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APPENDIX A
PROOF OF LYAPUNOV CONDITION

Lemma 1. Let {I; : ¢ = 1,...,N} be a sequence of mu-
tually independent Bernoulli random variables, the Lyapunov
condition holds for this sequence.

Proof: Denote ju;, 02, and 7} as the mean, the vari-

ance, and the third central moment of I;, respectively.
The Lyapunov condition is formally stated as follows

[1]: For any i, r3 is finite and A}im p(N) = 0 where
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Suppose p; is the success probability of I;, the mean
and variance of I; are u; = p;, 02 = pi(1 — p),
respectively. And the third central moment of I; is
r3 = E[|L — wil’] = (1 — pi)3p; + p2(1 — p;). Obviously,
for any 4, r} is finite. Furthermore, as 0 < p; < 1, 73 > 0.
Accordingly, p(N) > 0. Moreover,

N N N
Z Ty = Z P )2 sz p—1)° Z pip;)
i=1 i=1 i=1

Therefore,

\g!
i
I
Q
=N
N———
w|

1

(Ezj\;1 T?) ’
th p(N) = A}im -— 5 < -
~ OO (ZZ\; 0%) ’ (ZZ\; 01‘2) ’

As p(N) > 0, ]\}im p(N) = 0. Hence, the Lyapunov
condition is satisfied. O
APPENDIX B

CALCULATION OF JOINT PROBABILITIES

This section discusses the Monte Carlo method to cal-
culate the joint probabilities in Eq. (13), (15), (20) and
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TABLE 1
Evaluation of Monotonicity of C'(A2, X)

N n M V7 VEI/IVI
2 200% | 588731550 582714192 0.9898
3 40% | 1225921021 1214844804 0.9910
4 16 | 853906020 850734897 0.9963
5 10° | 1125805664 1124525354 0.9989

(21). As E; j = > 7 _, €, where e; ; are mutually inde-
pendent Gaussian random variables given by Eq. (16)
and (17), in order to simplify notation, we consider the
following problem: Suppose X1, Xo, ..., X, are mutually
independent Gaussian variables, i.e., X; ~ N (u;,0?). How
to calculate the probability p = Pr(C'), where C' is the event
Miz1 2_j—1 Xj < Aand X is a constant? The Monte Carlo
method for computing p is as follows. Denote vector
X = [X1,X2,...,X,]. We draw N samples of X and
count the number of occurrences of event C, which is
denoted as N'. The ratio N’/N is an unbiased estimate of
p. According to the Chernoff’s inequality [1], the inequal-
ity [p — N’/N| < y/—+ In  holds with a probability of at
least 1 — 4. For instance, in order to achieve an accuracy
of [p—N’/N| < 0.01 with a probability of at least 95%, we
need to draw 36889 samples to estimate p. We note that
the joint probabilities can be pre-computed on desktop
computer and stored in a table on the cluster head for
the movement scheduling algorithm.

APPENDIX C
EVALUATION OF MONOTONICITY OF C'(\g, X)

As the remainder term R; in the Taylor expansion of
C(M2,X) given by Eq. (23) depends on f5;, C(A2,X)
does not strictly decrease with vazl B2,;- In this section,
a numerical simulation is conducted to evaluate the
monotonicity of C(A2,X) with respect to Zfil B24. In
the N-dimensional space {32l € [1,N],0B2,; € (0,1)},
n points are uniformly chosen to calculate the value
of C(A2,X) and Zi\[1521 The relationship between
C(A\2,X) and YV | fs; is evaluated for (%) combinations
of two points in the space. For each combination of
two points P; and P, if ZZ\; Ba.ilp, > EJ\L
this combination is included into set V. Moreover, if
C(A2,X)|p, < C(A2,X)|p, for this combination, it is
included into set V. The evaluation results are listed in




Table 1. Note that |V| and |V | represent the cardinal-
ities of V and V', respectively. Due to the exponential
complexity with respect to the dimension number N, we
reduce the resolution for choosing points for the cases
with high dimension. If 8, ; are independent from each
other, the ratio [V*|/|V] in Table 1 indicates the proba-
bility that C'(\2, X) decreases with Zf;l B2,i- The evalua-
tion results show that C'(\2, X) decreases with Zfil B2
with a high probability (> 98%). Therefore, such near-
monotonic relationship ensures the value of C(Ag,X)
found by maximizing Zf\; B2,; is near-minimum.
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