
12

Exploiting Electrical Grid for Accurate and Secure Clock

Synchronization

SREEJAYA VISWANATHAN, Illinois at Singapore Pte Ltd

RUI TAN, Nanyang Technological University

DAVID K. Y. YAU, Singapore University of Technology and Design

Desynchronized clocks among network nodes in critical infrastructures can degrade system performance and
even lead to safety incidents. Clock synchronization protocols based on network message exchanges, though
widely used in current network systems, are susceptible to delay attacks against the packet transmission. This
vulnerability cannot be solved by conventional security measures, such as encryption, and remains an open
problem. This article proposes to use the sine voltage waveform of a utility power grid to synchronize network
nodes connected to the same grid. Our experiments demonstrate that minute fluctuations of the voltage’s
cycle length encode fine-grained global time information in Singapore’s utility grid. Based on this key result,
we develop a clock synchronization approach that achieves good accuracy and is provably secure against
packet-delay attacks. Implementation results show that our approach achieves an average synchronization
error of 0.1 ms between two network nodes that are deployed in office and residential buildings 10 km apart.
When the proposed system is deployed within the same floor of an office building, the error reduces to
10 μs. When there are heavy industrial loads close to one of the two nodes 10 km apart, the system can still
maintain subsecond accuracy. Moreover, when the two nodes are deployed within the same building floor
with industrial loads nearby, the average synchronization error is 34 μs.

CCS Concepts: • Computer systems organization → Sensor networks; Dependable and fault-tolerant

systems and networks;

Additional Key Words and Phrases: Clock synchronization, security, critical infrastructures, cyber-physical
systems

ACM Reference format:

Sreejaya Viswanathan, Rui Tan, and David K. Y. Yau. 2018. Exploiting Electrical Grid for Accurate and Secure
Clock Synchronization. ACM Trans. Sen. Netw. 14, 2, Article 12 (May 2018), 32 pages.
http://doi.org/10.1145/3195182

A preliminary version of this work appeared in the 37th IEEE Real-Time Systems Symposium (RTSS’16).
This research is supported in part by the National Research Foundation, Prime Minister’s Office, Singapore under the
Energy Programme and administrated by the Energy Market Authority (EP Award No. NRF2014EWT-EIRP002-026) an
NTU Start-up Grant, and MOE grant number SUTDT12017004.
Authors’ addresses: S. Viswanathan, Advanced Digital Sciences Center, Illinois at Singapore Pte Ltd, 1 Fusionopolis Way,
#08-10 Connexis North Tower, Singapore 138632; email: sreejaya.v@adsc.com.sg; R. Tan (corresponding author), School of
Computer Science and Engineering, Nanyang Technological University, N4-02C-85, 50 Nanyang Avenue, Singapore 639798;
email: tanrui@ntu.edu.sg; D. K. Y. Yau, Information Systems Technology and Design, Singapore University of Technology
and Design, 8 Somapah Road, Building 1, Level 5, Singapore 487372; email: david_yau@sutd.edu.sg.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 ACM 1550-4859/2018/05-ART12 $15.00
http://doi.org/10.1145/3195182

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

http://doi.org/10.1145/3195182
http://doi.org/10.1145/3195182

12:2 S. Viswanathan et al.

1 INTRODUCTION

Critical infrastructures—for example, utility grids, manufacturing systems, and public
transportation—are embracing the vision of the Internet of Things (IoT) [30], which pro-
vides a fabric that connects advanced sensing, computing, communications, and actuation [26].
For the “things” (i.e., network nodes) in a critical infrastructure, trustworthy time information can
be critical. Accurate timestamps of data allow us to make sense of the data relative to extrinsic
events. Tight clock synchronization enables punctual and coordinated real-time operations.
Desynchronized clocks, on the other hand, can degrade system performance or cause expensive
infrastructure damage. For instance, in an electrical grid, smart meters and other intelligent
electronic devices (IEDs) installed at substations to monitor the grid’s state and operate power
instruments accordingly often require global clock synchronization of submillisecond accuracy.
Stale measurements will result in erroneous control that endangers the grid’s safety [25]. In car
manufacturing, for example, desynchronized robots in a Roboteam [29] working on a same car
can cause clashes of their arms and disrupt the production pipeline.

In existing critical infrastructures, Network Time Protocol (NTP) and Precision Time Proto-
col (PTP) are often used to synchronize distributed slave nodes to a master node, which may
be equipped with a Global Positioning System (GPS) receiver for further global synchronization.
However, as discussed in RFC 7384 [20], these protocols are susceptible to various cybersecurity
threats. A simple packet-delay attack, in particular, is effective in desynchronizing the slave nodes.
This attack cannot be prevented by conventional security measures, including cryptographic au-
thentication and encryption [19, 28]. In the attack, a malicious intermediate node on the network
path between the slave and master strategically delays the transmissions of the NTP or PTP pack-
ets in order to manipulate a slave’s clock. For instance, if an NTP request or reply is delayed
maliciously by τ , the slave’s clock will have an extra drift of τ/2 from the master’s clock [19, 28].
To the best of our knowledge, there is no solution to completely mitigate this attack. The effective-
ness of existing mitigation approaches [20], such as using redundant masters and network paths,
varies significantly depending on the network topology and attack points. In particular, a dense
deployment of GPS receivers in a critical infrastructure may harden its cyber network, but it may
increase the physical attack surface because the GPS receivers are susceptible to wireless spoofing
that can be launched remotely (e.g., 1.4 km away [2]) using low-cost (e.g., $300 [17]) hardware.

Critical infrastructures have also resorted to cyber isolation to protect their networks. Such iso-
lation is shaky, however [12]. Zero-day vulnerability exploits, insider attacks, and stepping stone
attacks can render the isolation futile, as evidenced in recent high-profile intrusions, including
Dragonfly [10] and Stuxnet [11] against power and nuclear plants. For the problem context of this
article, insiders (e.g., disgruntled employees) who have access to network management may eas-
ily launch a packet-delay attack at a strategic router, thereby endangering the integrity of time
among a large number of network nodes. Increased network connectivity due to adoption of the
IoT will only further lower the barriers of penetrating critical infrastructures. Hence, providing
secure clock synchronization in these systems, where connectivity is a defining characteristic, is
an imperative research problem.

Recent research efforts have investigated clock synchronization in wireless sensor networks
and mobile/pervasive computing. These approaches leverage the nodes’ built-in radios [4, 5, 18]
or external wireless time broadcasts or periodic signals found in AM/FM radios [3, 14], Wi-Fi bea-
cons [9], power line electromagnetic radiation (EMR) [23], and fluorescent light flickering [16].
However, they are designed without security considerations. Moreover, reliance on wireless elec-
tromagnetic signals in a mission-/safety-critical context often raises reliability and security con-
cerns owing to the possibility of wireless jamming and spoofing.

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

Exploiting Electrical Grid for Accurate and Secure Clock Synchronization 12:3

In this article, we advance the notion of inherent security in providing secure and accurate time
in time-critical systems. We exploit the electric network voltage (ENV) signal of an alternating cur-
rent (ac) utility grid to design an accurate clock synchronization approach with provable security
against the packet-delay attack for a network system connected to the same grid. The following
properties of the ENV make it an ideal extrinsic signal that serves our purposes. First, the ENV
is a periodic signal with a nominal frequency of 50 or 60 Hz, and it is almost identical across all
locations within a local area (e.g., a power substation or factory). Our measurements show that
the phase difference between the ENVs at two locations 10 km apart is generally below 0.2 ms and
it has a mean value of around 0.1 ms. This property enables us to achieve a submilliseconds av-
erage error in clock synchronization. Second, in critical infrastructures, many network nodes are
connected to the utility grid for stable power supply and unattended long-term operations. This
typical setup renders our ENV-based approach widely applicable. Third, the ENV is a highly avail-
able and almost unforgeable physical signal that is practically difficult for the attacker to tamper
with or jam. Any high-frequency noise injected by the attacker into related power lines can be
removed readily by a low-pass filter. On the other hand, injection of low-frequency disturbances
that can distort the ENV waveform would require a considerable amount of energy and physical
tampering to the power networks. For instance, our experiments in this article show that heavy in-
dustrial loads can affect the ENV waveform. However, the implementation of these physical attacks
raises insurmountable barriers economically and logistically for would-be attackers. Moreover, if
the attackers have obtained physical access to the power network supporting the targeted system,
simply causing power outages by connecting large loads exceeding the network’s power rating
or introducing a short circuit would be more attractive than attacking the clock synchronization.
Thus, although these physical attacks cannot be totally ruled out, we focus on the packet-delay
attack in this article.

Subject to the gridwide ENV, different network nodes can count the ac cycles of the ENV sig-
nal to achieve clock calibration [14, 16]. Note that clock calibration ensures that different clocks
advance at the same speed, whereas clock synchronization regulates the clocks to have the same
value. Thus, continuous clock calibration keeps the clocks synchronized once they are initially
synchronized. The initial synchronization, however, requires the exchange of network messages,
which may be subverted by packet delay attacks. A major contribution of this article is the identi-
fication, validation, and exploitation of a physical fingerprint embedded in the ENV signal, which
we call a time fingerprint (TiF), which provides resilience against delay attacks. A TiF is a vector
of successive ac cycle lengths of the ENV signal. In a power grid, although the system frequency
is regulated at 50 or 60 Hz by a control system [13], the frequency fluctuates continuously be-
cause of inevitable transient imbalance between generation and load. Accordingly, the ac cycle
length fluctuates around its nominal value as well. Our extensive measurements show that, using
a similarity-based matching algorithm, a TiF of sufficient length captured by a network node—say,
A, can be correctly time aligned within a trace of ac cycle lengths captured by another network
node—say, B—at the granularity of an ac cycle.

These key observations enable a novel cyber-physical approach to achieving the objectives of
accurate and secure clock synchronization simultaneously for a network system served by the
same utility grid. Specifically, in a synchronization session, we ensure the integrity (e.g., using
cryptographic signature) of a packet from node A to node B that contains a TiF captured by A
and the corresponding A’s clock value. Based on that, B will be able to time align the received
TiF within its own historical ac cycle lengths timestamped with its clock. As a result, B will be
able to compute the offset between A’s and B’s clocks. If this offset is communicated back to A
with guaranteed integrity, A can then calibrate its clock to synchronize with that of B. This new
approach is immune to any malicious delays introduced in the communications between A and B

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

12:4 S. Viswanathan et al.

since it does not depend on any explicit measurements of the network transmission delays. This
principle, which applies for a pair of nodes, underlines a complete clock synchronization system
among all the grid-connected nodes.

This article presents a prototype implementation of our system and discusses its performance
based on extensive empirical evaluations. While our approach is immune to the packet-delay at-
tack, owing to random noises in TiFs, the TiF matching may produce errors, albeit with very low
probabilities. This article develops an error-correction algorithm by cross-checking the synchro-
nization results among multiple nodes. Our analysis shows that a four-node system can correct one
erroneous synchronization session out of a total of six synchronization sessions during a cross-
check round. This significantly improves the robustness of our approach against rare synchro-
nization errors owing to noises in TiFs. Extensive evaluation shows that our approach achieves
an average synchronization error of 0.1 ms between two network nodes that are deployed in of-
fice and residential buildings 10 km apart. When the proposed system is deployed within the same
floor of an office building, the error reduces to 10 μs. We also evaluate the impact of industrial loads
on the synchronization accuracy of our approach. The evaluation shows that, if the two network
nodes are affected by the same industrial loads, the average synchronization error is 34 μs. When a
node is affected by heavy industrial loads and the other is not, our synchronization approach still
maintains subsecond accuracy.

The remainder of the article is organized as follows. Section 2 reviews related work. Section 3
presents the design and implementation of the TiF capture hardware. Section 4 presents exten-
sive measurements that characterize key properties of the TiF under different deployment envi-
ronments. Section 5 discusses the design and implementation of the proposed secure clock syn-
chronization approach. Section 6 presents the synchronization error-correction algorithm and its
performance analysis. Section 7 analyses evaluation results of the system prototype. Section 8
discusses several issues that are not addressed in this article. Section 9 contains our conclusions.

2 RELATED WORK

Various clock calibration and synchronization approaches have been proposed for wireless sen-
sor networks and mobile/pervasive computing applications. They can be classified broadly into
two categories. The first category (e.g., RBS [4], TPSN [5], and FTSP [18]) achieves clock syn-
chronization by exchanging radio messages among the nodes in question. The second category
[3, 9, 14, 16, 23] exploits external wireless time broadcasts and periodic signals. Chen et al. [3]
have designed a low-power mote peripheral that can decode time broadcasts from timekeeping
radio stations (WWVB and DCF77) to achieve global time synchronization. Li et al. [14] exploit
the Radio Data System (RDS) of FM radios, which broadcasts data blocks periodically, to calibrate
the clocks of motes. Similarly, ZigBee nodes have used detection of periodic Wi-Fi beacons for
clock calibration [9]. Rowe et al. [23] have designed a mote peripheral to receive periodic EMR
from utility power lines and calibrate the clocks of motes based on the detected ac cycles. Li et al.
[16] leverage periodic fluorescent light flickering to calibrate the clocks of nodes equipped with
light sensors. Our approach belongs to the second category, but it is also fundamentally differ-
ent from all the prior work. They leverage the periodicity of the external signals to achieve clock
calibration, whereas we exploit gridwide imperfections of the ENV’s periodicity to achieve clock
synchronization. They do not address security, whereas we address it as a principal concern. Their
use of wireless signals often raises reliability and security concerns for mission- and safety-critical
systems. We do not use wireless signals.

Moreover, the approaches based on powerline EMR [23], FM RDS [14], Wi-Fi beacons [9], and
light flickering [16] achieve clock calibration by counting cycles. Note that clock calibration is
related to, but different from, clock synchronization, as discussed in Section 1. Clock calibration

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

Exploiting Electrical Grid for Accurate and Secure Clock Synchronization 12:5

Fig. 1. Illustration of ENV ac cycle length. T1 and T2 are two ac cycle length measurements.

ensures that different clocks advance at the same speed, whereas clock synchronization regulates
the clocks to have the same value. Continuous clock calibration keeps the clocks synchronized
once they are initially synchronized. However, these existing studies [9, 14, 16, 23] do not
devise new approaches for the initial synchronization or any resynchronization needed should
hardware/software faults occur. They use the conventional clock synchronization approaches
based on network message exchanges, which may be subverted by packet-delay attacks. Thus, our
synchronization approach is complementary to existing work in clock calibration [9, 14, 16, 23]
in that we provide the secure initial synchronization and resynchronization needed to bootstrap
their systems.

ENV has been exploited to tell time for decades. Some electric clocks connected to utility grids
(e.g., those found in home appliances) advance by counting the ac cycles. In some power grids,
the grid operators regulate the grid time, that is, the product of the number of ac cycles and the
nominal cycle length (e.g., 20 ms for a 50 Hz grid) based on Coordinated Universal Time (UTC) by
correcting the grid frequency. However, the regulation often has errors on the order of seconds.
For instance, by controlling generators, the grid operator in Texas increases/decreases the grid
frequency whenever the error of grid time exceeds 2 s [21], thus keeping the maximum error to
be also about 2 s. Moreover, because this regulation may negatively impact power grid reliability
[22], it is either not adopted or considered obsolete and being phased out. Grid time is therefore
unsuitable for accurate synchronization of network nodes to UTC.

Audio and video recorders can capture the grid’s frequency based on electromagnetic interfer-
ence from power lines or visual interference under fluorescent lighting [6, 7, 24]. The continuously
fluctuating grid frequency over time may generate a signature for multimedia forensics. For exam-
ple, it is possible to authenticate the recording time of an audio/video clip by matching a frequency
trace extracted from the clip against a historical grid frequency database recorded directly from
the utility grid. Since these forensic approaches sample the grid frequency every few seconds,
the identification similarly has a temporal granularity on the order of seconds. In this article, we
solve the systems challenge of capturing the fine-grained, ENV-based TiF and validate its ability
to “encode” time information with submillisecond accuracy. We further apply the TiF to design a
novel clock synchronization system that satisfies both the security and accuracy requirements for
critical infrastructures.

3 CAPTURING POWER GRID TIME FINGERPRINT

In this section, we use real data traces to illustrate the fluctuations of ENV cycle lengths at different
locations of a utility grid, which motivate the concept of TiF. We then describe our hardware design
to capture the fluctuations in high resolution.

3.1 ENV Cycle Length Fluctuations

Figure 1 illustrates two ENV signals with a phase shift. We can observe these phase shifts when the
signals are measured at different locations in a power network owing to characteristics of the elec-
trical power lines [13]. An ac cycle length of the red solid ENV signal is the time periodT1 between

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

12:6 S. Viswanathan et al.

Fig. 2. ENV ac cycle lengths measured by two nodes at different locations in a building for a duration of

10 minutes.

Fig. 3. A zoomed-in view of Figure 2.

two consecutive zero crossings, illustrated in Figure 1. In this article, we design a hardware device
to continuously measure the ac cycle lengths. Details of the design will be presented in Section 3.2.
We deploy two of the hardware devices, Node 1 and Node 2, in two different rooms on the same
floor of an office building. Figure 2 shows 30,000 ac cycle length measurements obtained by the two
nodes, respectively, over the same time period of about 10 minutes. The ac cycle lengths shown are
around 20,015 μs, because the nominal grid frequency in our region is 50 Hz. The ac cycle length
changes over time and the fluctuations at the two nodes are almost identical. To illustrate, Figure 3
shows a zoomed-in view of Figure 2, where the traces measured by both nodes are depicted over a
selected window of 1 s. We can see that the ac cycle lengths measured by the two nodes fluctuate
synchronously. The fluctuations are within 10 μs, which is just 0.05% of the nominal cycle length.

The good match between the profiles of the fluctuating ac cycle lengths, as shown in Figure 3,
suggests that (i) the fluctuations at different locations on a building floor are nearly identical, and
(ii) a trace of the fluctuations over a certain time period is unique over a longer time horizon. These
two hypotheses, if true, imply that a trace of the fluctuations may naturally “encode” a unique
signature for when the trace was captured. We thus call a vector of some number of consecutive ac
cycle lengths (recorded at some location) a time fingerprint (TiF). In Section 4, we present extensive
measurements in a wide range of settings (e.g., length of the TiF and physical distance between
two synchronizing nodes distributed in Singapore) to test these two hypotheses.

3.2 Time Fingerprint Capture Hardware

This section presents a hardware design for capturing minute fluctuations of the ENV cycle length,
as shown in Figure 3. The design must allow high-resolution measurements to preserve even tiny
features. Moreover, it should be designed as a portable periphery that can be easily integrated with
commercial off-the-shelf (COTS) IoT platforms.

3.2.1 Hardware and Firmware. A possible method is to directly sample the ENV signal using a
high-speed analog-to-digital converter (ADC) and compute the cycle lengths from the captured
data. However, processing high-rate data will incur significant compute overhead, which may

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

Exploiting Electrical Grid for Accurate and Secure Clock Synchronization 12:7

Fig. 4. Schematics of the proposed hardware prototype. GPS and Raspberry Pi are used for evaluation pur-

poses only and can be eliminated or replaced in actual deployments.

threaten the system’s real-time performance. High-speed ADC is expensive as well. This sampling
method is therefore not advisable. Instead, we design a circuit to generate interrupts upon zero
crossings of the ENV. These crossings are then analyzed by a microcontroller (MCU) to give the ac
cycle lengths. Figure 4 shows the schematics of our prototype hardware. Given the line-to-neutral
utility voltage, the prototype uses a certified off-the-shelf ac/ac adapter and a voltage divider to
step down the voltage. Thus, the prototype has the electrical protection features provided by the
off-the-shelf ac/ac adapter. The voltage signal is conditioned and converted to a square wave signal
that preserves the cycle lengths and generates interrupts to an MCU. A firmware on the MCU then
uses an internal high-frequency timer to measure the cycle lengths locally and efficiently.

Details of the signal processing components in Figure 4 are as follows. The combination of
the ac/ac adapter and the voltage divider outputs a differential sinusoid signal with a peak-peak
voltage of around 2 V. A unit-gain differential input amplifier converts the differential signal to a
single-ended signal and adds to it a reference voltage of 1.65 V provided by a voltage referencer.
The resulting output is thus a voltage signal referenced by ground and centered at 1.65 V. The
measurement of ac cycle lengths can be affected by localized high-frequency (e.g., tens to hundreds
of kHz) voltage noise emitted by electrical appliances and consumer electronics in the environment
[8]. To reduce their impact, we apply a Sallen-Key second-order, low-pass filter to the single-ended
signal. The cut-off frequency of the filter is 58.8 Hz. The filter can also remove malicious high-
frequency noise injected into related power lines by an attacker. The filtered signal is passed to
a Schmitt trigger that compares the signal with the reference voltage. When the filtered signal
goes above the reference voltage, the output swings at the positive rail; otherwise, it swings at the
negative rail. Thus, the time duration between two consecutive rising edges of the square wave
output of the Schmitt trigger gives an ac cycle length. In our design, the differential input amplifier
and the Schmitt trigger use the same reference voltage from the voltage referencer for adding and
triggering, respectively. Thus, noise in the reference voltage will not affect the measurement.

Our prototype uses a development board equipped with an STM32F407VGT6 32-bit MCU to
measure the ac cycle lengths. The firmware running on the MCU is written in C. Specifically,
we configure a hardware timer running at 8.4 MHz. On receiving an ENV zero-crossing interrupt
(ZCI) from the Schmitt trigger (i.e., a rising edge of the Schmitt trigger’s output), the MCU outputs
an unsigned integer that is the difference between its present timer value and the timer value at
the last interrupt. By excluding a time quantity that corresponds to the nominal ac cycle length

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

12:8 S. Viswanathan et al.

(20 ms), the MCU’s ac cycle length measurement can be represented in 2 B . The time resolution is
1/8.4 MHz ≈ 0.12 μs, which is sufficient for capturing the fluctuations with a magnitude of 10 μs,
as shown in Figure 3. The MCU delivers each measurement immediately to its host IoT device with
the corresponding ZCI. By handling the ZCI, the IoT device can accurately timestamp the present
cycle length measurement using its local clock despite communication delay from the MCU to the
IoT device.

3.2.2 Integration with IoT Platforms. In Figure 4, the components in the shaded areas make up
the core of the TiF capture hardware. The MCU can be a native unit in the capture hardware or
it can be one on the IoT platform to which the capture hardware is attached. For instance, we
can leverage the MSP430 MCU, widely found in sensor network platforms and power grid devices
[27], to measure the cycle lengths. The TimerA provided by TinyOS on an MSP430-based kMote
used in a smart plug platform can achieve a 4.2 MHz clock rate after a reconfiguration of sourcing
the SMCLK clock from the DCO clock without a divider. The achieved 0.24 μs time resolution is
sufficient for capturing the ac cycle length fluctuations. Since the TiF capture hardware (i.e., the
shaded components in Figure 4) needs to access the ENV, we can integrate it into the power supply
unit of IoT devices.

In our setup, we use a Raspberry Pi (RPi) single-board computer as an example IoT platform.
This is because the RPi supports diverse peripheral and networking interfaces that facilitate the
evaluation. The RPi receives the ac cycle length measurements from the MCU through a virtual
COM port over a USB cable. The ZCI signal is connected to a general-purpose input/output (GPIO)
pin of the RPi. A GPIO interrupt handler records the RPi’s system clock at microsecond resolution
to obtain a timestamp that it adds to the incoming cycle length measurement from the USB. To
obtain accurate ground-truth time for the evaluation, we integrate the RPi with an Adafruit GPS
receiver [1] that delivers both NMEA sentences and pulse-per-second (PPS) signals with 10-ns
accuracy through the GPIO pins to the RPi. By using Raspbian OS’s gps-gpio kernel module
and a few other software packages, including gpsd, the RPi’s clock can be synchronized to the
UTC with an offset of 1 μs or less. Note that in actual deployments of the proposed TiF-based
clock synchronization, the GPS receiver will not be needed and other IoT hardware platforms can
replace the RPi.

4 MEASUREMENT STUDY

This section presents extensive measurements using the hardware prototype in Section 3.2 to un-
derstand key properties of the ac cycle length fluctuations. These properties form an important
basis for designing the TiF-based clock synchronization platform in Section 5 with appropriate
choice of system parameters.

4.1 Hardware Prototype Tests

As the ac cycle length fluctuations of interest are tiny, it is important to ensure that the hard-
ware has sufficient precision of measurement. This section validates the achieved precision of the
hardware design.

4.1.1 MCU’s Time Precision. We test the precision of the MCU in measuring ac cycle lengths.
We connect the output signal of the Schmitt trigger to two MCUs. As the timer runs at 8.4 MHz, we
divide each output of the MCUs by 8.4 to yield an ac cycle length measurement in microseconds.
Figure 5(a) shows the ac cycle lengths measured by the two MCUs. Their measurements fluctuate
over time but are almost identical. Figure 5(b) shows the difference between their corresponding
measurements as a function of time. The differences are discrete and in multiples of 0.12 μs. This is
because the timer output is an integer and a timer tick corresponds to 0.12 μs. Ideally, since the two

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

Exploiting Electrical Grid for Accurate and Secure Clock Synchronization 12:9

Fig. 5. Ac cycle lengths measured by two MCUs connected to the same Schmitt trigger of a node.

Fig. 6. Ac cycle lengths measured by two nodes connected to the same power extension cord and the empiri-

cal distribution of their differences. The empirical distribution has 10,000 data points. The mean and standard

deviation (s.d.) of the distribution are −0.008 μs and 0.571 μs, respectively.

MCUs receive the same signal from the Schmitt trigger, their measured ac cycle lengths are also
exactly the same. The small differences in practice, as illustrated in Figure 5(b), may be caused by
jitters of the hardware timers and the MCUs’ respective random delays in handling the interrupts.
However, these submicrosecond differences will not affect the ac cycle measurements much since
these measurements change by more than 10 μs, as shown in Figure 5(a). This set of measurements
confirms that the MCUs can achieve the required high time resolution.

4.1.2 Prototype Precision. To assess the overall precision of the hardware prototype, we con-
nect two separate hardware nodes to the same power extension cord to measure cycle lengths of
the same ENV signal. Figure 6 shows the measurements by the two nodes and the distribution
of the differences between their corresponding measurements. The mean and standard deviation
(s.d.) of the differences are −0.008 μs and 0.571 μs, respectively. The small mean suggests a tiny
difference between the measurement biases of the two nodes and the low s.d. suggests a high pre-
cision of measurement. Note that, as discussed in Section 4.2.1, the TiF decoding is not sensitive to
small measurement bias differences. For instance, a test in Section 4.2.1 shows that the TiF decod-
ing result is not affected if the two nodes have an additional bias difference no more than 6.5 μs,
which is 800 times the achieved 0.008 μs. Thus, we choose not to calibrate the nodes to remove
the bias difference using a reference node or other accurate instruments. This also suggests the
effectiveness of our design to avoid labor-intensive per-node calibration for large-scale network
deployments.

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

12:10 S. Viswanathan et al.

Fig. 7. Ac cycle lengths measured by two nodes in two different rooms, and empirical distribution of the

differences of their corresponding measurements. The distribution has 50,000 data points.

4.1.3 Effectiveness of Low-Pass Filter. To understand the effectiveness of the low-pass filter, we
deploy two nodes in two different rooms on the same floor of a building. Figure 7 shows the
measurements by the two nodes with and without low-pass filters, respectively. The figure also
shows the distribution of the differences between the two nodes’ corresponding measurements.
Because the nodes experience different localized high-frequency noises, without low-pass filters,
their measurements exhibit differences having a larger s.d. (2.546 μs) than the measurements in
Figure 6. The low-pass filters reduce the s.d. to 1.473 μs, as shown in Figure 7(b), which suggests
that the filter is effective in mitigating the impact of localized high-frequency noise. The two-lobe
shape of the error distribution in Figure 7(b) may be caused by different efficiency of the filters
in removing the noises seen by the two nodes. A more basic cause might be hardware biases
between the low-pass filters of the two tested nodes. We note that it is possible to design a more
complicated filter that can configure itself automatically to yield a concentrated error distribution
closer to Gaussian during the per-node calibration process. As discussed earlier, such a tedious
process is not desirable for large-scale network deployments. The results presented in this article
are based on our prototype nodes without per-node calibration.

4.2 Time Fingerprint Decoding

The good match of the ac cycle length fluctuations observed in Section 3.1 implies that a TiF
captured by a node — say, A — can be time aligned within a trace of ac cycle lengths captured by
another node —say, B. In other words, B can “decode” the time according to B’s local clock, during
which the TiF was captured by A, provided that the measurements in the trace were timestamped
using B’s clock. In this section, we evaluate extensively the accuracy of the decoded time under
different settings.

4.2.1 Decoding Algorithm and Evaluation Methodology. A TiF, denoted by x, is a vector of n
consecutive ac cycle lengths measured by node A. Let a vector y denote a trace of m consecutive
ac cycle lengths measured by node B. The measurements in y are timestamped with B’s clock,
whereas only the last element of x is timestamped withA’s clock. We assume that the time duration
of measuring x is within the time duration of measuring y, which is denoted as x� y. How to ensure
this condition is discussed in Section 5.3.

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

Exploiting Electrical Grid for Accurate and Secure Clock Synchronization 12:11

Decoding x means identifying the time instant, according to B’s clock, for the last element of
x (i.e., x[n]). Why we choose the last element of x will be discussed in Section 5.3. The basic idea
of the decoding is to match x with a TiF within a window of size n in y using a similarity metric,
for example, the reciprocal of sum of square errors (RSSE). By sliding the window within y, the
timestamp of the last element of the window that yields the largest similarity is identified as the
time instant for x[n]. Formally, the index of the window that yields the largest similarity is given
by

i∗ = arg max
i ∈[1,m−n+1]

s (x, y[i : i + n − 1]), (1)

where s (·, ·) is the similarity function and y[i : i + n − 1] represents a vector consisting of the ith
to (i + n − 1)th elements of y. Then, the decoding algorithm outputs the timestamp of the last
element of the window (i.e., y[i∗ + n − 1]) for x[n].

Note that the TiF capture devices may have measurement biases. By using the RSSE as the sim-
ilarity metric, a small difference between the measurement biases in x and y will most likely not
affect the result of the optimization in Equation (1). This is because their bias difference will de-
crease the RSSEs of the sliding windows in y by similar amounts. We also evaluate the sensitivity
of the decoding result to the bias difference using the data traces collected in the prototype preci-
sion test in Section 4.1. We set n = 400 and m = 1000. We add Gaussian noises of s.d. 0.6 μs to y,
where the setting of the s.d. is based on the measured s.d. in Section 4.1. We increase the mean of
the noise generator until the decoding result based on the noisy y is different from that based on
the original y trace. The largest additional bias difference that the decoding can tolerate is 6.5 μs.
If we add noises to x, the result is 8.5 μs. Such bias difference bounds of several microseconds are
much larger than the achieved 0.008 μs bias difference in Figure 6.

We evaluate the accuracy of the decoding algorithm as follows. We deploy the hardware pro-
totype at two nodes at different locations. By leveraging ground-truth timestamps from the inte-
grated GPS receivers, we select two traces of ac cycle length measurements of length m that are
captured by the two nodes during the same time period, respectively. Within the trace captured
by A, we slide a window of size n to generate a total of (m − n + 1) TiFs. We use the algorithm in
Equation (1) to decode each TiF. Let i∗

k
denote the output of Equation (1) for the kth TiF from A’s

trace. Since the two selected traces are captured during the same time period, i∗
k
= k signifies a

correct decoding. We thus measure the probability of correct decoding as the ratio of the number of
correctly decoded TiFs to the total number (m − n + 1) of the TiFs. Moreover, we call (i∗

k
− k) the

decoding error. For the measurement results presented in this section, we setm to be 30,000, which
corresponds to ten minutes of data. In actual deployments of the TiF-based clock synchronization,
the setting ofm for the decoding algorithm can be much shorter. A detailed guideline for settingm
will be discussed in Section 5.3. Thus, by setting m = 30,000 in our empirical study, the measured
probability of correct decoding gives a lower bound of the actual probability of correct decoding
when the setting ofm is smaller.

4.2.2 Measurement Results on a Building Floor. We conduct extensive measurements on an en-
tire floor of an office building that seats around 100 office employees. Figure 8 shows the floor plan.
All the power outlets on this floor are branched from a main power panel and wired to the three
phases of R, Y, and B of the utility grid. We select 16 power outlets as our test points, which are
marked in Figure 8. The label color of a test point represents the grid phase that the correspond-
ing power outlet is on. In each test, we connect two units of the hardware prototype to the two
selected test points, respectively.

In the first set of tests, the two test points in each test are on the same phase. Table 1 shows the
probability of correct decoding under different settings of n, that is, the length of the TiF. When

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

12:12 S. Viswanathan et al.

Fig. 8. Floor plan of the floor in an office building with test points marked. The label shapes and colors

represent the grid phases of the electrical wiring. Specifically, the test points TP1, TP2, TP3, TP4, and TP12

with red diamond marks are on the R-phase; TP5, TP6, TP7, TP11, and TP13 with yellow oval-shaped marks

are on the Y-phase; TP8, TP9, TP10, TP14, TP15, and TP16 with blue rectangular marks are on the B-phase.

Table 1. Probability of Correct Decoding for Different Test Points on the

Same Phase on the Building Floor in Figure 8

Test points Correct decoding probability
Phase Node A Node B n = 100∗ n = 200 n = 400 n = 800

R TP1 TP2 1 1 1 1
TP1 TP3 0.950 1 1 1
TP1 TP4 0.997 1 1 1
TP3 TP4 1.0 1 1 1

Y TP7 TP6 1 1 1 1
TP7 TP11 1 1 1 1
TP6 TP7 0.896 0.998 1 1
TP7 TP11 0.827 0.999 1 1

B TP8 TP9 1 1 1 1
TP8 TP10 1 1 1 1

*n is the length of the TiF.

n ≥ 400, the probability is one. This result suggests that if A samples a TiF for at least 8 seconds,
the time instant at which each measurement in the TiF is sampled by A can be exactly identified
by B. Since each ac cycle length measurement is represented by 2 B, the raw data volume of a TiF
of length of 400 is 0.8 kB only.

In the second set of tests, the two test points in each test are on different phases. Table 2 shows
the correct decoding probability with a TiF length of up to 6,400. We can see that, although the

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

Exploiting Electrical Grid for Accurate and Secure Clock Synchronization 12:13

Table 2. Probability of Correct Decoding for Different Test Points on Different Phases

on the Building Floor in Figure 8

Node A Node B Correct decoding probability

Test point Phase Test point Phase n=50 n=100 n=200 n=400 n=800 n=1,600 n=3,200 n=6,400

TP1 R TP5 Y 0.000 0.000 0.000 0.005 0.013 0.097 0.385 0.660

TP1 R TP6 Y 0.001 0.002 0.003 0.011 0.019 0.116 0.205 0.260

TP7 Y TP8 B 0.002 0.007 0.020 0.067 0.108 0.161 0.205 0.245

Table 3. Correct Decoding Probability for Different Test Points on Different Floors

Node A Node B Correct decoding probability

Test point Phase Test point Phase n=50 n=100 n=200 n=400 n=800 n=1,600 n=3,200 n=6,400

TP4 R 0.106 0.295 0.532 0.683 0.849 0.979 1 1

Apex R TP6 Y 0 0.003 0.012 0.042 0.097 0.295 0.319 0.528

TP8 B 0.011 0.031 0.093 0.179 0.302 0.428 0.505 0.791

correct decoding probability increases with n, it remains low. This observation suggests that the
ac cycle length fluctuations on different grid phases have much lower correlation compared with
those on the same grid phase as shown in Table 1. This is mainly because the changes of load
connected to the three phases of the grid are not fully correlated, leading to a certain degree of in-
dependence among the grid frequencies on the different phases. This important observation poses
a challenge in designing the TiF-based clock synchronization system, because prior knowledge of
the grid phases ofA and B will be needed. In Section 5, we will present an approach for the system
to identify autonomously each network node’s grid phase.

4.2.3 Measurement Results Across Different Floors and Geographic Locations. The floor shown
in Figure 8 is the 8th floor of an office building. We also deploy a node in a room called Apex on
the 13th floor of the same building. Apex is on the R-phase. Table 3 shows the correct decoding
probability when we decode the TiFs collected in Apex using the traces collected at TP4, TP6, and
TP8 on the floor shown in Figure 8. These three test points are on different phases. We can see that
when the TiF length is 3,200, which is about one minute of data, the correct decoding probability
is 1 when A and B are on the same phase. Compared with the results in Table 1, the TiF needs to
be longer to achieve correct decoding between the two different floors. This result is consistent
with the intuition that the ENV correlation decreases as the distance of the power network path
between the two test points increases, because the transients of load can have localized effects on
the grid frequency [13]. Moreover, the correct decoding probabilities across different phases are
lower than the corresponding probabilities for the same phase, which is consistent with the results
in Section 4.2.2.

In 2016, we deployed nodes at widely separated geographic locations in Singapore, that is, TP-A
to TP-D in Figure 9. The test point TP-A in Figure 9 is the floor shown in Figure 8. TP-B, TP-C,
and TP-D are within four buildings; they are on the R-phase, B-phase, and Y-phase of Singapore’s
utility grid, respectively. The line-of-sight distances from TP-A to the other three test points are
from 9 km to 12 km. In particular, at TP-D, we deploy a Wi-Fi extender that is based on power-line
communication (PLC), at the same power extension cord that our node is connected to. This helps
us understand whether PLC affects our hardware. Table 4 shows the correct decoding probability
when A is at three remote test points and B is at a TP-A’s test point that is on the same phase

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

12:14 S. Viswanathan et al.

Fig. 9. The locations of six distributed test points in Singapore. The line-of-sight distances from TP-A to

other test points are from 9 to 12 km. (Image credit: Google Map).

Table 4. Correct Decoding Probability Across Different Geographic Locations on the Same Phase

Node A Node B at TP-A Correct decoding probability

Test point Phase Test point Phase n=400 n=800 n=1,600 n=3,200 n=6,400 n=12,800 n=20,000

TP-B R TP4 R 0.48 0.652 0.78 0.82 0.83 1 1

TP-C B TP8 B 0.34 0.475 0.63 0.8 0.99 1 1

TP-D Y TP6 Y 0.143 0.23 0.39 0.69 0.95 0.98 1

Table 5. Correct Decoding Probability Across Different Geographic Locations on Different Phases

Node A Node B at TP-A Correct decoding probability

Test point Phase Test point Phase n=400 n=800 n=1,600 n=3,200 n=6,400 n=12,800 n=20,000

TP-E R TP4 R 0.26 0.45 0.62 0.80 0.97 1 1

TP-E R TP8 B 0.28 0.10 0.25 0.40 0.55 0.69 0.55

TP-E R TP6 Y 0.06 0.16 0.27 0.29 0.24 0.80 0.80

as A. We can see that for geographic distances within Singapore, a TiF length of 20,000, which
corresponds to about 6.7 minutes of data, is needed to achieve correct decoding. At TP-D, the Wi-
Fi extender’s PLC does not affect the decoding owing to the low-pass filter in our design. Many
critical infrastructures are deployed within limited geographic areas, for example, within a building
or in a factory area. Nevertheless, the measurement results in Table 4 show that the TiF remains
effective for Singapore-scale geographic distances. The raw data volume of a TiF of the length of
20,000 is 40 kB. The transmission of this amount of data collected over 6.7 minutes imposes little
overhead on today’s cyber networks.

In 2017, we deployed two additional nodes at TP-E and TP-F, shown in Figure 9. Table 5 shows
the correct decoding probability when A is at TP-E, which is on the R-phase, and B is at three
TP-A test points on different phases. Consistent with the results in Table 2 and Table 3, when the
two nodes are on different phases, the correct decoding probabilities remain low. More evaluation
results at these two test points will be presented in Section 7.

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

Exploiting Electrical Grid for Accurate and Secure Clock Synchronization 12:15

Table 6. Synchronism of ZCIs at Different Locations

Measurement Node A Node B t1 − t2
Year duration Test point Phase Test point Phase mean (μs) s.d. (μs)
2016 1 hour TP10 B TP8 B 6 2
2016 1 hour Apex R TP4 R 70.6 1.6

85 18
2016 1 hour TP-C B TP8 B 156 17

118 14
2016 100 hours TP-C B TP8 B 132 63
2017 100 hours TP-C B TP8 B 120 53
2017 2 weeks TP-E R TP4 R 188 62

4.3 Synchronism of ZCIs

In this section, we evaluate the synchronism of the ZCIs for the same grid phase at different lo-
cations. To improve measurement accuracy, we connect the GPS receiver’s PPS output to a digital
pin of the MCU, such that the MCU can accurately calibrate its clock and timestamp the ZCI inter-
rupts from the Schmitt trigger. After calibrating two nodes by connecting them to the same power
extension cord and measuring the biases between them, we deploy these two nodes at different
test points to evaluate the synchronism of their ZCIs. As illustrated in Figure 1, t1 and t2 denote
the timestamps of the ZCIs generated by the two nodes, respectively. Because of the phase charac-
teristics of the impedance of power lines, the phase shift (t1 − t2) is often nonzero and we measure
this phase shift to characterize the synchronism of the ZCIs.

Table 6 shows the mean and s.d. of (t1 − t2) when the two nodes are deployed at different test
points on the same grid phase. When they are on the same building floor shown in Figure 8 (i.e.,
TP10 and TP8), the phase shift has a mean value of 6 μs and s.d. of 2 μs. The small s.d. suggests the
stability of the phase shift. For the test point Apex on the 13th floor and TP4 on the 8th floor of
the same building, the mean value increases to 70.6 μs. We also measure the phase shifts between
TP-C and TP-A, which are about 10 km apart, during three time slots on one day. The mean value
ranges from 85 μs to 156 μs. The change of the phase shift may be caused by the change of load
distribution in the power grid [13]. Additional measurement results obtained over longer periods
of time are presented in the last three rows of Table 6. They will be discussed in Section 7 in detail.

4.4 Summary and Implications

We can draw the following three important conclusions from the above extensive measurement
results.

First, the measurements validate the TiF within Singapore. They also provide guidance on set-
ting the TiF length. When the nodes reside within a local power distribution tree network rooted
at a power panel, a TiF length of 400 appears to be enough. For nodes separated by up to 10 km, a
TiF length of up to 20,000 may be needed.

Second, by decoding a TiF captured by node A, node B can identify the ac cycle within its trace
that corresponds to a given ac cycle in A’s TiF. Moreover, as shown in Table 6, the time offsets
between an ac cycle’s ZCIs detected at different locations are generally below 200 μs. Thus, if the
two nodes can handle the ZCIs without delay in timestamping the ac cycle length measurements,
using the correspondence of ac cycles given by the TiF decoding, B will be able to determine the
offset between A’s and B’s clocks with a 200 μs accuracy. Thus, submillisecond accuracy clock
synchronization is possible.

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

12:16 S. Viswanathan et al.

Third, time delays in transmitting A’s TiF to B does not affect the result of the TiF decoding.
The synchronization is thus resilient against packet-delay attacks. Conventional cryptographic
techniques (e.g., signed messages or message digests) can be applied to ensure the integrity of the
TiF itself during network transmissions.

In summary, high-resolution TiF provides a highly promising basis for accurate and secure clock
synchronization for a network system connected to the same utility grid. In contrast, NTP’s syn-
chronization accuracy depends a lot on network conditions and it is often on the order of millisec-
onds or even tens of milliseconds. Although PTP can achieve submillisecond accuracy, it requires
special hardware support, including PTP-enabled network interface cards at the hosts and all the
switches and routers along the network path. Thus, in practice, PTP is often used in Ethernet LANs
only. It is also important to note that both NTP and PTP are susceptible to packet-delay attacks,
whereas the proposed system is not.

5 ACCURATE AND SECURE CLOCK SYNCHRONIZATION

Based on the key observations in Section 4, this section presents the design of an accurate and se-
cure clock synchronization approach for critical infrastructures. Specifically, Section 5.1 describes
our threat model of the packet-delay attack; Section 5.2 overviews our approach; and Section 5.3
provides an analysis of our approach regarding its security against the packet-delay attack.

5.1 Threat Model

Our threat model is the packet-delay attack. Specifically, we assume that the endpoints (master and
slave) of a clock synchronization protocol are trustworthy. However, one or more attackers on a
network path of the protocol’s packets may delay the transmission of these packets. We assume
that the total malicious delay for a packet is finite. Moreover, we assume that the protocol’s packets
cannot be tampered with because of cryptographic protection.

Our own experiments easily achieved the attack by executing a Linux traffic control command
(i.e., tc) at either a legitimate router or a separate malicious host that impersonated the slave via a
prior ARP spoofing attack in the victim slave’s Ethernet LAN. The compromise of a key legitimate
router may affect a large number of slaves in a network system. The ARP-based attack can affect
selected victims in an Ethernet, for example, power meters and IEDs in a power grid substation.

As analyzed in [19, 28], the delay attack will introduce an additional synchronization error of
τ1−τ2

2 for an NTP slave, where τ1 and τ2 are the malicious delays introduced to the NTP request
and reply packets, respectively. For completeness of this article, Appendix A reviews the analysis
of the attack impact. An attack injecting large delays may be detected by monitoring the total
transmission time of the request and reply packets. However, an attacker who knows the attack
detection methods can control the injected delays to bypass the detection. In Appendix A, we give
conditions for bypassing two attack detection approaches: a timeout approach adopted by the
NTP implementation and an approach based on exponential moving average. To the best of our
knowledge, there is no solution to completely solve the packet delay attack for traditional clock
synchronization protocols that exchange network messages containing solely local clock values
of the slave/master.

5.2 Overview of Our Approach

This section presents the master–slave system architecture for our approach. Then, we present a
method for the system to identify network nodes’ grid phases autonomously.

5.2.1 Master–slave Architecture. As observed in Section 4.2.2, if two nodes are on differ-
ent phases, the TiF decoding will have errors. To address this issue, we propose to adopt a

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

Exploiting Electrical Grid for Accurate and Secure Clock Synchronization 12:17

Fig. 10. System architecture and clock synchronization.

master–slave architecture as shown in Figure 10, in which a smart meter (either customer or in-
dustry class) is used as an example slave node. In the architecture, a centralized master is equipped
with a TiF sampling board with three channels connected to the three grid phases, respectively,
in which each channel is a set of the components shown in Figure 4. For instance, this board can
be installed at the main power panel of a building. We assume that the master’s clock is secured.
(Special efforts to secure the master are practical, since a network system has one or at most only
a few of these masters. Security of the master(s) will allow us to bootstrap the security of a much
larger system.) If the system requires global synchronization, the master’s clock can be synchro-
nized securely with UTC, for example, using a GPS receiver that is geographically isolated from
the outside with an air gap sufficient to prevent wireless spoofing attacks. The master timestamps
its real-time ac cycle length measurements and stores them in a memory buffer. This data will
be retrieved for processing synchronization requests from the slave nodes. A memory buffer of
100 MB is sufficient for storing data generated by the three sampling channels in the last 24 hours.
One master may serve many slaves.

In a synchronization session, a slave (i) captures a TiF x, (ii) timestamps it using the slave’s clock
value upon the ZCI of its last ac cycle, (iii) signs it for integrity, and (iv) transmits it to the master
for clock synchronization. The slave performs the sampling only when it needs to resynchronize.
Upon receiving the TiF, the master (i) checks its integrity based on the digital signature, (ii) decodes
it using a trace of the latest ac cycle length measurements retrieved from the memory buffer, and
(iii) sends back a signed packet containing the difference between the decoding output and the x’s
timestamp, which is the slave’s clock offset. Finally, the slave sets and/or calibrates its clock using
the received offset. A detailed analysis of this approach, including how to ensure security in the
face of packet-delay attack, will be presented in Section 5.3.

For a network system spanning a large geographic area (e.g., a city), multiple masters can be
deployed in a distributed anycast manner. A slave node may select a closest master for the best
ZCI synchronism, for example. The deployment of masters will be further discussed in Section 8.2.

5.2.2 Autonomous Grid Phase Identification. The master has access to all three grid phases.
In synchronizing with a slave, correct TiF decoding requires knowledge of which grid phase the
slave is on. It is infeasible to manually label every network node in a large system. This section
presents an autonomous grid phase identification method. It is based on a key observation from
our measurements that, if nodes A and B are on the same grid phase, the decoding errors will be
nearly all zero; otherwise, they are dispersed. Thus, we reuse the method for evaluating decoding
errors in Section 4.2.1 to identify a slave’s grid phase. Specifically, the slave captures and transmits
m consecutive ac cycle lengths to the master. Upon receiving the data, the master retrieves the
latest m consecutive ac cycle lengths on all three grid phases. Unlike the offline evaluation in
Section 4.2.1 in which the two nodes’ data traces are collected during exactly the same time period,
this autonomous identification allows a small displacement of their time periods. For each pair of
the slave’s trace and the master’s trace on a grid phase, we follow the method in Section 4.2.1

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

12:18 S. Viswanathan et al.

Fig. 11. PDFs of quasi-decoding errors for identifying TP10’s grid phase.

to slide a window within the slave’s trace to generate many quasi-decoding errors (they are quasi
because they are not true decoding errors owing to the aforementioned displacement) and form a
discrete probability density function (PDF) of the quasi errors. The slave’s grid phase is identified
as the master’s grid phase that yields a PDF with the highest bar among all three PDFs. We note that
this autonomous identification is a one-time procedure that should be executed when a network
node is added to the system or it changes power supply. For instance, a device can initiate this
procedure when it is powered up.

Figure 11 shows the PDFs generated by a master on the floor shown in Figure 8 when identi-
fying the grid phase of a slave connected to the test point TP10 on B-phase. The slave transmits
1,000 cycle length measurements. The PDF generated with the master’s B-phase data trace gives
the highest bar. Hence, the identification is correct. When the slave is at the other test points in
Figure 8, the identification results are all correct.

5.3 Security Analysis of Our Approach

5.3.1 Latency of a Synchronization Session. The latency of a synchronization session of our
approach, denoted by t , is defined as the time from when the slave completes sampling x to when it
receives the clock offset from the master. It characterizes how fast the slave can get resynchronized.
The slave can measure t accurately using its own clock. We also analyze its breakdown as follows.
Denote by t1 the time delay (in ms) for the slave to sign the TiF x and by v the network speed (in
kb/s) for transmitting x. As each data point of x uses 16 bits, the time for transmitting x is 16n

v
ms.

Denote by t2, t3, and t4 the time delays (in ms) for the master to verify the integrity of x, decode
it, and transmit the clock offset back to the slave, respectively. Then, t ≈ t1 +

16n
v
+ t2 + t3 + t4. In

Section 7, we will measure t1, t2, t3, and t4.
We note that the offset returned by the master is for a past state of the slave (i.e., when the slave

completed sampling x). The slave’s clock may have drifted further during the synchronization
session. This observation is a key reason why we timestamp the TiF x upon the ZCI of the last cycle
in x, in order to maximize the freshness of the offset returned by the master. From our evaluation in
Section 7, a synchronization session requires less than 1 s. Typical crystal oscillators found in MCUs
and personal computers have drift rates of 30 to 50 ppm [9]. Thus, during the synchronization
session, the slave’s clock may have drifted for tens of microseconds. Even if we simply set the
client’s clock according to the returned offset, our approach can still achieve the submillisecond
accuracy.

5.3.2 Security Against Packet Delay Attack. Let T denote the nominal ac cycle length. For in-
stance, T = 20 ms for a 50 Hz grid. Upon receiving a TiF x from the slave, the master retrieves a
trace of the latest ac cycle length measurements (denoted by y) from its memory buffer to decode

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

Exploiting Electrical Grid for Accurate and Secure Clock Synchronization 12:19

x. We set the length of y to be m = n + L, where L is a large enough number such that L � t
T

.
For instance, in our performance evaluation in Section 7, the measured t is around 1 s and we set
L = 1,000 to make L � t

20 ms . This setting ensures that the time duration of measuring x is within
the time duration of measuring y, that is, x� y, which is a prerequisite for decoding x. The attacker
may delay the transmission of x to violate the requirement x� y. We propose a countermeasure
stated in the following proposition.

Proposition 5.1. The slave discards the clock offset returned by the master if t
T
> L, where t is

the latency of the synchronization session measured by the slave. Under this strategy,

(1) any packet-delay attack on the transmission of x that invalidates x� y will not affect the

slave’s clock;

(2) if t
T
≤ L, the packet-delay attack has no effects.

Proof. Denote by ts→m the time from when the slave completes sampling x to when the master
receives x, inclusive of the delay added by the attacker to the transmission of x. A necessary
condition for the packet-delay attack to invalidate x� y is ts→m

T
> L. As t > ts→m , the attack must

result in t
T
> L. Vice versa, if t

T
≤ L, the delay attack cannot invalidate x� y and thus has no effects

on the completed synchronization session. �

The setting of L used by the master to decode x can be communicated to the slave together
with the clock offset. Once the slave detects an attack that invalidates x� y, it can notify the
master in the next synchronization session. Depending on the (customizable) security policy, the
master can increase the setting of L to contain the attack. We should also alert the system opera-
tor to investigate the attack. Appendix B provides pseudocodes for both the slave and the master
that implement the above security safeguard and the autonomous grid phase identification in Sec-
tion 5.2.2. The autonomous identification can similarly employ the above safeguard against the
packet-delay attack.

We omit discussions of other attacks, such as impersonation and packet replay. These attacks
generally can be solved using conventional security measures.

6 TIME FINGERPRINT DECODING ERROR CORRECTION

From our measurement study in Section 4.2, when the TiF length is sufficiently large, the empirical
correct decoding probability is one. However, this does not preclude the possibility of decoding
errors. To improve the robustness of clock synchronization against decoding errors, this section
proposes an approach to cross-checking the decoding results among multiple nodes and correcting
the decoding errors. We also analyze the error correction capability under several settings.

6.1 Decoding Error Correction Algorithm

Consider a system of N nodes: {n0,n1, . . . ,nN−1}. Let δi j denote the offset between the clocks of ni

andnj , which is unknown and to be estimated. Specifically, δi j = ci (t) − c j (t), where ci (t) and c j (t)
are the clock values of ni and nj at any given time instant t . To simplify the discussion, we assume
that δi j is time invariant. By designating n0 as the reference node, we have that δi j = δ0j − δ0i . In
our approach, any pair of two nodes,ni andnj , will perform a synchronization session as described
in Section 5.2 to measure δi j . If a TiF decoding error occurs, the measured clock offset, denoted

by ˜δi j , is given by ˜δi j = δi j + ei j + ϵi j , where ei j is the decoding error, which is a multiple of the

ac cycle lengthT , and ϵi j is the unknown phase shift. If the TiF decoding is correct, ˜δi j = δi j + ϵi j .

The ˜δi j is transmitted to a central node (e.g., n0). We note that this ˜δi j can also be obtained through
fusing the decoding results of multiple synchronization sessions between ni and nj , for example,

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

12:20 S. Viswanathan et al.

ALGORITHM 1: Decoding Error Correction Algorithm

Given: {˜δi j |∀i, j ∈ [0,N − 1], i � j}
Output: {δ̂i j , êi j |∀i, j ∈ [0,N − 1], i � j}

1: k = 0
2: while k ≤ N (N−1)

2 do

3: for each distribution of the k decoding errors among N (N−1)
2 synchronization sessions do

4: if the corresponding Equation (2) has a solution then

5: return {δ̂i j , êi j |∀i, j ∈ [0,N − 1], i � j}
6: end if

7: end for

8: k = k + 1
9: end while

by a majority voting. However, any fusion rule cannot rule out the possibility that the fusion result
˜δi j still contains a decoding error. To correct such potential errors, the central node will fuse the

clock offsets measured by a total of N (N−1)
2 node pairs. The error correction algorithm is described

as follows.
Denote by δ̂i j and êi j the estimates for δi j and ei j , respectively. The êi j is a multiple of the

nominal ac cycle length. A general equations system that assumes that all measured clock offsets
contain decoding errors is given by

{
δ̂0j + ê0j = ˜δ0j , ∀j ∈ [1,N − 1];

δ̂0j − δ̂0i + êi j = ˜δi j , ∀i, j ∈ [1,N − 1], i � j .
(2)

The variables to be solved are {δ̂0j |∀j ∈ [1,N − 1]} and {êi j |∀i, j ∈ [1,N − 1], i � j}, where the δ̂0j

is the estimated clock offset between nj and the reference node n0 after decoding error correction.
For the case that there are k decoding errors, we may keep k estimated decoding errors (i.e., êi j) in

Equation (2) and remove the other estimated decoding errors. Thus, there will be (
N (N−1)

2
k

) possible

distributions of the k decoding errors among the N (N−1)
2 synchronization sessions. Algorithm 1

shows the pseudocode of the decoding error correction algorithm. It starts by assuming that there
are no decoding errors (i.e., k = 0). In each iteration, that increases k by 1, it solves Equation (2)
for all possible distributions of the k decoding errors. We note that, owing to the phase shifts,
Equation (2) generally has no exact solutions. It can be solved by minimizing the overall residual of
Equation (2), however, since the phase shifts are small (less than 1 ms, as measured in Section 4.3).
Once a solution is found, Algorithm 1 returns.

6.2 Decoding Error Correction Capability

This section analyzes the maximum number of decoding errors that Algorithm 1 can correct. Let
K denote the number of decoding errors. We say that Algorithm 1 can correctK decoding errors, if
(i) ∀k ∈ [0,K), Algorithm 1 does not return; and (ii) for k = K , Equation (2) has no solutions except
when the tested distribution of the k decoding errors (Line 3) is identical to the actual distribution.
To simplify discussion, the analysis below assumes zero phase shifts.

We observe that Algorithm 1 cannot correct a decoding error in a three-node system. This can
be verified as follows. When k = 0, Equation (2) has no solutions no matter which ˜δi j contains a
decoding error. Whenk = 1, Equation (2) may give a wrong solution. For instance, when the decod-
ing error occurs betweenn0 andn1, Equation (2) gives a wrong solution when the decoding error is

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

Exploiting Electrical Grid for Accurate and Secure Clock Synchronization 12:21

assumed to occur between n0 and n2. Specifically, Equation (2) is {δ̂01 = δ01 + e01, δ̂02 + ê02 =

δ02, δ̂02 − δ̂01 = δ02 − δ01}, which gives a wrong solution of {δ̂01 = δ01 + e01, δ̂02 = δ02 + e01, ê02 =

−e01}.
Proposition 6.1. Algorithm 1 can correct one decoding error, but not more than one, in a four-node

system.

Proof. Case 1 (K = 1): When k = 0, an exhaustive check shows that Equation (2) has no solu-
tions no matter which two nodes the decoding error occurs between. When k = 1, an exhaustive
check shows that Equation (2) has a correct solution only when the assumed decoding error dis-
tribution is identical to the actual distribution.

Case 2 (K = 2): We use a counterexample to prove that Algorithm 1 cannot correct two de-
coding errors. Consider two identical decoding errors e01 = e02 = e . When k = 1 and the decoding
error is assumed to occur betweenn0 andn3, Equation (2) is {δ̂01 = δ01 + e, δ̂02 = δ02 + e, δ̂03 + ê03 =

δ03, δ̂02 − δ̂01 = δ02 − δ01, δ̂03 − δ̂01 = δ03 − δ01, δ̂03 − δ̂02 = δ03 − δ02}, which gives a wrong solution
of {δ̂01 = δ01 + e, δ̂02 = δ02 + e, δ̂03 = δ03 + e, ê03 = −e}.

Case 3 (K = 3): We also prove by a counterexample. Consider three decoding errors: e01 = e1

and e02 = e03 = e2. When k = 2 and the decoding errors are assumed to occur between n1 and n2,
as well as n1 and n3, Equation (2) is {δ̂01 = δ01 + e1, δ̂02 = δ02 + e2, δ̂03 = δ03 + e2, δ̂02 − δ̂01 + ê12 =

δ02 − δ01, δ̂03 − δ̂01 + ê13 = δ03 − δ01, δ̂03 − δ̂02 = δ03 − δ02}, which gives a wrong solution of {δ̂01 =

δ01 + e1, δ̂02 = δ02 + e2, δ̂03 = δ03 + e2, ê12 = ê13 = e1 − e2}.
Case 4 (K ≥ 4): When k = K , Equation (2) is an underdetermined problem and Algorithm 1

cannot correct errors. �

From Proposition 6.1, by cross-checking six pairwise decoding results among four nodes, a de-
coding error can be corrected. Since the correct decoding probability is high with sufficiently large
TiF length, the decoding error correction in a four-node system significantly improves the robust-
ness of the clock synchronization. We will demonstrate this in Section 7. We leave the study of the
decoding error correction capability of a general N -node system to future work.

7 PERFORMANCE EVALUATION

7.1 Experiment Settings

We have implemented the synchronization approach presented in Section 5. We use the node
shown in Figure 4 as a slave. The RPi uses OpenSSL to sign the data to be transmitted using SHA256.
For evaluation purposes, the slave node is integrated with a GPS receiver. The setup of the master
is as follows. We use three RPi-based nodes and connect them to TP4, TP6, and TP8, respectively,
shown in Figure 8, which are on different grid phases. Each of these nodes is equipped with a GPS
receiver for global synchronization. Moreover, to improve the accuracy of timestamping at the
master, we connect the GPS receiver’s PPS output to a digital pin of the MCU and use the MCU to
timestamp ac cycle length measurements. All three nodes stream their measurements to a tower
server with an Intel Xeon 3 GHz quad-core processor. The decoding algorithm in Equation (1)
can be parallelized since the computation for each iterator i in Equation (1) is independent. Our
implementation divides the computation equally among four threads to fully utilize the quad cores.
We note that, to serve many slave nodes, more computation resources can be allocated to maintain
the timeliness of the decoding.

7.2 Experiment Results

7.2.1 Time Profiling. We measure the latency of the key steps of a clock synchronization session
under two settings of the TiF length n, that is, n = 400 and n = 20,000, when the slave and master

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

12:22 S. Viswanathan et al.

Table 7. Time Delays in a Clock Synchronization Session

t1 t2 t3 t4 Tx delay∗ Total
n m (ms) (ms) (ms) (ms) (ms) (ms)

400 1,400 126 6 10 0.2 12.8 155

20,000 21,000 129 6 168 4 640 947

∗v = 500kb/s is used for estimating the TiF transmission delay. Italic numbers are
estimates, as they depend on the setting of v .

Fig. 12. Clock synchronization errors over days.

nodes are deployed on the same floor of a building and in two buildings that are 10 km apart,
respectively. Table 7 shows (i) the RPi’s delay in signing a TiF (t1); and (ii) the server’s delay in
verifying the TiF’s integrity (t2), decoding the TiF (t3), and sending the offset (t4). We note that
the t4 value when the two nodes are 10 km apart is four times that when they are on the same
floor of a building. This is because they communicate through the Internet and a local low-latency
Ethernet in the two experiments, respectively. The total latency, estimated based on v = 500 kb/s,
is less than 1 s.

7.2.2 One-Week Evaluation within a Building Floor. We deploy a slave node at TP10, as shown
in Figure 8. It can identify its grid phase correctly using the method in Section 5.2.2. It adopts a TiF
length of 400 and resynchronizes every 15 minutes. Throughout the whole experiment, the master
is always able to decode the slave’s TiF correctly. Thus, we use the phase shift between the ZCIs
detected by the slave and the master, respectively, as the metric of synchronization error. On the
slave, the TiFs are timestamped by both the MCU and the RPi. Figure 12(a) shows the phase shifts
between the master’s ZCI and the slave’s ZCI timestamped by the MCU and RPi, respectively. For
the phase shifts measured by the MCU, the mean and s.d. are 9.8 μs and 3.3 μs, respectively. The
difference between the two curves, which is around 80 μs, is caused by the Raspbian OS’s delay in
handling the ZCI at the slave. The results show that, if a network node can handle the ZCI without
delay, it can achieve an average synchronization error of around 10 μs if the master resides within
the same power distribution tree network.

7.2.3 Multiday Evaluation Among Nodes Distributed in Singapore. In 2016, we deployed a slave
node at TP-C and synchronized it with the master at TP-A. For this slave node, we disconnect the
ZCI from the RPi so that the RPi will timestamp a TiF upon receiving it from the USB. This setup
evaluates the synchronization performance of a network node without an interface for handling

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

Exploiting Electrical Grid for Accurate and Secure Clock Synchronization 12:23

Fig. 13. PDFs of decoding errors between TP-E and TP-A in 2 weeks.

low-level interrupts. Figure 12(b) shows the results. The phase shifts measured by the MCU are
generally below 200 μs, with mean and s.d. of 132 μs and 63 μs, respectively. Thus, between TP-
A and TP-C, our approach can achieve an average synchronization error of about 0.1 ms. The
RPi without ZCI experiences up to 3 ms error due to the USB communication delay. About one
year after the above experiment, we conducted another experiment for 100 hours using the same
setup. The mean and s.d. of the phase shifts are 120 μs and 53 μs, respectively. This shows that
the phase shift profile is stable over time. We deploy an additional slave node at TP-E shown in
Figure 9, which is on the R-phase. We evaluate the decoding errors between TP-E and TP-A over
two weeks. During the evaluation period, the slave node samples 100 TiFs every hour and transmits
to the master node at TP-A. Figure 13 shows the PDF of the decoding errors. The probability of
correct decoding is 94.9%. Most of the decoding errors are 20 ms. Note that such decoding errors
can be corrected by the approach in Section 6. The mean and s.d. of the phase shifts between TP-E
and TP-A during the two weeks are 188 μs and 62 μs, respectively. The phase shift results are also
summarized in the last three rows of Table 6.

7.2.4 TiF Decoding Error Correction. This section demonstrates the TiF decoding error cor-
rection presented in Section 6. Compared with nodes within the same building, nodes at widely
separated geographic locations more likely have decoding errors. Thus, we conduct this set of ex-
periments in Singapore. While the error correction algorithm in Section 6 assumes that all nodes
are on the same grid phase, due to logistic constraints, we cannot find geographically distributed
test points that are on the same grid phase. Instead, we use four nodes {n0,n1,n2,n3} at TP-A
(R-phase), TP-E (R-phase), TP-D (Y-phase), and TP-C (B-phase) in Figure 9, respectively. For a
synchronization session between two nodes on different grid phases, we subtract a nominal phase
shift from the measured clock offset to simulate the case that they are on the same grid phase. The
details are as follows.

In the context of TiF decoding, the phase shift between two grid phases — say, A-phase and B-
phase — is empirically determined as the time offset betweenA-phase’s and B-phase’s TiF traces of
the same length that gives the largest similarity metric RSSE. Figure 14 illustrates the three phases’
ENVs measured by the four nodes. Based on the data collected by the four nodes, if we select an
R-phase’s TiF and a Y-phase’s TiF that begin with the ac cycle marked by the red rectangular and
the yellow rectangular, respectively, shown in Figure 14, the RSSE is maximized. As illustrated in
the figure, the time offset between these two marked ac cycles is two-thirds of the ac cycle length.
Thus, the nominal phase shift between R-phase and Y-phase is 13, 333 μs for decoding the TiF in
our power grid. Figure 14 also illustrates the nominal phase shifts for other phase pairs. Table 8
summarizes the pairwise nominal phase shifts. Now, we explain an example of estimating the clock
offset between n0 and n2 by decoding n0’s TiF using n2’s ac cycle length trace. Assume that n0 and
n2 are actually synchronized perfectly. The TiF decoding will give a clock offset estimate of about
two-thirds of the ac cycle length. Then, we rectify this estimate by subtracting the nominal phase
shift of 13, 333 μs to generate a near zero clock offset estimate.

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

12:24 S. Viswanathan et al.

Fig. 14. Norminal phase shifts among different power grid phases.

Table 8. Nominal Phase Shifts and Correct Decoding Probabilities

Node pair n1,n0 n2,n0 n3,n0 n2,n1 n3,n1 n3,n2

Nominal phase shift 0 13,333 −13,333 13,333 −13333 −26667
Correct decoding probability 0.954 0.952 1 0.958 1 0.320

The nominal phase shifts are in microseconds.

Table 9. Measured Clock Offsets and Error Detection Results

Round ˜δ01
˜δ02

˜δ03
˜δ12

˜δ13
˜δ23 Error detection

1 −97 45 −83 142 14 −127 no errors

2 −97 45 −83 142 14 19,880 error in ˜δ23

3 −97 45 −83 142 14 39,869 error in ˜δ23

The clock offsets are in microseconds.

The last row of Table 8 shows the empirical correct decoding probabilities measured through
decoding 1,000 distinct TiFs with a length of 20,000. We can see that the empirical correct decoding
probabilities are close to one, except between n2 and n3. Most decoding errors between n2 and
n3 are ±20 ms. This facilitates demonstrating the decoding error correction. But we highlight
that, in practice, decoding across different grid phases is not advisable owing to its lower correct
decoding probability.

We apply Algorithm 1 to detect and correct errors for the four-node system. Table 9 shows
the measured pairwise clock offsets in three rounds of experiments. We note that all four nodes
are synchronized to UTC using GPS for ground-truth information. The ground truth allows us to
observe decoding errors and evaluate the performance of Algorithm 1. In the first round, there
are no decoding errors. Algorithm 1 returns when k = 0 (i.e., no errors detected). In the second
and third rounds, a decoding error occurs between n2 and n3. Algorithm 1 can detect the decoding
error and correct it.

Based on the results in Table 8, the empirical probability that no decoding errors occur during the
six pairwise synchronization sessions is the product of the empirical correct decoding probabilities
in the last row of Table 8, that is,

0.954 × 0.952 × 1 × 0.958 × 1 × 0.320 = 0.278.

Moreover, as the empirical correct decoding probabilities for the pairs (n3,n0) and (n3,n1) are 1,
the empirical probability that there is only one decoding error in the remaining four pairs, that is,

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

Exploiting Electrical Grid for Accurate and Secure Clock Synchronization 12:25

Fig. 15. Factory floor plan overlaid with a picture in the factory.

(n1,n0), (n2,n0), (n2,n1), (n3,n2), is

(1−0.954) × 0.952 × 0.958 × 0.32 + 0.954 × (1 − 0.952) × 0.958 × 0.320+

0.954 × 0.952 × (1 − 0.958) × 0.320 + 0.954 × 0.952 × 0.958 × (1 − 0.320) = 0.631.

Thus, the probability that there are no decoding errors or only one decoding error is 0.278 +
0.631 = 0.909. Since the four-node system can tolerate one decoding error, its systemwide clock
synchronization will succeed with a probability of 0.909 despite the synchronization sessions be-
tween n2 and n3 having an error rate of 0.68. This shows that Algorithm 1 significantly improves
the robustness. We reemphasize that these results are based on the inadvisable cross grid phase
TiF decoding. If all decodings are performed within the same grid phase, the systemwide clock
synchronization success probability will be extremely high, given that each node pair can already
achieve high probabilities of correct decoding (see Table 4 and Figure 13).

7.2.5 Experiments in a Factory Workshop. To evaluate the performance of our system in an in-
dustrial setting, we deploy two prototype nodes on a printed circuit board (PCB) manufacturer’s
factory workshop with two production lines. This factory workshop is in a 9-floor building that
hosts a total of 109 factory workshops with various industrial loads. The venue of the factory
building is marked as TP-F in Figure 9. Figure 15 shows the workshop’s floor plan and the instal-
lation positions of the two nodes. The heavy loads of the two production lines are powered by the
415 V line-to-line voltages, while our prototype nodes sense the line-to-neutral voltages. Specif-
ically, Node 1 and Node 2 in Figure 15 are connected to the B- and R-phases, respectively. Both
nodes have sufficient sky views to receive GPS signals for ground-truth time. TiFs collected by the
two nodes, when the production lines are on and off, respectively, are decoded using the B- and
R-phase TiFs collected at TP-A. The distance between TP-A and TP-F is about 10 km. This allows
us to evaluate the impact of nearby heavy industrial loads on the accuracy of our system. In total,
2,000 TiFs are collected by each node for four hours.

Figure 16 shows the PDFs of the absolute decoding errors between Node 1 and TP8 (B-phase) at
TP-A, where the production lines are on and off, respectively. When the production lines are on,
the probability of correct decoding is 0.42 and the maximum decoding error is about 220 ms. When
the production lines are off, the probability of correct decoding is 0.98. Figure 17 shows the PDFs
of the absolute decoding errors between Node 2 and TP4 (R-phase) at TP-A. The probabilities of
correct decoding are 0.56 and 0.99, when the production lines are on and off, respectively. From
these results, we can see that the heavy industrial loads may affect the TiFs captured by our pro-
totype nodes. Note that our TiF capture device has a low-pass filter to remove high-frequency
noises. However, heavy industrial loads may generate tiny and random perturbations to grid

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

12:26 S. Viswanathan et al.

Fig. 16. PDF of decoding errors between Node 1 and TP8 at TP-A (B-phase).

Fig. 17. PDF of decoding errors between Node 2 and TP4 at TP-A (R-phase).

Fig. 18. PDF of absolute synchronization errors between Node 1 and Node 2.

Fig. 19. PDF of decoding errors between Node 1 and Node 2.

voltage phases, which will negatively affect the synchronization accuracy between geographically
distant nodes. These results suggest that our approach can achieve subsecond accuracy for two
nodes 10 km apart in the presence of nearby heavy industrial loads.

The effect of load on the grid voltage generally does not propagate over long distances in power
networks. To verify this, we evaluate the decoding errors between Node 1 and Node 2. Since they
are on different phases, as in Section 7.2.4, we subtract a nominal phase shift of −13,333 μs from
the decoding results. Figure 19 shows the PDF of the absolute decoding errors between the two
nodes. The empirical probability of correct decoding is 1 irrespective of the operation state of
the production lines. This confirms that the industrial loads generate local effects only. Figure 18
shows the PDF of the absolute synchronization errors between Node 1 and Node 2. The average
synchronization error is 34 μs. Thus, if the slave nodes are in the vicinity of the master node, our
system can still achieve high synchronization accuracy in industrial settings.

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

Exploiting Electrical Grid for Accurate and Secure Clock Synchronization 12:27

8 DISCUSSIONS

This section discusses several issues that need further research.

8.1 Battery-Based Wireless Sensors

The approach presented in this article is for sensor nodes directly connected to ac power lines.
Thus, power consumption is not a concern for these nodes.

There are several research questions in applying our approach for battery-based wireless sen-
sors. First, as these wireless sensors should sense the power line EMR, we need to study (i) the
existence of TiF in power line EMR; (ii) the trade-off between the time accuracy and communica-
tion overhead (because intuitively higher time accuracy requires longer TiF); and (iii) other factors,
including hardware cost, size constraints, and energy consumption for sensing. Second, to develop
a secure clock synchronization approach, we need to study the security of the EMR sensing, for
example, whether and how the EMR-based TiF is susceptible to practical wireless jamming. The
first set of questions has been addressed in our recent work [15]. Specifically, we have shown that
the EMR-based TiF with a data volume of 1.2 kB can achieve an average decoding error of about
0.5 s. By increasing the data volume of the TiF to 60 kB, the average decoding error can be reduced
to about 0.2 s. Thus, compared with the approach presented in this article that achieves submil-
lisecond accuracy with tens of kilobytes TiF, the EMR-based TiF is less accurate. We refer to [15]
for details about hardware cost, size constraints, and energy consumption for sensing. However,
the second set of questions—that is, the security of EMR sensing—are still open issues.

8.2 Deployment of Masters

From our experimental results obtained in nonindustrial settings (e.g., campuses, office buildings,
and homes), the average synchronization errors are at submillisecond level for two nodes that are
up to 10 km apart. This result gives guidance for the density of the masters deployed to provide
clock synchronization services in nonindustrial settings. In our future work, we plan to conduct
more extensive measurements in a larger-scale grid—for example, China’s Southern Power Grid—
to investigate the synchronization errors over longer geographic distances. The results will be
useful for determining the density of the masters.

From the experiment results in Section 7.2.5, the heavy industrial loads generate local impact on
the TiF. However, as also shown in Section 7.2.5, when the slave and the master are on the same
factory floor, they can still achieve 100% empirical correct decoding probability. As most industrial
systems (e.g., assembly lines) are located within a local area (e.g., a factory floor), deploying a mas-
ter to serve the IoT nodes in the local area is practical. On the contrary, it is undesirable to synchro-
nize these local IoT nodes with remote masters over the Internet, given the high criticality of indus-
trial systems. This is because the synchronization could be affected by distributed denial-of-service
(DDoS) attacks. Although the DDoS attacks can be easily detected, the attack isolation/mitigation—
for example, by switching to new masters—may take time and still affect the industrial systems
negatively. In our future work, we plan to conduct experiments in diverse industrial systems to un-
derstand comprehensively the impact of industrial loads on our approach. The results will provide
better guidance for the deployment of masters under general industrial settings.

9 CONCLUSION

We identified and validated an important property of the periodic voltage signal in a utility power
grid: namely, that the signal’s cycle length fluctuations encode fine-grained global time informa-
tion. Based on this key finding, we developed accurate clock synchronization with provable se-
curity against packet-delay attacks for a network system connected to the same grid. We also
developed a synchronization error correction algorithm by cross-checking the synchronization

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

12:28 S. Viswanathan et al.

Fig. 20. Illustration of NTP and packet-delay attack.

results among multiple nodes and proved that a four-node system can correct one erroneous syn-
chronization session out of six synchronization sessions during a cross-check round. Extensive
empirical evaluations show that our approach achieves an average synchronization error of 0.1 ms
between two network nodes in an office building and a residential building that are 10 km apart,
and 10 μs within the same floor of an office building. We also conducted experiments in buildings
with heavy industrial loads. The results show that our approach can achieve subsecond synchro-
nization accuracy when industrial loads are present in nearby power networks.

APPENDIX

A PACKET DELAY ATTACK AGAINST NTP

This appendix reviews the impact of packet-delay attack against NTP [19, 28] and discusses the
challenges of dealing with it through analysis of a few foremost solution approaches.

Figure 20(a) illustrates the principle of NTP: tc1 and tc2 are the slave’s clock values when it trans-
mits an NTP request and receives a reply; ts1 and ts2 are the master’s clock values when it receives
the request and sends the reply. Letd1 andd2 denote the slave-to-master and master-to-slave trans-

mission delays. Upon receiving the reply, the slave resets its clock to tset = ts2 +
(tc2−tc1)−(ts2−ts1)

2 =

ts2 +
d1+d2

2 . However, the actual time according to the master’s clock when the slave receives the

reply is tactual = ts2 + d2. Thus, the synchronization error is tset − tactual =
d1−d2

2 . Figure 20(b) illus-
trates the packet-delay attack, in which the transmissions of the request and reply are maliciously
delayed by τ1 and τ2 seconds, respectively. Following the above analysis procedure, the synchro-
nization error in the presence of the attack is d1−d2

2 +
τ1−τ2

2 . Thus, the additional synchronization
error introduced by the attack is τ1−τ2

2 . If d1 > d2, the most effective attack is to delay the request
packet only (i.e., τ2 = 0); otherwise, delaying the reply packet is the most effective (i.e., τ1 = 0).

We now discuss the challenges in detecting the attack and mitigating its impact. Our discus-
sion is based on the Kerckhoffs’s setting (i.e., the attacker knows the system, including its attack
detection methods), which provides insights into the worst scenario and is necessary for critical in-
dustrial IoT systems. A timeout approach sets an upper bound for the total transmission time, that
is, (tc2 − tc1) − (ts2 − ts1), to detect the attack. Thus, the malicious delay cannot exceed the time-
out, limiting the offset caused by the attack. However, to address transient and natural network
latency, large timeout settings on the order of seconds (e.g., 1 s in ntp-4.2.6) are often needed,
which enables the attack to breach the submillisecond accuracy requirement of time-critical in-
dustrial applications.

We now discuss another approach that monitors the transient changes of the total transmis-
sion time to detect anomalies/attacks. Specifically, it compares the latest total transmission time
with its exponential moving average (EMA) to accomplish detection. Widely used for such pur-
poses, EMA helps the detector adapt to changing network conditions. Let D[n] and D̄[n] denote
the total transmission time and its EMA at the end of the nth synchronization session, where

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

Exploiting Electrical Grid for Accurate and Secure Clock Synchronization 12:29

D̄[n] = (1 − α)D̄[n − 1] + αD[n] and α ∈ (0, 1) is a constant. If |D[n] − D̄[n − 1]| > ϵ , where ϵ is a
positive threshold, the detector claims the presence of attack. We now show that an attack strategy
that linearly increases the malicious delay over time can bypass the EMA-based detector. To sim-
plify the analysis but still keep the essence of the problem, we assume that, in the absence of the
attack, the total transmission time is a constant d . Let τ [n] denote the total malicious delay in the
nth synchronization session. The attack strategy is τ [n] = nτ , where τ is a constant. As the EMA
of the constant d is always d , we can safely ignore the constant d in the following bypass condition
analysis. The closed-form expression of the EMA of the arithmetic progression τ [n], denoted by

τ̄ [n], can be derived as τ̄ [n] = τ (n − (1−α)(1−(1−α)n)
α

). Thus, |τ [n + 1] − τ̄ [n]| = 1−(1−α)n+1

α
· τ < τ

α
.

Therefore, by setting τ < αϵ , the attack strategy τ [n] = nτ can keep bypassing the EMA-based
attack detector until the total transmission time reaches the timeout.

The above discussions provide insights into understanding the challenges of completely elim-
inating the impact of packet-delay attacks solely based on the clock information collected by the
master and the slave. Moreover, the setting of the timeout and the threshold ϵ still face a basic
dilemma between accommodating network condition dynamics (to reduce false-alarm rate) and
sensitivity to the attack (to reduce miss rate).

B PSEUDOCODE OF THE PROPOSED CLOCK SYNCHRONIZATION APPROACH

ALGORITHM 2: Master’s Pseudocode
Given: Master’s clock CLK_M, setting of L

1:

2: // grid phase identification service
3: event grid_phase_data received from slave do

4: if verify_integrity(grid_phase_data) is OK then

5: �y = latest (m + L) cycle length measurements
6: grid_phase_reply.phase =

phase_identify(grid_phase_data, y) // cf. Section 5.2.2 in the paper
7: grid_phase_reply.L = L
8: sign and transmit grid_phase_reply to slave
9: else

10: alert packet integrity attack
11: end if

12: end event

13:

14: // synchronization service
15: event sync_request received from slave do

16: if verify_integrity(sync_request) is OK then

17: if sync_request.under_delay_attack is true then

18: apply a policy to decide whether to increase L
19: end if

20: y = latest (n + L) timestamped cycle length measurements
21: sync_reply.offset = decode(sync_request.�x , �y) - sync_request.timestamp // see Section 4.2.1

in the article
22: sync_reply.L = L
23: sign and transmit sync_reply to slave
24: else

25: alert packet integrity attack
26: end if

27: end event

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

12:30 S. Viswanathan et al.

ALGORITHM 3: Slave’s Pseudocode
Given: Slave’s clock CLK_S

1:

2: // whenever the slave is powered up, identify its grid phase
3: event booted do

4: under_delay_attack = false
5: grid_phase_identified = false
6: grid_phase_data =m consecutive ac cycle lengths
7: start_time = CLK_S
8: sign and transmit grid_phase_data
9: end event

10:

11: // get grid phase identification result
12: event grid_phase_reply received from master do

13: if verify_integrity(grid_phase_reply) is OK then

14: t = CLK_S - start_time
15: if t

T > grid_phase_reply.L then

16: alert packet delay attack and initialization failure
17: else

18: grid_phase = grid_phase_reply.phase
19: grid_phase_identified = true
20: end if

21: else

22: alert packet integrity attack and initialization failure
23: end if

24: end event

25:

26: // send synchronization request
27: command resync() do

28: if grid_phase_identified is true then

29: sample a time-fingerprint x , timestamp x using CLK_S upon ZCI of the last ac cycle in x
30: start_time = CLK_S
31: sync_request = {x , x ’s timestamp, grid_phase, under_delay_attack}
32: sign and transmit sync_request to master
33: end if

34: end command

35:

36: // receive synchronization reply and set clock
37: event sync_reply received from master do

38: if verify_integrity(sync_reply) is OK then

39: t = CLK_S - start_time
40: if t

T > sync_reply.L then

41: under_delay_attack = true
42: alert packet delay attack
43: else

44: under_delay_attack = false
45: CLK_S = CLK_S + sync_reply.offset
46: end if

47: else

48: alert packet integrity attack
49: end if

50: end event

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

Exploiting Electrical Grid for Accurate and Secure Clock Synchronization 12:31

REFERENCES

[1] Adafruit. 2017. Adafruit Ultimate GPS HAT. Retrieved April 24, 2018 from https://www.adafruit.com/products/2324.
[2] Argonne National Laboratory. 2008. GPS is Easy to Spoof. Retrieved April 24, 2018 from http://www.ne.anl.gov/

capabilities/vat/spoof.html.
[3] Yin Chen, Qiang Wang, Marcus Chang, and Andreas Terzis. 2011. Ultra-low power time synchronization using passive

radio receivers. In 10th International Conference on Information Processing in Sensor Networks (IPSN’11). IEEE, Chicago,
IL, USA, 235–245.

[4] Jeremy Elson, Lewis Girod, and Deborah Estrin. 2002. Fine-grained network time synchronization using reference
broadcasts. ACM SIGOPS Operating Systems Review 36, SI, 147–163.

[5] Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava. 2003. Timing-sync protocol for sensor networks. In 1st

International Conference on Embedded Networked Sensor Systems (SenSys’03). ACM, Los Angeles, CA, USA, 138–149.
[6] Ravi Garg, Avinash L. Varna, and Min Wu. 2011. Seeing ENF: Natural time stamp for digital video via optical sensing

and signal processing. In ACM Multimedia (MM). ACM, Scottsdale, AZ, USA, 23–32.
[7] Catalin Grigoras. 2007. Applications of ENF criterion in forensic audio, video, computer and telecommunication

analysis. Forensic Science International 167, 2, 136–145.
[8] Sidhant Gupta, Matthew S. Reynolds, and Shwetak N. Patel. 2010. ElectriSense: Single-point sensing using EMI for

electrical event detection and classification in the home. In 12th ACM International Conference on Ubiquitous Com-

puting (UbiComp’10). ACM, Copenhagen, Denmark, 139–148.
[9] Tian Hao, Ruogu Zhou, Guoliang Xing, and Matt Mutka. 2011. WizSync: Exploiting Wi-Fi infrastructure for clock

synchronization in wireless sensor networks. In 32nd IEEE Real-Time Systems Symposium (RTSS’11). IEEE, Vienna,
Austria, 1379–1392.

[10] Arik Hesseldahl. 2014. Hackers Infiltrated Power Grids in U.S., Spain. Retrieved April 24, 2018 from http://on.recode.
net/1m6E3Le.

[11] Stamatis Karnouskos. 2011. Stuxnet worm impact on industrial cyber-physical system security. In 37th Annual Confer-

ence of IEEE Industrial Electronics (IECON’11). IEEE, Crown Conference Centre, Melbourne, Vic, Australia, 4490–4494.
[12] Kaspersky Lab. 2017. Datesheet: Five myths of industrial control systems security. Retrieved April 24, 2018 from

http://media.kaspersky.com/pdf/DataSheet_KESB_5Myths-ICSS_Eng_WEB.pdf.
[13] Prabha Kundur, Neal J. Balu, and Mark G. Lauby. 1994. Power System Stability and Control. Vol. 7. McGraw-Hill, New

York.
[14] Liqun Li, Guoliang Xing, Limin Sun, Wei Huangfu, Ruogu Zhou, and Hongsong Zhu. 2011. Exploiting FM radio

data system for adaptive clock calibration in sensor networks. In 9th International Conference on Mobile Systems,

Applications, and Services (MobiSys’11). ACM, Washington, DC, USA, 169–182.
[15] Yang Li, Rui Tan, and David Yau. 2017. Natural timestamping using powerline electromagnetic radiation. In IPSN.
[16] Zhenjiang Li, Wenwei Chen, Cheng Li, Mo Li, Xiang-Yang Li, and Yunhao Liu. 2012. Flight: Clock calibration using

fluorescent lighting. In 18th Annual International Conference on Mobile Computing and Networking (MobiCom). ACM,
Istanbul, Turkey, 329–340.

[17] Qing Yang Lin Huang. 2015. GPS spoofing – Low-cost GPS simulator. In DEF CON®23 Hacking Conference (DEF-

CON23). DEF CON Communications, Inc., Las Vegas, NV, USA. https://bit.ly/22H2XTA.
[18] Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. 2004. The flooding time synchronization protocol.

In 2nd ACM Conference on Embedded Networked Sensor Systems (SenSys). ACM, Baltimore, MD, USA, 39–49.
[19] Tal Mizrahi. 2012. A game theoretic analysis of delay attacks against time synchronization protocols. In IEEE Interna-

tional Symposium on Precision Clock Synchronization for Measurement, Control and Communication (ISPCS’12). IEEE,
San Francisco, CA, USA, 1–6.

[20] T. Mizrahi. 2014. Security Requirements of Time Protocols in Packet Switched Networks. Retrieved April 24, 2018
from https://tools.ietf.org/html/rfc7384.

[21] North American Energy Standards Board. 2005. Manual Time Error Correction. Retrieved April 24, 2018 from
https://www.naesb.org//pdf2/weq_bklet_011505_tec_mc.pdf.

[22] Tekla Perry. 2011. Planned U.S. Power System Experiment Means Some Clocks Will Speed Up. IEEE Spectrum. Re-
trieved April 24, 2018 from http://bit.ly/1OXu2zZ.

[23] Anthony Rowe, Vikram Gupta, and Ragunathan Raj Rajkumar. 2009. Low-power clock synchronization using elec-
tromagnetic energy radiating from AC power lines. In 7th ACM Conference on Embedded Networked Sensor Systems

(SenSys). ACM, Berkeley, CA, USA, 211–224.
[24] Richard W. Sanders. 2008. Digital audio authenticity using the electric network frequency. In Audio Engineering

Society Conference: 33rd International Conference: Audio Forensics-Theory and Practice. Audio Engineering Society,
Denver, CO, USA.

[25] Daniel P. Shepard, Todd E. Humphreys, and Aaron A. Fansler. 2012. Evaluation of the vulnerability of phasor mea-
surement units to GPS spoofing attacks. International Journal of Critical Infrastructure Protection 5, 3, 146–153.

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

https://www.adafruit.com/products/2324
http://www.ne.anl.gov/capabilities/vat/spoof.html
http://on.recode.net/1m6E3Le
http://media.kaspersky.com/pdf/DataSheet_KESB_5Myths-ICSS_Eng_WEB.pdf
https://bit.ly/22H2XTA
https://tools.ietf.org/html/rfc7384
https://www.naesb.org//pdf2/weq_bklet_011505_tec_mc.pdf
http://bit.ly/1OXu2zZ

12:32 S. Viswanathan et al.

[26] John A. Stankovic. 2014. Research directions for the Internet of Things. IEEE Internet of Things Journal 1, 1, 3–9.
[27] TI. 2015. Smart grid and energy solution guide. Retrieved April 24, 2018 from http://www.ti.com/lit/sl/slym071o/

slym071o.pdf.
[28] Markus Ullmann and M. Vogeler. 2009. Delay attacks – Implication on NTP and PTP time synchronization. In IEEE

International Symposium on Precision Clock Synchronization for Measurement, Control and Communication (ISPCS’09).
IEEE, Brescia, Italy, 1–6.

[29] Hans Weibel. 2012. Tutorial: IEEE 1588 standard for a precision clock synchronization protocol and synchronous
Ethernet. French National Institute of Nuclear and Particle Physics (IN2P3). http://www.in2p3.fr/actions/formation/
Numerique12/IEEE_1588_Tutorial_IN2P3_Handout.pdf.

[30] World Economic Forum. 2015. Industrial Internet of Things: Unleashing the Potential of Connected Products and Ser-
vices. Retrieved April 24, 2018 from http://www3.weforum.org/docs/WEFUSA_IndustrialInternet_Report2015.pdf.

Received August 2017; revised February 2018; accepted March 2018

ACM Transactions on Sensor Networks, Vol. 14, No. 2, Article 12. Publication date: May 2018.

http://www.ti.com/lit/sl/slym071o/slym071o.pdf
http://www.in2p3.fr/actions/formation/Numerique12/IEEE_1588_Tutorial_IN2P3_Handout.pdf
http://www3.weforum.org/docs/WEFUSA_IndustrialInternet_Report2015.pdf

