45 0.1 1.45 0.1 1.48 1.7

Light 5 0.39 0.2 0.39 0.7 0.41 5.5

Water boiler 0.48 0.5 0.48 0.5 0 100

Tower fan 0.21 50 0.17 17.9 0.24 66.2

• Supero
– All 146 light events detected, no false alarm, no miss
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Bath fan 0.12 N/A 0.17 N/A 0 N/A

Router 2.03 4.3 3.04 43.3 3.04 43.3

Average error 7.5 6.5 27.0
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• Supero
– All 146 light events detected, no false alarm, no miss

– Comparable to Oracle
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Impact of Sensor Placement
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Conclusion

• Supero
– Multi-sensor fusion
– Unsupervised event clustering
– Autonomous appliance association

• Easy to install
– Considerable flexibility in sensor placement

• Real Implementation/Evaluation
– 5 environments (3 apartments, 2 houses)
– Accurate, 7.5% average error
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