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Abstract—Recent studies exploited external periodic syn-
chronous signals to synchronize a pair of network nodes to
address a threat of delaying the communications between the
nodes. However, the sensing-based synchronization may yield
faults due to nonmalicious signal and sensor noises. This paper
considers a system of N nodes that will fuse their peer-to-peer
synchronization results to correct the faults. Our analysis gives
the lower bound of the number of faults that the system can
tolerate when N is up to 12. If the number of faults is no
greater than the lower bound, the faults can be identified and
corrected. We also prove that the system cannot tolerate more
than N −2 faults. Our results can guide the design of resilient
sensing-based clock synchronization systems.
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I. INTRODUCTION

For distributed systems such as sensor networks, accurate

clock synchronization among the distributed nodes is im-

portant. Correct timestamps make sense data; synchronized

clocks enable punctual coordinated operations among the

nodes. In contrast, desynchronized clocks will undermine

system performance and even lead to physical damages

and system disruptions in time-critical systems. However,

various factors present significant challenges to maintain

resilient clock synchronization of distributed systems, such

as large network sizes, deep embedding of the nodes into

complex physical environments with various disturbances,

and exposure of the systems to cybersecurity threats.

Network Time Protocol (NTP) [1] is the foremost means

of clock synchronization that is widely known and adopted.

Its design principle of estimating the offset between the

clocks of a pair of nodes based on the network transmission

delays of the synchronization packets is also a basis for

many other clock synchronization protocols such as Preci-

sion Time Protocol (PTP) [2] for industrial Ethernets and

RBS [3], TPSN [4], and FTSP [5] for sensor networks.

However, as discussed in RFC 7384 [6], the NTP princi-

ple is susceptible to various cybersecurity threats. While

most of the vulnerabilities can be solved by conventional

security measures such as cryptographic authentication and

encryption, a simple packet delay attack that delays the

transmissions of the synchronization packets has remained as

an open issue that cannot be solved by conventional security

measures [6]–[8].

To address the packet delay attack, our previous studies

[9], [10] have developed sensing-based clock synchroniza-

tion approaches exploiting external periodic signals that are

practically difficult for the attacker to tamper with or jam.

Specifically, in [9], the minute fluctuations of the power grid

voltage cycle lengths, which are similar across a geographic

area served by the same power grid, are used as a time

fingerprint to develop a clock synchronization approach that

is secure against the packet delay attack. In [10], the power

grid voltage phase, which is nearly identical anytime within

a city-scale power grid, is integrated into the NTP principle

and achieve the security against the packet delay attack as

long as a verifiable condition is satisfied.

These sensing-based approaches focus on the peer-to-peer

(p2p) clock synchronization for a node pair. Although they

well address the cybersecurity concern regarding the packet

delay attack, they may be susceptible to the process noises

of the external signals and sensor hardware noises/faults.

For instance, as shown in [9], an insufficiently long time

fingerprint may lead to faults in estimating the clock offset

between a pair of nodes. In [10], when the round-trip time of

an NTP synchronization session exceeds twice of the power

grid voltage cycle, the approach will yield multiple clock

offset estimates, causing ambiguity. Given the criticality of

trustworthy clock synchronization, it is important to develop

methods with understood resilience bounds to deal with the

nonmalicious synchronization faults of the sensing-based

clock synchronization approaches.

In this paper, based on a general class of p2p sensing-

based clock synchronization, we study the resilience of

network clock synchronization for a network of N nodes

against the p2p synchronization faults. Upon the occur-

rence of a fault between a pair of nodes, the measured

offset between the two nodes’ clocks will have an error

of a multiple of the period of the used external signal.

In the network clock synchronization, every node pair in

the network performs a p2p clock synchronization session

and returns the measured clock offset to a central node.

Based on a total of
(
N
2

)
clock offset measurements, the

central node uses an algorithm to estimate the offsets of

all nodes’ clocks from a selected reference node’s clock,

while accounting for the possible p2p synchronization faults.

Specifically, each step of the algorithm assumes that k
out of totally

(
N
2

)
p2p synchronization sessions are faulty,

exhaustively tests all possible
((N2 )

k

)
distributions of these

faulty p2p synchronization sessions, and yields a solution

once the estimated clock offsets and the estimated p2p clock

synchronization faults agree with all the p2p clock offset



Table I
LOWER BOUND OF TOLERABLE FAULTS.

N 4 5 6 7 8 9 10 11 12
Lower bound of 1 1 2 2 2 3 4 5 5
tolerable faults

Lower bound of 17 10 13 10 7 8 7 9 8
tolerance (%)

measurements. Starting from k = 0, the algorithm increases

k by one in each step and terminates once a solution is

found. Thus, this algorithm does not require any run-time

knowledge about the p2p synchronization faults, including

the number of the faults and their distribution among the(
N
2

)
p2p synchronization sessions.

Based on the algorithm, we inquire basic questions regard-

ing the scaling laws of system resilience, such as how many

p2p synchronization faults that any N -node system can

tolerate in that the algorithm will not give wrong estimates

of the clock offsets and the p2p clock synchronization faults.

Our analysis gives the lower bound of the number of p2p

synchronization faults that any N -node system can tolerate

when N is up to 12. The result is given in Table I. If

the number of faults is no greater than the lower bound,

the faults can be identified and corrected by the algorithm.

By defining the tolerance as the ratio between the number

of tolerable faults to the total number of p2p synchroniza-

tion sessions, the third row of Table I shows the lower

bound of the tolerance. Our results can guide the design

of network clock synchronization systems with potential p2p

synchronization faults. Moreover, we prove that any N -node

system with N ≥ 3 cannot tolerate more than N − 2 p2p

synchronization faults.

When the number of faults is greater than the lower bound

given in Table I and no greater than the N−2 upper bound,

whether the system can tolerate the faults is still an open

issue. It is of great interest for future research to explore the

tight bound of the fault tolerance.

The remainder of this paper is organized as follows.

Section II reviews related work. Section III introduces the

background and states the problem. Section IV analyzes the

resilience bounds. Section VI concludes the paper.

II. RELATED WORK

Highly stable time sources are often ill-suited for sensor

networks. Despite initial study of using chip-scale atomic

clock (CSAC) on sensor platforms [11], CSAC is still too

expensive ($1,500 per unit [11]) for wide adoption. The

Global Positioning System (GPS) and several timekeeping

radio stations (e.g., WWVB in U.S.) can provide highly

stable global time. However, GPS and radio receivers have

various limitations such as high power consumption, poor

signal reception in indoor environments (e.g., 47% good time

for WWVB [12]), and susceptibility to wireless spoofing

attacks [13]. Thus, GPS and radio receivers are often used

on a limited number of time masters with clear sky views,

carefully installed antennas, and sufficient physical air gap

to provide global time to a large number of slave nodes

via some clock synchronization protocol (e.g., NTP). The

resilience of this clock synchronization protocol between the

master and the slaves is the focus of this paper.

Various sensing-based approaches exploit external peri-

odic signals for clock synchronization [9], [10], [14], time

fingerprinting [9], [15]–[17], and clock calibration [18]–

[21]. Time fingerprinting approaches focus on studying

the global time information embedded in the sensing data

such as microseisms [15], sunlight [16], and powerline

electromagnetic radiation (EMR) [17]. They can be a basis

for clock synchronization. For instance, the secure clock

synchronization approach in [9] is based on the time fin-

gerprints found in power grid voltage. These studies focus

on the p2p synchronization. In this paper, we study the

resilience bounds of network clock synchronization against

p2p synchronization faults.

Different from clock synchronization that ensures the

clocks to have the same value, clock calibration ensures dif-

ferent clocks to advance at the same speed. The approaches

presented in [18]–[21] exploit powerline EMR, fluorescent

lamp flickering, Wi-Fi beacons, and FM Radio Data System

broadcasts to calibrate clocks. However, clock calibration

does not address the resilience issues of clock synchro-

nization. In particular, the sensing-based clock calibration

is also prone to faults that can subvert the network clock

synchronization.
The resilience of network clock synchronization against

Byzantine clock faults has been studied [22], [23]. A

Byzantine faulty clock gives an arbitrary clock value when-

ever being read. It has been proved that, to guarantee the

synchronization of non-faulty clocks in the presence of

m faulty clocks, a total of at least (3m + 1) clocks are

needed. Different from the Byzantine faulty clock model,

we consider faulty p2p synchronization sessions between

clocks. The conversion of our problem to the Byzantine

clock synchronization problem by considering either node

involving a faulty p2p synchronization session as a faulty

clock is invalid, because this faulty clock after the conversion

is not a Byzantine faulty clock, unless all p2p synchroniza-

tion sessions involving this clock are faulty. As our problem

does not have this assumption, the resilience bound obtained

in [22], [23] is not applicable to our problem.

III. BACKGROUND AND PROBLEM STATEMENT

A. Background and Preliminaries

1) Sensing-based p2p clock synchronization: This section

describes the principle of the sensing-based p2p clock syn-

chronization that exploits external periodic signals. Without

loss of generality, we assume that the external periodic

signals sensed by the two peers, nodes A and B, are two

synchronous Dirac combs with the same period T . Fig. 1
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Figure 1. Principle of sensing-based p2p clock synchronization.

illustrates the two Dirac combs in the same Newtonian

time frame. The objective of the sensing-based p2p clock

synchronization is to estimate the offset between A’s and

B’s clocks by using the Dirac combs.

To simplify the analysis of the clock offset estimation,

we assume that A’s and B’s clocks advance at the same

speed, such that the offset between the two clocks is a

constant within a concerned time period before any clock is

adjusted according to the estimated clock offset to achieve

clock synchronization. In existing sensing-based p2p clock

synchronization approaches [9], [10], [14], a synchronization

session, i.e., the process of estimating the clock offset, takes

a short time (e.g., tens of milliseconds in [10]). Typical

crystal oscillators found in microcontrollers and personal

computers have drift rates of 30 to 50 parts-per-million

(ppm) [20]. Thus, the change of the clock offset during

a synchronization session of 100 milliseconds is at most

5 microseconds only, whereas the clock offset estimation

errors of successful synchronization sessions are at sub-

millisecond [9], [10] or milliseconds levels [14] in practice.

Thus, the clock offset estimation errors caused by signal

noises are much larger than those caused by the two peers’

different clock speeds.

2) Fault model: A synchronization session is successful

(or non-faulty) if it identifies the correspondence between

an A’s Dirac impulse and a B’s Dirac impulse that occur

at the same Newtonian time instant; otherwise, the synchro-

nization session is faulty. Since the two Dirac combs are

synchronous, a successful synchronization session gives a

zero clock offset estimation error, whereas a faulty synchro-

nization session gives a clock offset estimation error of nT ,

where n is a non-zero integer.

3) Other related issues: It has been shown in [9], [10],

if the Dirac combs are practically difficult for the attacker

to tamper with or jam, the sensing-based p2p clock syn-

chronization can address the packet delay attack, which

is an open issue that cannot be solved by conventional

security measures [6]–[8]. However, due to process noises

of the external signals and sensor hardware noises/faults,

the sensing-based p2p synchronization can be faulty. For

self-containment of this paper, Appendix A reviews the

detailed reasons of the faults. In this paper, we focus on

the fault tolerance of sensing-based synchronization. Built

upon the secure p2p synchronization [9], [10], the clock

synchronization approach presented in this paper is resilient

against both the packet delay attacks and synchronization

faults.

We note that, in practice, the two Dirac combs may not

be perfectly synchronous. For instance, in [9], [10], the time

displacement between the two Dirac combs is about 0.05%

to 0.5% of T . This time displacement is the major source of

the clock offset estimation error. As the time displacements

are much smaller than the synchronization faults (i.e., nT ),

we can easily classify successful and faulty synchronization

sessions by comparing the clock offset estimation error with

a threshold (e.g., T
2 ). For simplicity of exposition, we ignore

the time displacement in our analysis regarding the system

resilience against faulty synchronization sessions.

B. Network Clock Synchronization

To improve the robustness of clock synchronization

against p2p synchronization faults, this section proposes

an approach to cross-check the p2p synchronization results

among multiple nodes and correct the faults if present.

Consider a system of N nodes: {n0, n1, ...nN−1}. Let δij
denote the offset between the clocks of ni and nj , which

is unknown and to be estimated. Specifically, δij = ci(t)−
cj(t), where ci(t) and cj(t) are the clock values of ni and

nj at any given time instant t, respectively. As discussed in

Section III-A, we assume that δij is time-invariant. By desig-

nating n0 as the reference node, we have δij = δi0−δj0. Any

pair of two nodes, ni and nj , will perform a synchronization

session using the sensing-based p2p clock synchronization to

measure δij . Denote by ni ↔ nj the synchronization session

between ni and nj . Denote by δ̃ij the measured clock offset.

If the synchronization session is successful, δ̃ij = δij ; if the

synchronization session is faulty, δ̃ij = δij + eij , where eij
is the p2p synchronization fault. Every node pair performs

a p2p synchronization session. Thus, there will be a total of(
N
2

)
= N(N−1)

2 p2p synchronization sessions.

All the
N(N−1)

2 clock offset measurements are transmit-

ted to a central node, which runs a fault-tolerate network

clock synchronization algorithm. Denote by δ̂ij and êij the

estimates for δij and eij , respectively. A general equation

system assuming all the p2p synchronization sessions are

faulty is

{
δ̂j0 + êj0 = δ̃j0, ∀j ∈ [1, N − 1];

δ̂i0 − δ̂j0 + êij = δ̃ij , ∀i, j ∈ [1, N − 1], i > j.
(1)

The variables to be solved are the unknowns {δ̂j0|∀j ∈
[1, N − 1]} and {êij|∀i, j ∈ [0, N − 1], i > j}, where δ̂j0
is the estimated clock offset between nj and the reference



Algorithm 1 Fault-tolerate network clock synchronization.

Given: {δ̃ij |∀i, j ∈ [0, N − 1], i > j}
Output: {δ̂ij , êij |∀i, j ∈ [0, N − 1], i > j}

1: k = 0
2: while k ≤ N(N−1)

2
do

3: for each distribution of the k estimated p2p synchronization

faults among the N(N−1)
2

p2p synchronization sessions do
4: if the corresponding Eq. (1) has a solution then

5: return {δ̂ij , êij |∀i, j ∈ [0, N − 1], i > j}
6: end if
7: end for
8: k = k + 1
9: end while

node n0; êij is the estimated p2p clock synchronization fault

between ni and nj .

If the network clock synchronization algorithm considers

that a total of k p2p synchronization sessions are faulty, it

keeps k estimated p2p synchronization faults (i.e., êij) in

Eq. (1) and removes other estimated p2p synchronization

faults. Thus, there will be
(N(N−1)

2
k

)
possible distributions of

the k estimated p2p synchronization faults among a total of
N(N−1)

2 p2p synchronization sessions. Algorithm 1 shows

the pseudocode of algorithm. It starts by assuming there are

no faults (i.e., k = 0). In each iteration that increases k by

one, it solves Eq. (1) for all possible distributions of the

k estimated p2p synchronization faults. Once a solution is

found, Algorithm 1 returns.

Algorithm 1 requires neither the number nor the distribu-

tion of the actual p2p synchronization faults. Whether it can

correct the faults and how many faults it can tolerate will be

the focus of this paper. Algorithm 1 is executed on a central

node; its fault tolerance performance, which is the focus of

this paper, will provide important understanding.

C. Problem Statement

Definition 1 (K-resilience). Let K ∈ Z≥0 denote the

number of faulty p2p synchronization sessions among a total

of
N(N−1)

2 sessions in an N -node system. The system with

Algorithm 1 is K-resilient if the algorithm can correct any

K non-zero p2p synchronization faults.

From Algorithm 1, we define the K-resilience condition

that can be used to check whether a system is K-resilient.

Definition 2 (K-resilience condition). A system with Al-

gorithm 1 is K-resilient if the following conditions are

satisfied:

1) ∀k ∈ [0,K), Eq. (1) constructed with any distribution

of the K actual p2p synchronization faults and any

distribution of the k estimated p2p synchronization

faults has no solutions;

2) When k = K , for any distribution of the K actual

p2p synchronization faults and any distribution of the

k estimated p2p synchronization faults,

a) if the distribution of the k estimated p2p syn-

chronization faults is identical to the distribution

of the actual faults, Eq. (1) has a unique solution;

b) otherwise, Eq. (1) has no solutions.

Note that in the condition 2)-a) of Definition 2, the unique

solution must give the correct estimates of the clock offsets

and the p2p synchronization faults.

We aim at analyzing the following resilience bounds:

Definition 3 (Lower bound of maximum resilience). A

function fl(N) is a lower bound of maximum resilience

if any N -node system with Algorithm 1 is K-resilient for

K ≤ fl(N).

Definition 4 (Upper bound of maximum resilience). A

function fu(N) is a upper bound of maximum resilience

if any N -node system with Algorithm 1 is not K-resilient

for K > fu(N).

Definition 5 (Tight bound of maximum resilience). A func-

tion ft(N) is a tight bound of maximum resilience if any N -

node system with Algorithm 1 is K-resilient for K ≤ ft(N)
and not K-resilient for K > ft(N).

IV. VECTORIZATION AND K -RESILIENCE

A. Vectorization

We vectorize the representation of Eq. (1) that is solved by

Line 4 of Algorithm 1. Define δ̂ ∈ R
N−1 composed of all

clock offset estimates, i.e., δ̂ =
(
δ̂10, δ̂20, . . . , δ̂(N−1)0

)⊺

.

Define ê ∈ R
k composed of the k p2p synchronization fault

estimates. Eq. (1) can be rewritten as (A1A2)

(
δ̂

ê

)
= b,

where A1 ∈ R
N(N−1)

2 ×(N−1) and A2 ∈ R
N(N−1)

2 ×k

are two matrices composed of -1, 0, and 1 containing

coefficients corresponding to δ̂·0 and ê··, respectively; the

vector b ∈ R
N(N−1)

2 consists of all the measured clock

offsets. To simplify notation, we define A = (A1A2) and

x =

(
δ̂

ê

)
. From the Rouché-Capelli theorem [24], the

necessary and sufficient condition that Ax = b has no

solutions is rank(A|b) 6= rank(A), where A|b is the

augmented matrix.

B. K-Resilience under Certain Settings

This section presents the analysis on the K-resilience of

an N -node system with Algorithm 1 under certain settings

of K and N . This analysis provides insights into the more

general analysis of the lower/upper bounds of maximum

resilience.

Proposition 1. A 3-node system is not 1-resilient.

Proof: Consider a case where the p2p synchronization

session n1 ↔ n2 is faulty. When k = 0 in Algorithm 1, the



vectorized equation system in Eq. (1) is




1 0
0 1
−1 1




(

δ̂10
δ̂20

)
=




δ10
δ20

δ20 − δ10 + e21



 .

⇑ ⇑ ⇑
A x b

Note that A2 and ê are empty. With e21 6= 0, Gaussian

elimination shows that rank(A|b) 6= rank(A). Thus, the

equation system has no solutions and Algorithm 1 will move

on to the case of k = 1. The algorithm will attempt to test

all the
N(N−1)

2 = 3 possible cases of a single faulty p2p

synchronization session. For instance, when the algorithm

assumes that n0 ↔ n1 is faulty, the equation system is




1 0 1
0 1 0
−1 1 0







δ̂10
δ̂20
ê10


 =




δ10
δ20

δ20 − δ10 + e21


 .

With e21 6= 0, we have rank(A|b) = rank(A) and A has

full column rank. Thus, the equation system has a unique

solution. Therefore, the condition 2)-b) of Definition 2 is not

satisfied and the 3-node system is not 1-resilient. In fact, the

unique solution must be a wrong solution, which is {δ̂10 =
δ10 − e21, δ̂20 = δ20, ê10 = e21}.

Proposition 2. A 4-node system is 1-resilient.

We provide a sketch of the proof as follows instead of the

complete proof due to space limit. Consider a case where

the p2p synchronization session n0 ↔ n2 is faulty. When

k = 0 in Algorithm 1, similar to Proposition 1, the equation

system has no solutions and Algorithm 1 will move on to the

case of k = 1. The algorithm will test all the
N(N−1)

2 = 6
possible cases of a single faulty p2p synchronization session.

For instance, when the algorithm assumes n0 ↔ n1 is faulty,

the vectorized equation system is




1 0 0 1
0 1 0 0
0 0 1 0
−1 1 0 0
0 −1 1 0
−1 0 1 0







δ̂10
δ̂20
δ̂30
ê10


 =




δ10
δ20 + e20

δ30
δ20 − δ10
δ30 − δ20
δ30 − δ10




. (2)

As rank(A|b) 6= rank(A), the equation system has no

solutions. An exhaustive check shows that, only when the

algorithm assumes the synchronization session between n0

and n2 is faulty, the equation system has a unique solution

(i.e., rank(A|b) = rank(A) and A has full column rank).

Thus, the algorithm can correct the fault. In fact, it can be

verified that, for the 4-node system, no matter which p2p

synchronization session is faulty, the algorithm can correct

the fault. Therefore, the 4-node system is 1-resilient.

Proposition 3. A 4-node system is not 2-resilient.

Proof: Consider the 4-node system with two faulty p2p

synchronization sessions: n0 ↔ n1 and n0 ↔ n2. When

k = 0, the equation system has no solutions. When k = 1,

consider a case where n0 ↔ n3 is assumed to be faulty by

the algorithm. The vectorized equation system is




1 0 0 0
0 1 0 0
0 0 1 1
−1 1 0 0
−1 0 1 0
0 −1 1 0







δ̂10
δ̂20
δ̂30
ê30


 =




δ10 + e10
δ20 + e20

δ30
δ20 − δ10
δ30 − δ10
δ30 − δ20




. (3)

If e10 6= e20, rank(A|b) 6= rank(A) and the equation sys-

tem has no solutions. However, if e10 = e20, rank(A|b) =
rank(A) and A has full column rank; the equation system

has a unique wrong solution of {δ̂10 = δ10 + e10, δ̂20 =
δ20 + e10, δ̂30 = δ30 + e10, ê30 = −e10}. Although this

counterexample against the 4-node system’s 2-resilience is

obtained under a certain condition of e10 = e20, we can

conclude that the 4-node system is not 2-resilient.

To gain more insights, we also analyze a case of k = 2
with n0 ↔ n1 and n0 ↔ n3 assumed to be faulty by the

algorithm. The vectorized equation system is




1 0 0 1 0
0 1 0 0 0
0 0 1 0 1
−1 1 0 0 0
−1 0 1 0 0
0 −1 1 0 0







δ̂10

δ̂20

δ̂30
ê10
ê30



=




δ10 + e10
δ20 + e20

δ30
δ20 − δ10
δ30 − δ10
δ30 − δ20




. (4)

As rank(A|b) = rank(A) and A has full column rank,

the equation system has a unique solution, which violates

the 2-resilience condition. In fact, the equation system has a

unique wrong solution that does not require any relationship

between e10 and e20: {δ̂10 = δ10+e20, δ̂20 = δ20+e20, δ̂30 =
δ30 + e20, ê10 = e10 − e20, ê30 = −e20}.

Proposition 4. A 5-node system is 1-resilient.

We provide a sketch of the proof as follows instead of

the complete proof due to space limit. Consider a 5-node

system with one p2p synchronization fault. The resilience

is independent from how we name the nodes. We name the

two involving nodes of the faulty synchronization session to

be n0 and n1. An exhaustive check over all the
(
5
2

)
possible

cases for a single assumed faulty synchronization session

shows that the 1-resilience condition is satisfied. Thus, the

5-node system is 1-resilient.

Proposition 5. A 5-node system is not 2-resilient.

Proof: We consider a 5-node system, in which (i) the

p2p synchronization sessions n0 ↔ n1 and n1 ↔ n4 are

faulty and (ii) the p2p synchronization sessions n1 ↔ n2

and n1 ↔ n3 are assumed by the algorithm to be faulty.



The vectorized equation system is




























1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
−1 1 0 0 1 0
−1 0 1 0 0 1
−1 0 0 1 0 0
0 −1 1 0 0 0
0 −1 0 1 0 0
0 0 −1 1 0 0













































δ̂10

δ̂20

δ̂30

δ̂40
ê21
ê31

















=





























δ10 + e10
δ20
δ30
δ40

δ20 − δ10
δ30 − δ10

δ40−δ10+e41
δ30 − δ20
δ40 − δ20
δ40 − δ30





























. (5)

If e10 = −e41, the equation system has a unique solution of

{δ̂10 = δ10 + e10, δ̂20 = δ20, δ̂30 = δ30, δ̂40 = δ40, ê21 =
e10, ê31 = e10}, which violates the resilience condition.

Thus, a 5-node system is not 2-resilient.

C. Re-Vectorization

In Section IV-B, we adopt an approach of enumerating

counterexamples to prove that a system is not K-resilient.

As shown in the proofs of Propositions 3 and 5, if the

actual faults satisfy certain conditions, the rank of A|b may

change, presenting a pitfall to the approach of enumerating

counterexamples. This motivates us to consider the actual

faults as the variables of the equation system in Eq. (1).

The following re-vectorization will be used in Section V-A

to derive the lower bound of maximum resilience.

By defining a vector e ∈ R
K composed of the K actual

p2p synchronization faults, we can reformat Ax = b to

include the actual faults into the vector of unknowns:

A
′
x
′ = b

′,where x
′ =




δ̂

ê

e


 ,A′ = (A1A2A3) , (6)

A3 ∈ R
N(N−1)

2 ×K is a matrix corresponding to e, b
′ ∈

R
N(N−1)

2 consists of the actual clock offsets.
The re-vectorization of the equation systems in Eqs. (2),

(3), and (4) are respectively given by



1 0 0 1 0
0 1 0 0 −1
0 0 1 0 0
−1 1 0 0 0
0 −1 1 0 0
−1 0 1 0 0







δ̂10

δ̂20

δ̂30
ê10
e20




=




δ10
δ20
δ30

δ20 − δ10
δ30 − δ20
δ30 − δ10




, (7)















1 0 0 0 −1 0

0 1 0 0 0 −1

0 0 1 1 0 0

−1 1 0 0 0 0

−1 0 1 0 0 0

0 −1 1 0 0 0































δ̂10

δ̂20

δ̂30
ê30
e10
e20

















=















δ10
δ20
δ30

δ20−δ10
δ30−δ10
δ30−δ20















, (8)















1 0 0 1 0 −1 0
0 1 0 0 0 0 −1
0 0 1 0 1 0 0
−1 1 0 0 0 0 0
−1 0 1 0 0 0 0
0 −1 1 0 0 0 0

































δ̂10

δ̂20

δ̂30
ê10
ê30
e10
e20



















=















δ10
δ20
δ30

δ20−δ10
δ30−δ10
δ30−δ20















, (9)

In Eq. (7), rank(A′|b) = rank(A′) and A
′ has full

column rank. Thus, Eq. (7) has a unique solution, which

is {δ̂10 = δ10, δ̂20 = δ20, δ̂30 = δ30, ê10 = 0, e20 = 0}.

This is consistent with the observation in the proof sketch

of Proposition 2 that Ax = b has no solutions if e20 6= 0.

In Eq. (8), rank(A′|b) = rank(A′) and A
′ is not full

column ranked. Thus, A′
x
′ = b

′ has an infinite number of

solutions. Applying Guassian elimination to Eq. (8) gives

{δ̂10 = δ10 + e10, δ̂20 = δ20 + e10, δ̂30 = δ30 + e10, ê30 =
−e10, e20 = e10}, where e10 and e20 are considered as

variables in A
′
x
′ = b

′, not as constants in Ax = b. The

above result means that there exist non-zero e10 and e20
such that the solution of Ax = b is wrong.

In Eq. (9), rank(A′|b) = rank(A′) and A
′ is not full

column ranked. Thus, A′
x
′ = b

′ has an infinite number of

solutions. Applying Gaussian elimination to Eq. (9) gives

the relationship derived in the proof of Proposition 3, i.e.,

{δ̂10 = δ10 + e20, δ̂20 = δ20 + e20, δ̂30 = δ30 + e20, ê10 =
e10 − e20, ê30 = −e20}, where e10 and e20 are considered

as variables in A
′
x
′ = b

′, not as constants in Ax = b. The

above result also shows that there exist non-zero e10 and e20
such that the solution of Ax = b is wrong.

From the above examples, we can see that the solution to

re-vectorization captures the condition that the actual faults

need to satisfy such that the Ax = b will give wrong

solutions.

V. BOUNDS OF MAXIMUM RESILIENCE

A. Lower Bound of Maximum Resilience

In this section, we first develop two lemmas, Lemma 1

and Lemma 2. The proof of Lemma 2 uses Lemma 1.

Then, we prove Proposition 6 using Lemma 2. Proposition 6

gives a sufficient condition that a system is K-resilient.

This condition can be used to compute the lower bound of

maximum resilience for any N -node system.

Lemma 1. A
′
x
′ = b

′ always has one or more solutions.

When A
′ has full column rank, the original Ax = b either

has no solutions or has a unique correct solution.

Proof: The x
′ satisfying (i) δ̂j0 = δj0, ∀j ∈ [1, N − 1],

(ii) ê = 0, and (iii) e = 0 must be a solution. We

denote this solution as x
′
0. As shown in previous examples,

A
′
x
′ = b

′ can have an infinite number of solutions. There-

fore, rank(A′|b′) = rank(A′) always holds and A
′
x
′ = b

′

always has one or more solutions.

When A
′ has full column rank, A′

x
′ = b

′ has a unique

solution that must be x
′
0. The e = 0 in this solution

means that the original Ax = b does not allow any p2p

synchronization fault. We now consider two cases. First, in

the presence of any p2p synchronization fault, the Ax = b

must have no solutions; otherwise, the solution of Ax = b

conflicts with the unique solution of A′
x
′ = b

′ with e = 0.

Second, in the absence of synchronization fault, the unique

solution x
′
0 encompasses the unique correct solution of

Ax = b.



We say that an estimated p2p synchronization fault is cor-

rectly positioned if the corresponding p2p synchronization

session is truly faulty. For example, in Eq. (9), the ê10 is

correctly positioned, but the ê30 is not correctly positioned.

Lemma 2. When rank(A′) = N − 1 + k +K − l, where

l ∈ [0, k] is the number of correctly positioned estimated

p2p synchronization faults, the original Ax = b either has

no solutions or has a unique correct solution.

Proof: We define three sets: (1) E is the set of the

subscripts of the estimated p2p synchronization faults, (2) A
is the set of the subscripts of the actual p2p synchronization

faults, (3) C is the set of the subscripts of the correctly

positioned estimated p2p synchronization faults.

When l = 0, the given condition rank(A′) = N−1+k+
K− l ensures that A′ has full column rank. From Lemma 1,

Ax = b has either no solutions or a unique correct solution.

The rest of the proof considers l ∈ (0, k]. We now prove

that the S = {δ̂i0 = δi0, êmn = emn, êpq = 0, exy = 0|∀i ∈
[1, N−1], ∀mn ∈ C, ∀pq ∈ E \C, ∀xy ∈ A\C} is the entire

solution space of A
′
x
′ = b

′. First, clearly, S is a solution

subspace of A′
x
′ = b

′, because it is the correct solution to

a system with l actual non-zero p2p synchronization faults

and correct distribution of the estimated p2p synchronization

faults. The dimension of S is the cardinality of C (i.e., l),
because only the {emn|∀mn ∈ C} are the free variables.

Second, as rank(A′) = N − 1+ k+K − l and the number

of variables is N − 1 + k +K , the dimension of the entire

solution space is (N − 1 + k + K) − (N − 1 + k + K −
l) = l. From the above two statements, the solution subspace

and the entire solution space of A
′
x
′ = b

′ have the same

dimension. From the uniqueness of the solution space of

linear equation system, the S is the entire solution space of

A
′
x
′ = b

′.

The S’s condition exy = 0, ∀xy ∈ A \ C means

that the original Ax = b does not allow any actual

p2p synchronization fault without a corresponding estimated

p2p synchronization fault. In the absence of K actual p2p

synchronization faults, the unique solution S encompasses

the unique correct solution of Ax = b. In the presence of

K actual p2p synchronization faults, there are two cases.

1) If l=k=K , S is the unique correct solution of Ax =
b;

2) Otherwise, we must have l < K . As a result, the

Ax = b must have no solutions, because otherwise

the fact that S allows l non-zero actual p2p synchro-

nization faults only conflicts with the fact that there

are K non-zero actual p2p synchronization faults.

Based on Lemma 2, the following proposition can be used

to compute the lower bound of maximum resilience.

Proposition 6. A system is K-resilient if ∀k ∈ [0,K], for

any distribution of the K actual p2p synchronization faults

Algorithm 2 Compute a lower bound of maximum resilience

Given: The number of nodes N
Output: A lower bound of maximum resilience

1: K = 0
2: while K ≤ (N − 2) do

3: for each distribution of the K actual p2p synchronization

faults among the
N(N−1)

2
p2p synchronization sessions do

4: k = 0
5: while k ≤ K do
6: for each distribution of the k estimated faults among

the N(N−1)
2

p2p synchronization sessions do
7: determine the value of l (i.e., the number of cor-

rectly positioned estimated faults)
8: if rank(A′) 6= N − 1 + k +K − l then
9: return K − 1

10: end if
11: end for
12: k = k + 1
13: end while
14: end for
15: K = K + 1
16: end while

and any distribution of the k estimated p2p synchronization

faults, rank(A′) = N − 1 + k +K − l, where l ∈ [0, k] is

the number of correctly positioned estimated p2p synchro-

nization faults.

Proof: As rank(A′) = N−1+k+K−l, from Lemma 1,

the original Ax = b either has no solutions or has a unique

correct solution. We now analyze the cases considered in

Definition 2:

1) When k ∈ [0,K), since k < K , the solution of

Ax = b cannot be correct. Thus, the Ax = b has

no solutions.

2) When k = K ,

a) if the distribution of the k estimated p2p synchro-

nization faults is identical to the distribution of

the actual synchronization faults, as the statement

that Ax = b has no solution must not be

true (because the correct solution is a solution),

Ax = b must have a unique (and correct)

solution.

b) otherwise, since the distributions are different,

the solution of Ax = b cannot be correct. Thus,

the Ax = b has no solutions.

In summary, rank(A′) = N − 1 + k +K − l ensures that

the K-resilience condition is satisfied.

Based on Proposition 6, Algorithm 2 computes a lower

bound of maximum resilience for any N -node system.

Specifically, by starting with no synchronization faults (i.e.,

K = 0), it increases K by one in each step of the outer

loop to check whether the N -node system is K-resilient. The

condition of K ≤ (N − 2) in Line 2 is from Proposition 7

that the system is not K-resilient if K > (N−2). The loops

from Line 3 to Line 6 will generate all possible combinations



A =

δ̂10 · · · δ̂(N−1)0 ê10 ê12 · · · ê1(N−1) · · ·






n0 ↔ n1 1 · · · · 1 0 · · · 0 · · ·
n0 ↔ n2 0 · · · · 0 0 · · · 0 · · ·

ni ↔ nj , ∀i, j 6= 1
...

. . .
...

...
...

. . .
...

. . .

nN−2 ↔ nN−1 0 · · · · 0 0 · · · 0 · · ·
n1 ↔ n2 −1 · · · · 0 1 · · · 0 · · ·

...
...

. . .
...

...
...

. . .
...

. . .

n1 ↔ nN−1 −1 · · · · 0 0 · · · 1 · · ·

. (10)

of the distributions of actual and estimated synchronization

faults. In Line 8, we check whether the sufficient condition

in Proposition 6 is met. If not, the current value of K has

already exceeded the lower bound of maximum resilience.

Thus, the algorithm returns K − 1 as the lower bound.

Table I shows the results computed by Algorithm 2 for

N up to 12. We can see that the lower bound of maximum

resilience is a non-decreasing function of N , which is con-

sistent with intuition. We also compute the lower bound of

tolerance as fl(N)/N(N−1)
2 , i.e., the percentage of the faulty

p2p synchronization sessions to ensure correct network clock

synchronization. The last row of Table I shows the lower

bound of tolerance.

B. Upper Bounds of Maximum Resilience

Proposition 7. fu(N) = N − 2 is an upper bound of

maximum resilience, i.e., any N -node system is not K-

resilient when K > (N − 2).

Proof: We prove by an counterexample where all the

N − 1 p2p synchronization sessions involving the node

n1 are faulty. The remaining K − (N − 1) faulty p2p

synchronization sessions may occur between any other node

pairs. Consider that Algorithm 1 is testing a distribution of

the K p2p synchronization faults that is identical to the

actual distribution. Since the true clock offsets and the true

p2p synchronization faults must form a valid solution to the

equation system, we have rank(A|b) = rank(A).

The matrix A of the vectorized equation system is given

by Eq. (10). We add labels to help understanding each

column’s corresponding unknown to be solved and each

row’s corresponding p2p synchronization session. In the first

column of A that corresponds to the clock offset estimate

δ̂10, the first element and the last N − 2 elements that

correspond to all p2p synchronization sessions involving

n1 are non-zeros; all other elements are zero. This column

is a linear combination of the columns corresponding to

ê10, ê12, . . . , ê1(N−1). Thus, A is not full column ranked.

Therefore, the equation system Ax = b have an infinite

number of solutions, which violates the resilience condition.

VI. CONCLUSION AND FUTURE WORK

This paper studies how many p2p synchronization faults

that an N -node system can tolerate in achieving network

clock synchronization. Table I gives the lower bound of

maximum resilience under certain settings of N . We also

prove that N − 2 is an upper bound of maximum resilience.

It is interesting to study the following issues not addressed

in this paper:

1) The tight bound of maximum resilience is still an

open issue. However, even if the upper bound given by

Proposition 7 is tight, the tolerance (N − 2)/N(N−1)
2

still decreases with N when N ≥ 4. It suggests that

increasing the number of nodes is not beneficial in

terms of fault tolerance. In future work, we will study

how to reduce the number of p2p synchronization

sessions and examine whether doing so can improve

the fault tolerance.

2) Algorithm 1 and our analysis do not exploit the

property that each fault is a multiple of T . If this

discrete property is used, intuitively, the fault tolerance

can be improved.
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APPENDIX

A. Sensing-based P2P Synchronization Faults

1) Time fingerprinting approaches: The studies [9], [17]

show that the cycle length (i.e., T ) of the power grid voltage

[9] and the associated powerline EMR [17] has transient

minute fluctuations over time in the order of 500 parts per

million. The fluctuations at the same time in a geographic

area served by the same power grid (e.g., a city) are nearly

identical. Thus, a vector of successive cycle lengths is a time

fingerprint. By matching a time fingerprint captured by A
against B’s historical time fingerprints that are timestamped

respectively according to their clocks, the offset between A’s

and B’s clocks can be estimated with a potential error of nT .

If the time fingerprint length is sufficiently long, empirical

zero error probability has been achieved [9], [17]. However,

the possibility of errors cannot be precluded.

2) Dirac-assisted NTP approaches: As illustrated in

Fig. 1, the Dirac-assisted NTP transmits a request packet and

a reply packet and records the transmission and reception

timestamps t1, t2, t3, and t4 according to A’s and B’s clocks.

It also computes the elapsed clock times for t1, t2, t3, and t4
from their respective last impulses (LIs) in the Dirac combs.

These elapsed clock times (i.e., phases) are denoted by φ1,

φ2, φ3, and φ4, as illustrated in Fig. 1. The round-trip time

(RTT) is RTT = (t4 − t1)− (t3 − t2). Define the rounded

phase differences θq and θp (which correspond to the request

and reply packets, respectively) as

θq=

{
φ2−φ1, if φ2−φ1≥0;
φ2−φ1+T, otherwise.

θp=

{
φ4−φ3, if φ4−φ3≥0;
φ4−φ3+T, otherwise.

As analyzed in [10], [14], we have RTT = θq+θp+(i+j)·T ,

i, j ∈ Z≥0, where the non-negative integers i and j are the

numbers of elapsed periods of the external signals during the

transmissions of the request and reply packets, respectively.

For instance, in Fig. 1, i = 2 and j = 1. Once the

unknown i or j can be determined, the offset between

A’s and B’s clocks can be estimated. However, solving i
and j from RTT = θq + θp + (i + j) · T is an integer-

domain underdetermined problem that generally has multiple

solutions. Arbitrarily choosing one of the candidate solutions

will result in a clock offset estimation error of nT . The

studies [10] and [14] proposed approaches to effectively

reduce the number of candidate solution. However, it is

challenging to ensure no ambiguity.


