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1. INTRODUCTION
Research [12] has shown that providing the electricity con-
sumption of each appliance to the home owner fosters con-
servation. Previous power usage monitoring approaches can
be broadly classified into direct sensing and indirect sens-
ing categories. The direct sensing approaches apply in-line
power meters [14; 2; 8] in between the appliance and power
outlet, which however cannot be used on many permanently
installed appliances such as ceiling lights. The indirect sens-
ing approaches infer the power usages by detecting appli-
ances’ electricity usage patterns [7; 15; 4; 5] or the emitted
ambient signals [6; 16]. As these approaches are affected by
the characteristics of electrical wiring and appliances, they
need either in-situ labor-intensive training [7; 5] or a com-
prehensive database of power characteristics of appliances
[7; 4]. Although several recent studies [10; 9] aim to achieve
autonomous monitoring without in-situ training, they typ-
ically require sensors to be carefully installed for each ap-
pliance, which may result in high installation cost [11] and
reduced usability for non-professional users.
This extended abstract presents the design and implemen-
tation of Supero – a System for Unsupervised PowER mOn-
itoring using a smart meter and wireless light/acoustic sen-
sors that are ad hoc deployed in the home. However, as
homes are a highly dynamic and complex environment, sen-
sors likely produce false alarms or miss important events.
Moreover, as the sensors are deployed in an ad hocmanner, it
is highly difficult to associate an event detected by possibly
multiple sensors with the appliance that generates the event.
Supero adopts a multi-sensor fusion scheme to mitigate the
impact of noise and remove possible sensing errors. By using
advanced unsupervised clustering algorithms, Supero identi-
fies the events generated by the same appliance. Moreover,
Supero autonomously associates the classified events with
appliances through an optimization framework. Provided
with a small amount of easily obtained prior information
such as sensor-appliance distances and the rated powers of
a small subset of appliances, these unsupervised algorithms
work together to disaggregate the total household energy
consumption to individual appliances.
We implemented Supero using TelosB/Iris motes [13] and
a TED5000 smart meter [1], and evaluated Supero in five
homes with significantly different square footage and electric
power consumption. Long-term (up to 7 days) experiments
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Fig. 1: Architecture of Supero.

in an apartment and a ranch house show that Supero esti-
mates the energy consumption with errors less than 7.5%.
Our results also demonstrate that Supero can be easily de-
ployed by non-professional users in short time.

2. THE DESIGN OF SUPERO
Supero is composed of a number of wireless sensors dis-
tributed in the home, a wireless smart meter, and a base
station receiving the information from the sensors and the
smart meter. In this work, we only consider light and acous-
tic sensors while other sensing modalities such as infrared
can be easily incorporated by Supero. Fig. 1 illustrates the
architecture of Supero. First, sensors sample signals and
detect the events that are possibly caused by switching ap-
pliances. If a light sensor detects a significant change of light
intensity, it sends the event feature, which is the change of
light intensity, to the base station. For an acoustic sensor,
if signal energy is high, it continuously sends event feature,
which includes signal energies and zero crossing counts in
four sub frequency bands of the acoustic signal. When Su-
pero is requested to generate a power usage report, the base
station executes the following algorithms based on the col-
lected data and the prior information input by user.

2.1 Multi-Model Data Correlation
To deal with the false alarms and miss detections of sensors
(e.g., light events caused by opening/closing window blinds
and acoustic events triggered by human conversations), we
employ a two-tier fusion approach to correlate the multi-
modal events from different sensors. In the first tier, the
events from multiple sensors of the same modality in a short
moving window are regarded to be generated by the same
source. This OR fusion scheme can largely mitigate the im-
pact of miss detections of individual sensors. The features
measured by all sensors of the same modality are then con-
catenated to form the feature vector for each event. The
second tier correlates the results of the first tier with the
power measurements from the smart meter to remove false
alarms. Specifically, if the change of power at the time of an
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Fig. 2: Features of two sen-
sors and clustering result.
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Fig. 3: Clustering result
for a 3-speed fan.

living room

kitchen counter

bathroom

refrig.

bedroom

Light 1

Light 2

Light 3

Light 4

Light 5

Node 1

Node 2

Node 3

Node 4

Node 12

Water boiler

Node 11

Tower fan

Rice cooker

Hair

dryer

Bath

fan

Node 13

TelosB

Iris

Node 14

Node 15
Appliances

Legend:

8 m

5
 m

Fig. 4: Apartment deployment.

Appliance KAW Supero

Name kWh Watts kWh Error
Light 1 4.14 154 4.17 0.5%
Light 2 4.96 150 4.96 0.1%
Light 3 6.15 155 6.24 1.4%
Light 4 1.45 62 1.45 0.1%
Light 5 0.39 105 0.39 0.2%
Boiler 0.48 1493 0.48 0.5%

Tower fan 0.15 30 0.21 50%
Rice cooker 1.00 499 0.98 2.2%
Hair dryer 0.09 467 0.07 19%

Fridge 12.22 143 11.8 3.7%
Bath fan N/A 50 0.12 N/A
Router 2.12 12 2.03 4.3%

Avg error 7.5%

Fig. 5: Energy breakdown during 7
days.

event is below a small threshold, the event will be discarded.
The appliances that cannot be easily or reliably detected by
light and acoustic sensors (e.g., rice cookers) are referred to
as unattended appliances. A significant power change is re-
garded to be caused by an unattended appliance if there is
no simultaneous light or acoustic event. We refer to such
power changes as unattended events.

2.2 Unsupervised Event Clustering
Due to the ad hoc deployment strategy and spatial distribu-
tion of sensors/appliances, different appliances can be sensed
by different subsets of sensors. For a particular appliance,
the feature vectors of the events generated by the same ap-
pliance are clustered in the feature space. Fig. 2 shows the
feature vectors measured by two light sensors when three
standing lights nearby are turned on and off. Fig. 3 shows
the major principle component of acoustic feature vectors
when a 3-speed fan iterates among all its speed levels. We
can clearly see that the feature vectors are clustered. By us-
ing unsupervised clustering algorithms (e.g., k-means), the
events generated by an appliance can be classified into the
same cluster. The colors in Fig. 2 and Fig. 3 represent
the clustering results. For acoustic modality, we adopt a
Parzen-window-based approach to detect the time edge be-
tween two consecutive clusters (e.g., vertical lines in Fig. 3),
which corresponds to the switching events of acoustic ap-
pliances. Supero also classifies the unattended events using
k-means algorithm based on the absolute change of power.

2.3 Autonomous Event-Appliance Association
Supero associates the classified events with respective appli-
ances based on event features and prior information. The
light intensity measured by sensor i is given by yi = βPjd

−α
ij ,

where Pj is the power of light j and dij is the distance be-
tween sensor i and light j, α and β are two coefficients. The
association between light clusters and appliances is repre-
sented by a binary square matrix A, where the element Am,j

indicates whether clusterm is associated with light j. By de-
noting Rm as the set of sensors that detect the events in clus-
ter m, the error caused by associating cluster m with light
j is defined as em,j =

∑
i∈Rm

|βPmd−α
i,j −µm,i|, where Pm is

the median value of the absolute power changes of the events
in cluster m, µm,i is the average of light intensity changes
measured by sensor i for the events in cluster m. The light
cluster-appliance association is formally formulated as: Find
α, β and A to minimize the total error

∑
∀m,∀j

Am,jem,j,

subject to that ∀m,
∑

∀j
Am,j = 1 and ∀j,

∑
∀m

Am,j = 1.
For fixed α and β, the sub-problem is a linear assignment
problem, which can be solved by the Hungarian algorithm
[3]. Iterating α and β in their possible ranges yields the
final solution. This approach autonomously calibrates the
environment-dependent coefficients α and β.

Although acoustic signal also follows the power law, in con-

trast to light, it is typically a by-product in the operation
of appliances. Hence, the coefficient β varies significantly
across different acoustic appliances and the linear assign-
ment formulation is not applicable to acoustic modality.
Sensor i is primary sensor of appliance j if the absolute
change of signal energy of sensor i is always the largest when
j changes its state and must not be the largest when any
other appliance changes state. By identifying the primary
sensors according to user’s intuition based on the sensor and
appliance locations, the events detected by them can be eas-
ily associated. The events detected by non-primary sensors
are first clustered according to their absolute power changes
and associated according to appliances’ rated powers. Sim-
ilarly, the clusters of unattended events are associated ac-
cording to appliances’ rated powers.

3. IMPLEMENTATION AND EVALUATION
The sensors are implemented using TelosB and Iris motes
[13]. TED5000 [1] is used to measure the total household
power consumption. The base station algorithms are imple-
mented in GNU Octave. We build a couple of radio-enabled
Kill-A-Watt (KAW) meters [14], which are applied to each
appliance to provide groundtruth data.

We first deployed 4 TelosB and 5 Iris motes in a 40m2 single-
bedroom apartment (as shown in Fig. 4) to evaluate the
accuracy of Supero. The sensors are placed on the floor,
table, chairs and toilet. The positions of sensors are not
carefully chosen except for tower fan, fridge and boiler, as
these appliances cannot be detected even when the sensor is
just several centimeters away. Fig. 5 shows the result of a
7-day experiment, during which two residents led normal life
in the apartment. In the 7 days, 713 false alarms out of total
859 light events were raised by light sensors, where 703 false
alarms are identified by the multi-modal data correlation.
From Fig. 5 we can see that Supero can accurately estimate
the energy consumption of lights. Two bath fan events were
incorrectly associated with the tower fan, because Node 13
(i.e., the primary sensor for tower fan) heard loud noises in
living room at the same times. The two false associations
introduce errors to the tower fan and hair dryer. The average
error of energy consumption is 7.5%.
We also deployed Supero in another 80m2 two-bedroom
apartment and an 150m2 one-story three-bedroom ranch
house. The average error in the ranch house is 6.1%. Five
different sensor placements in the apartment show that the
user has considerable flexibility in choosing the sensor po-
sitions. Moreover, we recruited two homeowner volunteers
to deploy Supero in their homes including a single-bedroom
apartment and a two-story house with basement. They fin-
ished the deployment and configuration in 1.5 and 3 hours,
respectively. Validation shows that their deployments are
able to yield correct sensing results.
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