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Many Cyber-Physical Systems (CPS) are composed of low-cost devices that are deeply integrated with
physical environments. As a result, the performance of a CPS system is inevitably undermined by various
physical uncertainties, which include stochastic noises, hardware biases, unpredictable environment changes
and dynamics of the physical process of interest. Traditional solutions to these issues (e.g., device calibra-
tion and collaborative signal processing) work in an open-loop fashion and hence often fail to adapt to
the uncertainties after system deployment. In this paper, we propose an adaptive system-level calibration
approach for a class of CPS systems whose primary objective is to detect events or targets of interest.

Through collaborative data fusion, our calibration approach features a feedback control loop that exploits
system heterogeneity to mitigate the impact of aforementioned uncertainties on the system performance.
In contrast to existing heuristic-based solutions, our control-theoretical calibration algorithm can ensure
provable system stability and convergence. We also develop a routing algorithm for fusion-based multi-hop
CPS systems that is robust to communication unreliability and delay. Our approach is evaluated by both
experiments on a testbed of Tmotes as well as extensive simulations based on data traces gathered from
a real vehicle detection experiment. The results demonstrate that our calibration algorithm enables a CPS
system to maintain the optimal sensing performance in the presence of various system and environmental
dynamics.
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1. INTRODUCTION

Cyber-Physical Systems (CPS) interact with the physical world by tightly integrating
sensing, actuation, computation, and communication with physical processes. In re-
cent years, CPS systems are increasingly deployed in mission-critical applications such
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as security, civil infrastructure, manufacturing, and transportation. In these applica-
tions, low-cost sensors and actuators are deeply embedded in physical environments
and hence often suffer significant performance variations. In particular, the sensing
performance of a CPS system is greatly affected by stochastic noises, hardware biases,
unpredictable environment changes and dynamics of the physical process of interest.
In order to achieve desirable system performance, the operational parameters of a sys-
tem must be dynamically calibrated in response to these uncertainties.

Several approaches have been proposed to deal with the aforementioned uncertain-
ties faced by CPS systems. Advanced collaborative signal processing algorithms such
as data fusion [Varshney 1996] can mitigate the impact of noise by jointly considering
the measurements of multiple sensors. However, these algorithms are not designed to
handle hardware biases or environmental dynamics. Sensor calibration [Ramanathan
et al. 2006; Feng et al. 2003; Whitehouse and Culler 2002] can correct hardware biases
by tuning each individual sensor, which does not exploit the collaboration among sen-
sors in data fusion. Moreover, most existing calibration and data fusion schemes either
require expected models of real processes of interest, or need to be trained based on
ground truth information of controlled processes [Ramanathan et al. 2006]. Such an
offline, open-loop approach is ill-suited for CPS systems because the processes of inter-
est may not match the expectation at the design time or are subject to evolution. For
instance, an acoustic sensor system that is trained to detect military vehicles may yield
excessive false negatives when the targets of interest are changed to human intruders
whose acoustic energy profiles are significantly different from vehicles.

In this paper, we exploit the heterogeneity of CPS systems to achieve adaptive sens-
ing performance. Many practical CPS systems have multiple sensor modalities. For
instance, a typical surveillance system [Wren et al. 2006] has both low-end passive
infrared or acoustic sensors and high-quality pan-tilt-zoom cameras. Low-end sen-
sors consume less energy but often have limited sensing capability such as high false
alarm rate. In contrast, high-quality sensors can yield high-fidelity measurements at
the price of high energy consumption. Moreover, due to the high manufacturing cost,
the number of high-end sensors is often small leading to limited sensing coverage. The
trade-offs between power consumption and sensing performance of different sensor
modalities have been exploited to achieve energy efficiency in sensor networks be-
fore [Dutta et al. 2005]. We exploit the heterogeneity in a system by using the results
of high-quality sensors to periodically calibrate low-end sensors such that the sys-
tem sensing performance can adapt to various uncertainties. Specifically, low-end sen-
sors collaboratively sense information of environments through data fusion [Varshney
1996]. When a positive sensing consensus is reached by low-end sensors, high-quality
sensors are activated to carry out high-fidelity sensing. The results can accurately
capture the spatiotemporal variations of targets of interest. For instance, a camera
can easily recognize new targets of interest based on advanced image processing al-
gorithms. The results can in turn be used to calibrate low-end sensors (e.g., acous-
tic sensors or accelerometers) that are sensitive to the characteristics (e.g., acoustic
or seismic energy profile) of targets. Moreover, the high-quality sensors are allowed
to sleep for most of the time and only activated when a possible event of interest is
sensed by low-end sensors. Such a two-tier calibration framework can significantly re-
duce system energy consumption while maintaining satisfactory sensing performance
in dynamic environments.

Several challenges must be addressed for calibrating the system performance of het-
erogeneous CPS systems. First, the system sensing performance is tightly coupled with
the measurements of low-end sensors that are often corrupted by random noises from
physical environment and hardware. The stochastics in sensor measurements must be
carefully considered in order to achieve the optimal sensing performance. Second, in
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an adaptive calibration process, there exist fundamental trade-offs between the sys-
tem stability and the delay of response to system and environmental dynamics. Such
trade-offs must be balanced to maintain satisfactory system stability and timeliness.
Third, the system calibration performance is inherently impacted by the underlying
communication network. An adaptive calibration algorithm must account for various
dynamic characteristics of wireless communications, such as link reliability, delay, and
routing quality.

We make the following major contributions in this paper.

— We propose a novel approach that exploits sensor heterogeneity for adaptively cali-
brating the performance of fusion-based CPS systems. In our approach, high-quality
sensors are activated only when low-end sensors sense a possible event of interest.
The sensing results of high-quality sensors are then fed back to low-end sensors for
tuning their performance.

— We formally formulate the problem of adaptive calibration for event detection as a
control problem. The system objective is to maximize the detection performance and
adapt to variable system conditions and physical environments. We develop an adap-
tive calibration algorithm based on feedback control theory. We also systematically
analyze the impacts of several communication issues such as communication reliabil-
ity and delay, and propose an optimal routing algorithm that minimizes the impact
of packet loss on system stability. Moreover, we extend our approach to address var-
ious data fusion schemes and rapidly changing dynamics of the monitored physical
process.

— We implement the adaptive calibration algorithm on a testbed composed of Tmotes
[Moteiv Corp. 2006] and a camera. We also conduct extensive trace-driven simula-
tions using real data traces collected by 17 sensors in a vehicle detection experiment
[Duarte and Hu 2004]. The results demonstrate that the calibrated system maintains
optimal detection performance in the presence of various system and environmental
dynamics.

The rest of this paper is organized as follows. Section 2 reviews related work. Sec-
tion 3 introduces the preliminaries and Section 4 formally formulates the adaptive cal-
ibration problem. Section 5 models the system detection performance of a fusion-based
CPS system. Section 6 develops the adaptive calibration algorithm based on control
theory. Section 7 discusses the impacts of communication performance. Several exten-
sions are discussed in Section 8. Section 9 and 10 present the experimental results of
hardware testbed and trace-driven simulations, respectively. Section 11 concludes this
paper.

2. RELATED WORK

Calibration is a fundamental problem in CPS systems. Early work focuses on calibrat-
ing individual devices (e.g., sensors and actuators) independently. For instance, in [Ra-
manathan et al. 2006], each chemical sensor is carefully calibrated in controlled envi-
ronments to obtain the mapping from its reading to the true value. Recent system-level
calibration approaches aim to optimize the overall system performance. In [Feng et al.
2003], the biases of light sensors are estimated by solving the equations that correlate
the sensor biases with the sensor measurements. In [Whitehouse and Culler 2002], the
operational parameters of ranging sensors are estimated by regression based on pair-
wise range measurements. In [Kim et al. 2008] and [Kim et al. 2009], the fine-grained
water and electrical power usage reports are generated according to the measurements
of distributed sensors. The calibration parameters for the sensors are estimated by re-
gression based on the total usage readings from the main water/power meter. Different
from the above approaches that calibrate sensors according to known ground truth in-
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puts, the blind calibration approaches [Bychkovsky et al. 2003; Balzano and Nowak
2007] do not require ground truth inputs. In [Bychkovsky et al. 2003], the discrep-
ancies among co-located sensors are eliminated by exploiting the spatial correlation
in their measurements, where the ground truth is unnecessary. However, in order to
leverage the correlation among sensors, the blind approaches require the prior knowl-
edge of the signal of interest, e.g., the spatial frequency. Sensor localization is often
formulated as a calibration problem [Ihler et al. 2004; Girod et al. 2006]. Sensors
estimate their relative positions according to the noisy ranging measurements (e.g.,
acoustic ranging [Girod et al. 2006]). The relative positions can be translated into ab-
solute positions if a subset of nodes have ground truth GPSs. Different from the above
works, we aim to calibrate the operational parameters of a fusion-based CPS system
to achieve optimal event detection performance. Moreover, by exploiting sensor hetero-
geneity, our approach does not require ground truth inputs and only needs some prior
knowledge of the target of interest, i.e., the target appearance probability.

Feedback control has been widely adopted to improve the adaptability of computing
systems and networks [Adbelzaher et al. 2008]. Recently, it is employed to develop var-
ious protocols for CPS and sensor systems, such as MAC-layer [Le et al. 2007], energy
management [Vigorito et al. 2007] and topology control [Shi et al. 2007] protocols. Dif-
ferent from these works, we develop a control-theoretical calibration algorithm that
maximizes the event detection performance of a CPS system under dynamic system
conditions and physical environments. In our recent work [Chen et al. 2010], we de-
veloped a feedback control based approach to enforce a system CPU utilization bound
while maximizing event detection probability. However, sensor calibration is not ad-
dressed in [Chen et al. 2010].

Data fusion [Varshney 1996] has been proposed as an effective signal processing
technique to improve the system detection performance of sensing applications [He
et al. 2004; Duarte and Hu 2003]. Most previous works [Varshney 1996; Clouqueur
et al. 2004] focus on analyzing the optimal fusion strategies of a given sensor system.
In our recent work [Xing et al. 2009; Tan et al. 2009], we investigated the impact of
data fusion on coverage and detection delay of sensor networks. In this paper, we aim
to adaptively calibrate the fusion parameters to increase system sensing performance
in the presence of dynamics of environment and monitored physical processes.

3. PRELIMINARIES

In this work, we focus on the CPS systems whose primary objective is to detect
events/targets of interest. Traditional surveillance sensor systems are often designed
based on offline calibration and work in an open-loop fashion. As a result, they often
yield poor detection performance when the physical reality does not match the expecta-
tion. A key advantage of our approach is that it enables a CPS system to automatically
adapt to the dynamics of environments or monitored physical processes. In this sec-
tion, we present the preliminaries of our work, which include sensor measurement,
data fusion and Bayesian detection models.

3.1. Sensor Measurement Model

We assume that sensors perform detection by measuring the energy of signals, e.g.,
acoustic signal, emitted by the target. Let si denote the signal energy received by sen-
sor i. The signal energy si varies with the target and sensor i due to several affecting
issues. First, the signal energy si depends on the source energy of the target and the
signal path loss. The signal path loss is determined by the distance from the target
and the physical environments such as terrain. Second, it is affected by the systematic
bias of the sensor.
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Table I. Summary of Notation

Symbol Definition

H0 / H1 the ground truth that the target is absent / present

H̃0 / H̃1 cluster head’s decision that the target is absent / present

µi, σ2

i noise mean and variance of sensor i, respectively

si the signal energy received by sensor i

ni noise energy of sensor i, ni ∼ N (µi, σ
2

i )

yi signal energy measurement of sensor i

N the number of sensors in the cluster concerned

Y fused measurement, Y =
∑N

i=1
yi

µ / σ2 / S µ =
∑N

i=1
µi, σ

2 =
∑N

i=1
σ2

i , S =
∑N

i=1
si

Cij the cost of deciding H̃i when the ground truth is Hj

m the number of detections in a calibration cycle

PFL / PML false alarm rate / missing probability of low-end sensors

PFH / PMH false alarm rate / missing probability of high-quality sensor

Pa target appearance probability, Pa = P(H1)

D the lower bound of target appearance time

The sensor measurements are contaminated by additive random noises from sen-
sor hardware or environment. For instance, the electronic noise is a common noise
source for sensor circuits. Depending on the hypothesis that the target is absent (H0)
or present (H1), the measurement of sensor i, denoted by yi, is given by

{
H0 : yi = ni,
H1 : yi = si + ni,

where ni is the energy of noise experienced by sensor i. We assume that the noise ni

at each sensor i follows the normal distribution, i.e., ni ∼ N (µi, σ
2
i ), where µi and σ2

i

are the mean and variance of ni, respectively. We assume that the noises, {ni|∀i}, are
spatially independent across sensors.

The above stochastic sensor measurement model has been widely adopted in the
literature of multi-sensor signal detection [Clouqueur et al. 2004; Li and Hu 2003;
Sheng and Hu 2005; Varshney 1996; Xing et al. 2009; Tan et al. 2009] and also em-
pirically verified [Hata 1980; Li and Hu 2003; Tan et al. 2009]. Many previous works
[Clouqueur et al. 2004; Li and Hu 2003; Sheng and Hu 2005; Xing et al. 2009; Tan et al.
2009] based on the above sensor measurement model assume that the signal energies
{si|∀i} and noise profiles {µi, σ

2
i |∀i} are known a priori. However, these parameters are

often difficult to estimate and also subject to change due to the dynamics of target and
environment. In this paper, we assume that they are unknown to the system.

Table I summarizes the notation used in this paper.

3.2. Data Fusion and Bayesian Detection Models

Data fusion [Varshney 1996] is an effective signal processing technique to improve the
performance of CPS and sensor systems. A CPS system that employs data fusion is
often organized into clusters. The cluster head is responsible for making a decision
regarding the presence of an event by fusing the information gathered by member sen-
sors. There exist two basic data fusion schemes, namely, decision fusion and value fu-
sion. In decision fusion, each sensor makes a local decision based on its measurements
and sends its decision to the cluster head, which makes a system decision according to
the local decisions. In value fusion, each sensor sends its measurements to the cluster
head, which makes the detection decision based on the received measurements. In this
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paper, we first focus on value fusion and then extend our approach to a decision fusion
model in Section 8.2.

Suppose there are N sensors in a cluster. If the noises experienced by sensors are
independent and follow Gaussian distribution, the optimal test statistics for value fu-

sion is
∑N

i=1
si
σ2

i

· yi [Duda et al. 2001]. However, as discussed in Section 3.1, si and σi

are unknown. Therefore, we employ the equal gain combination which has been widely
adopted by previous literature on signal detection [Clouqueur et al. 2004; Xing et al.

2009]. Specifically, the test statistics, denote by Y , is given by Y =
∑N

i=1 yi. The cluster

head makes a positive decision (denoted by H̃1) if Y exceeds a threshold; otherwise, it

makes a negative decision (denoted by H̃0). The system detection performance is char-
acterized by two metrics, namely, the false alarm rate (denoted by PF ) and missing

probability (denoted by PM ). PF is the probability of deciding H̃1 when no target is

present, and PM is the probability of deciding H̃0 when a target is present. Formally,

PF = P(H̃1|H0) and PM = P(H̃0|H1).
The Bayesian criterion is a widely adopted decision criterion for detection systems

[Duda et al. 2001; Varshney 1996]. The objective of Bayesian detection is to minimize
the expected cost or risk in making decisions, which is denoted by E[c] and formally
given by [Duda et al. 2001]:

E[c] =
∑

i∈{0,1},j∈{0,1}
Cij · P(H̃i|Hj) · P(Hj), (1)

where Cij is the cost of deciding H̃i when the ground truth is Hj and P(Hj) is the
prior probability of the ground truth Hj . Note that the costs, i.e., {Cij |i, j ∈ {0, 1}}, are
constants specified by user. In practice, {Cij |i, j ∈ {0, 1}} can be defined according to
various system objectives. For instance, by letting C00 = C11 = 0 and C10 = C01 = 1,
E[c] equals the expected probability that the detector makes wrong decisions over all
possible measurements [Duda et al. 2001], i.e., the average error rate. Moreover, by

letting Cij be the energy consumed in the operations triggered by deciding H̃i when
the ground truth is Hj , E[c] is the average energy consumed by the system due to
detection.

4. PROBLEM FORMULATION

This section formulates our problem. Section 4.1 presents the system and target mod-
els. Section 4.2 formally formulates the closed-loop calibration problem. Section 4.3
presents the overview of our approach to the problem.

4.1. System and Target Models

We assume that a heterogeneous CPS system is composed of low-end and high-quality
sensors. The objective is to detect targets that randomly appear. The low-end sensors
(e.g., MICA motes) often have low manufacturing cost and energy consumption. How-
ever, they usually have limited sensing capability such as high false alarm rate [He
et al. 2004]. To improve the system detection performance, the low-end sensors col-
laboratively detect targets by fusing their measurements as stated in Section 3.2. The
high-quality sensors (e.g., cameras [Wren et al. 2006] and active radars [Dutta et al.
2006]) are capable of high-accuracy and complex surveillance such as target tracking
and classification. In this paper, they are only required to detect whether a target is
present and the detection results are used to calibrate the low-end sensors to achieve
desirable detection performance. The high-quality sensors often have higher manufac-
turing cost and consume more energy. Due to the high cost, we assume that there is
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Fig. 1. The illustration of system architecture. The system composed of multiple low-end sensors and a
high-quality sensor detects whether a vehicle is present in the rectangular surveillance region.

only one high-quality sensor in the system. We note that our approach can be easily
extended to the scenarios of multiple high-quality sensors where they may fuse their
measurements to yield more accurate detection results.

We now illustrate the system architecture using an example shown in Fig. 1. Sup-
pose an ad-hoc CPS system is deployed to detect whether a vehicle is present in the
surveillance region. The system is composed of a battery-powered camera and a num-
ber of low-cost acoustic sensors. The acoustic sensors transmit their measurements to
the cluster head through multi-hop paths. The cluster head fuses the received mea-
surements to make a detection decision regarding the presence of the vehicle. The
camera can accurately detect the vehicle via image processing techniques. However,
the camera often consumes much energy in capturing and processing images. The ob-
jective is to calibrate the acoustic sensors according to the detection results of the cam-
era such that the detection performance of the system is maximized. The calibrated
system should be able to adapt to the unpredictable and dynamic changes of the tar-
get profiles and physical environments. Moreover, in order to save energy, the camera
should be allowed to sleep when no vehicle is present in the surveillance region.

Before formally formulating the problem, we make the following assumptions. First,
the probability that a target is present at any time instance is Pa which is known or
can be estimated from detection history. In Section 8, we will discuss how to address
unknown and changeable Pa. Second, the target appearance time is lower-bounded by
constant D. Third, the false alarm rate and missing probability of the high-quality
sensor, denoted by PFH and PMH , are known. For instance, PFH and PMH can be
measured via offline experiments. Due to the high accuracy of the high-quality sensor,
both PFH and PMH are close to zero.

4.2. Closed-loop Calibration Problem

The optimal Bayesian detector has been extensively studied in previous literature
[Varshney 1996; Duda et al. 2001]. We now investigate the optimal detection rule for
low-end sensors under the assumptions made in Section 3. Suppose there are N low-

end sensors. Denote S =
∑N

i=1 si, µ =
∑N

i=1 µi and σ2 =
∑N

i=1 σ
2
i . The optimal detection

rule for low-end sensors that minimizes the expected cost E[c] is given by a threshold-

based decision (the derivation can be found in Appendix A), i.e., Y
H̃1

≷
H̃0

Topt, where Y is

the sum of the measurements from low-end sensors and the optimal detection thresh-
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old Topt is given by

Topt =
δσ2

2S
+ µ+

S

2
, (2)

δ = 2 ln

(
1− Pa

Pa

· C10 − C00

C01 − C11

)
. (3)

Note that δ is a known constant as long as Pa and {Cij |i, j ∈ {0, 1}} are given.
In the above optimal detection rule, the optimal detection threshold Topt is often

unknown and cannot be easily estimated in practice. First, µ and σ2 are the sums
of noise means and variances at all low-end sensors, respectively. Although the noise
means and variances can be estimated offline (e.g., in laboratory), they may change at
run time. For instance, the noise profiles would change with environmental conditions
(e.g., wind) as well as the electronic noise in sensor hardware affected by ambient
temperatures. Second, S is the sum of signals received by low-end sensors and hence
is affected by the source energy and physical position of the target. However, both
the source energy and position of the target are unknown and changeable in practice.
Moreover, if the ground truth information is not available, the detection approaches
based on the inaccurate µ, σ2 and S that are estimated from noisy measurements
may lead to poor system detection performance. As a result, implementing the optimal
detection rule based on unknown µ, σ2 and S is largely unpractical.

In this paper, we exploit sensor heterogeneity to address the issue of unknown µ, σ2

and S. As the high-quality sensor can detect the target accurately, the detection results
can be fed back to calibrate the low-end sensors when the target profiles and environ-
ment conditions have changed. Specifically, the detection threshold at the cluster head
(denoted by T ) is iteratively calibrated according to the feedback of the high-quality
sensor, such that the system achieves the optimal detection performance. Our problem
is formally formulated as follows.

PROBLEM 1. To find a stable and converging calibration algorithm for the detection
threshold T at the cluster head based on the feedback of high-quality sensor, such that
the expected cost, i.e., E[c] which is given by (1), is minimized.

We define stability and convergence based on control theories [Ogata 1995] as follows.
The closed-loop system is stable if the system output E[c] is bounded given bounded
inputs µ, σ2 and S. Furthermore, the system converges if the system output E[c] con-
verges to its theoretical minimum if all inputs are fixed. Moreover, in order to improve
the real-time performance of the system, we expect that the output E[c] converges as
soon as possible when the inputs have changed.

4.3. Approach Overview

Feedback control has been widely employed to improve the adaptability of systems
[Adbelzaher et al. 2008]. In Problem 1, the system objective is to adapt to the unpre-
dictable and dynamic changes of target profiles and physical environments. We face
several challenges in implementing the closed-loop calibration. First, the relationship
between the detection performance of low-end sensors and their stochastic measure-
ments must be carefully considered to minimize the expected cost E[c]. Second, the
high-quality sensor should sleep for most of the time when no target is present due to
its high energy consumption. We propose a calibration approach that features a feed-
back control loop to adaptively calibrate the detection threshold T , where the controller
is implemented by the calibration algorithm located at the cluster head. The overview
of our approach is as follows.
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The detection threshold T is calibrated iteratively for every calibration cycle. Each
calibration cycle comprises a number of detections. In each detection, the cluster head
fuses the measurements received from the low-end sensors to make a decision by com-
paring against the current threshold T . Only if the cluster head makes a positive de-
tection decision, the high-quality sensor is activated to make a detection and reports
its decision to the cluster head. Such an on-demand activation scheme enables the
high-quality sensor to sleep when no target is present. At the end of each calibration
cycle, the cluster head estimates the detection performance of low-end sensors, which
is characterized by the false alarm rate and missing probability, according to the de-
tection history and the feedback of the high-quality sensor. The cluster head then cali-
brates the detection threshold T according to the difference between the estimated and
the optimal detection performances.

In the rest of this paper, we first derive the closed-form expressions of the false
alarm rate and missing probability of low-end sensors in Section 5. We then develop
an adaptive calibration algorithm based on feedback control theory in Section 6. We
analyze the impacts of communication performance on our algorithm in Section 7.
Moreover, we extend our approach to address unknown target appearance probability
and decision fusion in Section 8.

5. PERFORMANCE MODELING

In this section, we first derive the theoretical expressions of the system false alarm
rate and missing probability of low-end sensors. We then derive the estimators of the
two probabilities based on the feedback of the high-quality sensor.

5.1. Detection Performance of Low-end Sensors

We now derive the false alarm rate and missing probability of low-end sensors. Re-
call the distributions of Y |H0 and Y |H1 that are derived in Appendix A, i.e., Y |H0 ∼
N (µ, σ2) and Y |H1 ∼ N (µ + S, σ2). The system false alarm rate and missing probabil-
ity of low-end sensors (denoted by PFL and PML) are given by PFL = P(Y ≥ T |H0) =

Q
(

T−µ
σ

)
and PML = P(Y ≤ T |H1) = Q

(
−T−µ−S

σ

)
, respectively, where Q(·) is the com-

plementary cumulative distribution function of the standard normal distribution, i.e.,

Q(x) =
∫ +∞
t=x

1√
2π

exp
(
− t2

2

)
dt. We now investigate the relationship between PFL and

PML when the expected cost E[c] is minimized which is the objective of Problem 1. Let
Q−1(·) denote the inverse function of Q(·). We have the following lemma.

LEMMA 5.1. The expected cost E[c] is minimized if and only if V = δ, where V =(
Q−1(PFL)

)2 −
(
Q−1(PML)

)2
and δ is given by (3).

PROOF. From the expressions of PFL and PML, we have

V =
(
Q−1(PFL)

)2−
(
Q−1(PML)

)2
=

(
T−µ

σ

)2

−
(
−T−µ−S

σ

)2

=
2S

σ2
· T− 2µS+S2

σ2
. (4)

As discussed in Section 4.2, E[c] is minimized if and only if T = Topt, where Topt is
given by (2). By replacing T in (4) with Topt, we have V = δ. Moreover, as V is a linear
function of T , E[c] is minimized if and only if V = δ.

We note that δ is a known constant which is independent of the unknown variables
µ, σ2 and S. From Lemma 5.1, Problem 1 can be reduced to the following problem.
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PROBLEM 2. To find the stable and converging calibration algorithm for the detec-
tion threshold T at the cluster head based on the feedback of high-quality sensor, such

that V = δ, where V =
(
Q−1(PFL)

)2 −
(
Q−1(PML)

)2
and δ is given by (3).

In Section 6, we will develop a calibration algorithm based on feedback control the-
ory to solve Problem 2.

5.2. Feedback of High-quality Sensor

The objective of system detection performance defined in Problem 2 is to ensure V = δ
where V is computed by PFL and PML. In this section, we derive the estimators of PFL

and PML based on the detection history of low-end sensors and the feedback from the
high-quality sensor.

Suppose each calibration cycle comprises m detections. The low-end sensors fuse
their measurements to make a detection for every D seconds such that each sensor
can sample at least one measurement when the target is present. Note that D is the
lower bound of target appearance time. At the end of a calibration cycle, the cluster
head counts the numbers of positive and negative decisions made by the high-quality
sensor and estimates PFL and PML based on the counts. As discussed in Section 4.1,
the high-quality sensor may make wrong decisions, quantified by the false alarm rate
(PFH ) and missing probability (PMH ), respectively. Therefore, our estimators account
for the inaccuracy of the high-quality sensor.

We define the following notation subject to a calibration cycle: 1) nf1 and nd1 are the
numbers of false alarms and correct detections made by the cluster head, respectively,
which are unknown; 2) nf2 and nd2 are the numbers of positive decisions made by the
cluster head but regarded to be false alarms and correct detections by the high-quality
sensor, respectively, which can be counted by the cluster head. We have the following
equations,

nf2 ≃ nf1(1− PFH) + nd1PMH , nd2 ≃ nf1PFH + nd1(1− PMH).

where nf1(1−PFH) represents the number of false alarms that are correctly identified
by the high-quality sensor; nd1PMH represents the number of correct detections that
are wrongly classified as false alarms; nf1PFH represents the number of false alarms
that are wrongly classified as correct detections; nd1(1− PMH) represents the number
of detections that are correctly identified. From the above equations, the unknown nf1

and nd1 can be estimated as

nf1 ≃ nf2(1− PMH)− nd2PMH

1− PFH − PMH

, nd1 ≃
nd2(1− PFH)− nf2PFH

1− PFH − PMH

.

Therefore, the estimates of PFL and PML, denoted by P̃FL and P̃ML, are given by:

P̃FL =
nf1

m−m · Pa

, P̃ML =
m · Pa − nd1

m · Pa

. (5)

Note that m · Pa is the expected number of target appearances in a calibration cycle.
The major errors of the above estimates are caused by the difference between the mean
value m · Pa and the true number of target appearances which is a binomial random
variable. According to the error analysis in Appendix B, the relative estimation errors

of (5) are O
(

1√
m

)
. Hence, as discussed in Appendix B, we can choose m to achieve any

required estimation accuracy. The impact of m on the calibration performance is also
evaluated in Section 10.2.1.
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-δ + h - Gc(z) -T Gp(z) q -V

H(z)

6−

Fig. 2. The closed-loop system for minimizing E[c], where Gc(z), Gp(z) and H(z) represent the transfer
functions of the calibration algorithm, the system of low-end sensors and the feedback of the high-quality
sensor, respectively.

6. ADAPTIVE CALIBRATION ALGORITHM

In this section, we first derive the control law for Problem 2 based on feedback control
theory. We then implement it as an adaptive calibration algorithm.

6.1. Control Law

The objective of Problem 2 is to ensure V = δ, where V is a function of the detection
threshold T given by (4) and can be estimated based on the feedback of the high-quality
sensor as discussed in Section 5.2. Moreover, the detection threshold T is calibrated for
every calibration cycle. Therefore, Problem 2 is a typical discrete-time control problem
[Ogata 1995], in which δ is the reference, T is the control input and V is the controlled
variable. The block diagram of the feedback control loop is shown in Fig. 2, where
Gc(z), Gp(z) and H(z) represent the transfer functions of the calibration algorithm
(i.e., controller), the system of low-end sensors and the feedback of the high-quality
sensor, respectively.

We now derive the expressions of Gp(z) and H(z), and design Gc(z) to solve Prob-
lem 2. By taking z-transform [Ogata 1995] to (4), we get the transfer function Gp(z)

as Gp(z) = 2S
σ2 . At the end of a calibration cycle, the cluster head estimates V based

on the feedback of the high-quality sensor as discussed in Section 5.2. Accordingly, the
feedback of the high-quality sensor will take effect in the next calibration cycle. There-
fore, the H(z) has a component of z−1 that represents a delay of one calibration cycle.
As discussed in Section 5.2, we can ignore the inaccuracy in estimating V if m is large.
Hence, we adopt H(z) = z−1. As the system to be controlled, i.e., Gp(z), is a zero-order
system, a first-order controller is sufficient to achieve the stability and convergence of
the closed-loop system [Ogata 1995]. Hence, we let Gc(z) be

Gc(z) =
a

1− b · z−1
, (6)

where a > 0 and b > 0. The coefficients a and b should be chosen to ensure system
stability and convergence. In Section 6.2, we will discuss how to determine a and b
based on stability and convergence analyses.

6.2. Stability and Convergence Analyses

We first analyze the system stability. The closed-loop transfer function, denoted by

Tc(z), is given by Tc(z) =
Gc(z)Gp(z)

1+Gc(z)Gp(z)H(z) =
2aS

σ2
·z

z−(b− 2aS

σ2 )
. The closed-loop system has a

pole at z = b − 2aS
σ2 . From control theory [Ogata 1995], if the pole is within the unit

circle centered at the origin, i.e.,
∣∣b− 2aS

σ2

∣∣ < 1, the system is stable. Therefore, the

sufficient condition for stability is σ2

2S (b− 1) < a < σ2

2S (b+ 1).
We then analyze the steady-state error of the system. The open-loop transfer func-

tion, denoted by To(z), is given by To(z) = Gc(z)Gp(z)H(z) = 2aS
σ2(z−b) . By letting b = 1,

the system is a type I system [Ogata 1995], of which the controlled variable V can
converge to the reference δ provided that the system is stable. Therefore, by replacing
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b with 1, the condition for both stability and convergence is 0 < a < σ2

S
. Accordingly,

only a is left to be determined.
Finally, we discuss the transient response of the system, which characterizes how

fast the closed-loop system converges. There exists a fundamental trade-off between
the stability and transient response performance [Ogata 1995]. Particularly for our
problem, the system converges faster for larger a at the price of worse system stability.

Therefore, the best setting for a is a value close to the upper bound σ2

S
. However, σ2

and S are often unknown and changeable at run time as discussed in Section 4.2. We

now propose an approach to adaptively estimate the upper bound σ2

S
. The details are

as follows.
From (4), the control input T and the controlled variable V have a linear relationship

with slope of K = 2S
σ2 . We employ the exponential moving average [NIST/SEMATECH

2010] to estimate and update the slope K. Specifically, in the kth calibration cycle, the

slope K is estimated as K = V [k−1]−V [k−2]
T [k−1]−T [k−2] , where T [k − 1] is the detection threshold

set by the calibration algorithm in the (k − 1)th calibration cycle, and V [k − 1] is the
corresponding output of low-end sensors. We note that V [k − 1] is obtained in the kth

calibration cycle due to the delay of feedback. The exponential moving average of K in
the kth calibration cycle, denoted by K[k], is updated by K[k] = (1−α) ·K [k− 1]+α ·K,
where α is a weight in (0, 1). Note that the moving average K can quickly adapt to the
change of K by setting a large α. However, doing so reduces the algorithm robustness

to errors such as the inaccuracy in estimating V . The upper bound σ2

S
is estimated as

σ2

S
= 2

K[k]
and a is set to be β · 2

K[k]
, where β is a coefficient in (0, 1). Note that β is set

to be 0.5 in the experiments conducted in this paper. The K[0] can be set to be a large
enough value such that the system is stable initially.

6.3. Adaptive Calibration Algorithm

In this section, we implement the control law derived in Section 6.1 in time domain.

According to Fig. 2, we have Gc(z) =
T (z)

δ−H(z)V (z) . By replacing Gc(z) with (6) and H(z) =

z−1, we have T (z) = b·z−1T (z)+a·
(
δ − z−1V (z)

)
and its implementation in time domain

is T [k] = b · T [k− 1] + a · (δ − V [k− 1]), where V [k− 1] =
(
Q−1(P̃FL)

)2

−
(
Q−1(P̃ML)

)2

,

T [k − 1] and T [k] are the detection thresholds in the (k − 1)th and kth calibration cycle,

respectively. The estimates P̃FL and P̃ML are computed using (5) when the detection
threshold is T [k − 1]. As discussed in Section 6.2, b = 1 and a is updated for each
calibration cycle to ensure system stability and convergence.

7. IMPACT OF COMMUNICATION PERFORMANCE

The adaptive calibration algorithm in Section 6 is impacted by communication perfor-
mance. In this section, we investigate the impacts caused by packet loss and feedback
delay.

7.1. Packet Loss and Optimal Routing Algorithm

In this section, we first analyze the impact of packet loss in the wireless communication
among low-end sensors, and then propose an optimal routing algorithm to minimize
the impact. From the analysis in Section 6.1, the system stability is affected by the

upper bound σ2

S
. We assume that the cluster head only fuses the received measure-

ments. In the case of stochastic packet loss, both the aggregated signal energies and
noise variances, i.e., S and σ2, can change rapidly. The closed-loop system can become
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unstable due to the rapid changes of S and σ2. We study the impact of packet loss by
investigating the relative deviations of S and σ2, which characterize the magnitude of
changes caused by stochastic packet loss. Let pi denote the end-to-end packet recep-
tion rate (PRR) of the multi-hop path from sensor i to the cluster head. We assume that
pi ∈ [0.5, 1]. Let ui ∈ {0, 1} denote the packet delivery state of sensor i in a transmission,
which is a Bernoulli random variable with success probability of pi. In the presence of

packet loss, S =
∑N

i=1 siui. We assume that si has non-zero lower and upper bounds, de-

noted by smin and smax, respectively. Hence, we have E[S] =
∑N

i=1 siE[ui] =
∑N

i=1 sipi ≥
N ·smin

2 and Var[S] =
∑N

i=1 s
2
iVar[ui] =

∑N
i=1 s

2
i pi(1 − pi) ≤ N ·s2

max

4 . The relative standard

deviation (RSD) [NIST/SEMATECH 2010] of S satisfies RSD(S) =

√
Var[S]

E[S] ≤ smax

smin
· 1√

N
,

i.e., RSD(S) = O
(

1√
N

)
. Therefore, the impact of packet loss can be mitigated by de-

ploying more low-end sensors subject to allowable communication throughput. The
derivation of RSD(σ2) is similar and hence omitted here.

We now propose an optimal routing algorithm that minimizes RSD(S). As ∂E[S]
∂pi

> 0

and ∂Var[S]
∂pi

≤ 0 for pi ∈ [0.5, 1], ∂RSD(S)
∂pi

≤ 0. Therefore, RSD(S) is minimized when each

pi is maximized separately. Let Ri denote the routing path from sensor i to the cluster
head and p(h) denote the PRR of hop h ∈ Ri. Accordingly, pi =

∏
∀h∈Ri

p(h) and the
optimal routing path that maximizes pi is given by argminRi

∑
∀h∈Ri

− log p(h), i.e., the
shortest path from sensor i to the cluster head where the cost of hop h is − log p(h). In
Section 10.2.2, we will evaluate the impact of packet loss as well as various routing
algorithms on the performance of the calibration algorithm.

7.2. Impact of Feedback Delay

In this section, we analyze the impact of feedback delay on system stability. Suppose
the feedback is delayed for d calibration cycles where d is an unknown integer. There-
fore, the transfer function of the feedback is H(z) = z−d. Several practical issues can
attribute to the feedback delay, such as the communication delay due to the low duty
cycle of sensors. We adopt a widely used technique called the Jury test [Ogata 1995] to
analyze the stability of our algorithm. The details can be found in Appendix C. Fig. 3
plots the regions of a in (6) for system stability when d is from 1 to 5. We can see from
the figure that the stability condition becomes more critical for larger d. This is consis-
tent with the intuition in control theory that the system stability decreases with the
delay in the closed-loop. In Section 10.2.2, we will evaluate the impact of d on the per-
formance of the calibration algorithm. The result shows that the feedback delay has
little impact on the performance of our calibration algorithm when d is up to 10.
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8. EXTENSIONS

We now discuss several open issues that have not been addressed in previous sections
and extend our approach to address them.

8.1. Handling Unknown and Changeable Target Appearance Probability

In previous sections, we assume that the target appearance probability, i.e., Pa, is a
known constant. However, in practice, the estimated Pa may be inaccurate. Moreover,
Pa can change rapidly in many applications. The optimal solution for detecting targets
with variable prior probabilities is still an open issue in detection theory [Varshney
1996; Duda et al. 2001]. In this section, we employ a sub-optimal detection criterion
called minimax criterion [Duda et al. 2001], which is widely adopted to handle un-
known and changeable prior probabilities. According to the Bayesian detection theory,
the optimal E[c] is a concave function of Pa. The minimax detector is designed accord-
ing to the Pa for which the optimal E[c] is maximum (i.e., worst case). Moreover, as
an important property of minimax detector, its E[c] is a constant with respect to Pa.
Hence, the performance of minimax detector would not downgrade when Pa changes
rapidly. In contrast, the performance of an optimal detector can deteriorate signifi-
cantly when Pa has changed [Duda et al. 2001]. The condition of minimax detector is
(C00 − C11) + (C10 − C00)PFL − (C01 − C11)PML = 0 [Duda et al. 2001]. Note that PFL

and PML are the false alarm rate and missing probability of low-end sensors, which
are derived in Section 5.1. The above condition has a closed-form solution with respect
to the detection threshold T if and only if C00 = C11 and C01 = C10. In such a case, the
above condition reduces to PFL = PML. In particular, we focus on the special case of
C00 = C11 = 0 and C01 = C10 = 1, where the expected cost E[c] represents the average
error rate. The general case of expected cost is left for our future work. We can extend
our approach presented in previous sections to achieve minimax error rate when Pa is
unknown and changeable. The major changes are summarized as follows:

— To satisfy the condition of minimax error rate, i.e., PFL = PML, the controlled vari-
able can be V = Q−1(PFL) − Q−1(PML) and hence the reference is zero. Moreover, it
is easy to derive the relationship between the controlled variable V and the control
input T , which is V = 2

σ
· T − 2µ+S

σ
. Therefore, the transfer function of the system of

low-end sensors is Gp(z) =
2
σ

.

— In (5), the calculations of P̃FL and P̃ML require the estimate of the number of target
appearances in a calibration cycle (i.e., m · Pa). Due to the unknown Pa, it is difficult
to accurately estimate the number of target appearances if the high-quality sensor is
activated only when the low-end sensors make a positive decision. We now discuss the
basic idea to handle this issue. In addition to being triggered by low-end sensors, the
high-quality sensor can be periodically activated during a calibration cycle. Suppose
the high-quality sensor is activated for na times during a calibration cycle, in which
the high-quality sensor makes np positive decisions. Let n1 denote the number of
target appearances when the high-quality sensor is activated. We have np ≃ (na −
n1) · PFH + n1 · (1 − PMH). Hence, n1 is given by n1 ≃ np−na·PFH

1−PFH−PMH
and the number

of target appearances during the current calibration cycle can be estimated as n1

na
·

m, where m is the number of detections in a calibration cycle. The accuracy of the
estimate can be improved if the high-quality sensor is activated more frequently, i.e.,
a larger na. However, frequently activating the high-quality sensor will lead to high
energy consumption. We define the extra utilization of high-quality sensor as na

m
,

which characterizes the extra overhead caused by estimating the number of target
appearances. We will evaluate the impact of extra utilization of high-quality sensor
on the system detection performance in Section 10.2.3. The result shows that the
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system detection performance does not degrade even when the extra utilization is as
low as 1

10 .
— Following the analyses in Section 6.2, the condition for stability and convergence can

be derived as 0 < a < σ and b = 1. The approach that adaptively estimates the upper
bound of a is still applicable.

The extended approach described above is evaluated in Section 10.2.3. The results
show that this approach is robust to rapidly changing Pa.

8.2. Decision Fusion

In this section, we extend our approach to a decision fusion model. Different from
the value fusion model adopted in previous sections, decision fusion operates in a dis-
tributed manner. Specifically, each sensor makes a local decision based on its measure-
ments and transmits its decision to the cluster head, which makes a system decision
according to the local decisions. Due to its low communication overhead, decision fu-
sion is often preferred in bandwidth-constrained CPS and sensor systems.

However, a key challenge for employing the decision fusion model is the complexity
in the analysis of system detection performance. It is proved in [Chair and Varshney
1986] that the optimal test statistics at the cluster head is the weighted sum of local
decisions where the weights are determined by the local detection performance of sen-
sors. However, there is no closed-form formula for characterizing the system detection
performance under such a model. Moreover, as discussed in [Niu and Varshney 2005],
the optimal decision fusion model is infeasible when sensors have little information
about their detection performance. In this section, we will employ the equal gain com-
bining model which has been widely adopted in previous literature [Varshney 1996;
Niu and Varshney 2005; Tan et al. 2008; 2010] and analyze the approximate system
detection performance. Specifically, sensor i makes the local decision by comparing its
measurement yi against a local threshold ti. If yi ≥ ti, it decides 1; otherwise, it decides
0. Let Ii denote the local decision of sensor i. The test statistics at the cluster head is
the sum of local decisions, i.e., Y =

∑N
i=1 Ii. The system decision is made by comparing

Y against the threshold T . In this section, we also assume that the target appearance
probability Pa is unknown and changeable. Therefore, our objective is to find the sta-
ble and converging calibration algorithm for the detection thresholds, {t1, t2, . . . , tN , T },
such that the system has minimax error rate.

We first analyze the detection performance of the decision fusion model. Let αi and
βi denote the false alarm rate and missing probability of sensor i, respectively. In the
absence of target, the local decision of sensor i, Ii|H0, follows the Bernoulli distribu-
tion with αi as success probability. As {Ii|H0, i ∈ [1, N ]} are mutually independent,

the mean and variance of Y |H0 are given by E[Y |H0] =
∑N

i=1 E[Ii|H0] =
∑N

i=1 αi and

Var[Y |H1] =
∑N

i=1 Var[Ii|H0] =
∑N

i=1 αi −
∑N

i=1 α
2
i , respectively. However, {Ii|H0, i ∈

[1, N ]} are not identically distributed. We have proved the condition of Lyapunov’s cen-
tral limit theorem [Ash and Doléans-Dade 1999] for a finite sequence of independent
Bernoulli random variable in [Tan et al. 2008; 2010]. According to the Lyapunov’s
central limit theorem, Y |H0 follows the normal distribution when N is large, i.e.,

Y |H0 ∼ N
(∑N

i=1 αi,
∑N

i=1 αi −
∑N

i=1 α
2
i

)
. Similarly, we can derive the distribution of Y

in the presence of target, i.e., Y |H1 ∼ N
(∑N

i=1(1− βi),
∑N

i=1(1− βi)−
∑N

i=1(1− βi)
2
)

.

Therefore, the system false alarm rate and missing probability can be approximated

by PFL ≃ Q

(
T−∑N

i=1
αi√∑

N
i=1

αi−
∑

N
i=1

α2

i

)
and PML ≃ Q

(
− T−∑N

i=1
(1−βi)√∑

N
i=1

(1−βi)−
∑

N
i=1

(1−βi)2

)
.
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We now discuss how to achieve minimax error rate under the decision fusion model.
As discussed in Section 8.1, the condition of minimax error rate is PFL = PML. By
solving PFL = PML, the optimal threshold at the cluster head, Topt, is

Topt =
E[Y |H0] ·

√
Var[Y |H1] + E[Y |H1] ·

√
Var[Y |H0]√

Var[Y |H0] +
√
Var[Y |H1]

. (7)

Therefore, the Topt can be computed as long as {αi, βi|i ∈ [1, N ]} are given. Denote
α = [α1, . . . , αN ]T, β = [β1, . . . , βN ]T and 1 = [1, . . . , 1]T. When T = Topt, the aver-
age error rate, denoted by PE , is PE = PFL = Q(f(α,β)) [Duda et al. 2001], where

f(α,β) = (1−β)T1−αT
1√

αT1−αTα+
√

(1−β)T1−(1−β)T(1−β)
. As Q(·) is a decreasing function, if f(α,β)

is maximized, PE will be further minimized. However, it is difficult to analytically
maximize f(α,β) due to its complex expression. The Monte Carlo simulations show

that f(α,β) decreases with
∑N

i=1(αi + βi) with a high probability (> 98%). The details
of the simulations can be found in Appendix D. Therefore, in practice, f(α,β) can be

maximized by minimizing
∑N

i=1(αi + βi). As a result, if αi + βi is minimized for each

sensor i separately, PE is minimized. Note that αi = Q
(

ti−µi

σi

)
, βi = Q

(
− ti−µi−si

σi

)
,

and αi + βi is minimized only if αi = βi. Therefore, by running the controller proposed
in Section 8.1 at each local sensor, αi+βi can be minimized for each sensor i. Moreover,
by setting the detection threshold at the cluster head according to (7) using the esti-
mated {αi, βi|i ∈ [1, N ]}, the minimax error rate can be achieved. In Section 10.2.3, we
will conduct comparative simulations to evaluate the system performance under the
value and decision fusion models, respectively.

9. TESTBED EXPERIMENTS

To evaluate the performance of our adaptive calibration approach, we have conducted
both experiments on a testbed of Tmotes as well as extensive trace-driven simulations
based on real data traces. The small-scale testbed experiments account for many prac-
tical issues such as sensor’s duty cycle and hence verify the feasibility of our approach.
The trace-drive simulations allow us to extensively evaluate our approach in a wide
range of settings such as noise level and communication performance. We first present
the testbed experiments in this section and then the trace-driven simulations in Sec-
tion 10.

9.1. Experiment Methodology and Settings

In our experiments, five Tmotes [Moteiv Corp. 2006] are attached against the LCD
screen of a desktop computer to detect a light spot displayed on the LCD. The light
spot simulates the target that randomly appears, and its display is controlled by a
program. We note that such an experimental methodology is also employed in previous
works [Hwang et al. 2007]. The system objective is to adapt to the intensity change
of the light spot that randomly appears in each time slot with a probability of Pa =
50%. The length of a time slot is one second. The motes measure light intensity for
every 250 milliseconds via the on-board Hamamatsu S1087-01 light sensors [Moteiv
Corp. 2006] and transmit the measurements to the sink node that is connected to a
laptop computer. Note that the motes are not synchronized. NesC language is used
to program the motes, and Java is used to implement the calibration algorithms that
run on the laptop. The sink fuses the readings received within every 250 milliseconds
and detects the light spot. A webcam is attached against the LCD and used as the
high-quality sensor. When the webcam is triggered by the sink to make a detection,
it computes the average intensity over all pixels and makes the detection decision by
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Fig. 5. Convergence of various calibration approaches.

comparing against a threshold. The threshold is set to be 175 in our experiments. The
webcam’s false alarm rate and missing probability, i.e., PFH and PMH , are 3.3% and
1.4%, respectively, which are estimated offline. The length of a calibration cycle, i.e.,
m, is 200 detections. The detection threshold T at the sink is initially set to be zero. We
let C00 = C11 = 0 and C10 = C01 = 1. Hence, the cost metric given by (1) is the average
error rate of the motes, which is denoted by PE .

We employ a heuristic calibration approach as the baseline, in which the webcam is
also activated to make a detection when the cluster head makes a positive decision.
The heuristic approach sets the detection threshold according to the S, µ and σ2 that
are estimated from noisy measurements of low-end sensors. The details of the heuristic

approach are as follows. Let H̃ ′
0 and H̃ ′

1 represent the negative and positive detection
decisions of the webcam, respectively. The mean and variance of the fused noise, i.e., µ

and σ2, are estimated as E[Y |H̃0 ∨ (H̃1 ∧ H̃ ′
0)] and Var[Y |H̃0 ∨ (H̃1 ∧ H̃ ′

0)], respectively.

The aggregated signal energies is estimated as S = E[Y |H̃1 ∧ H̃ ′
1] − µ. The detection

threshold is then set according to the optimal formula (2) with the estimated S, µ
and σ2. The heuristic calibration approach is a typical way to use the feedback of the
high-quality sensor. However, it does not exploit the relationship between the detection
performance of low-end sensors and their stochastic measurements.

9.2. Experiment Results

We first evaluate the sensor measurements. Fig. 4 plots the cumulative distribution
functions (CDFs) of the fused measurement when the light spot is present as well as
the normal distribution N (3829, 12072), respectively. We note that the fused measure-
ment is a discrete random variable. We can see from Fig. 4 that the distribution of the
fused measurement can be approximated by the normal distribution, which is consis-
tent with the assumptions in Section 3.

We then evaluate the convergence of the calibration approaches. Fig. 5(a) plots the
evolution of the detection thresholds calibrated by various approaches. The omniscient
approach computes the optimal detection threshold using (2) based on the S, µ and
σ2 that are estimated in extra offline experiments. At the 20th calibration cycle, we
increase the intensity of the light spot to evaluate the adaptability of the calibration
approaches. As PE is the cost metric, Fig. 5(b) plots the deviation of PE from that of the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:18 R. Tan et al.

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400

S
o
u
th

-N
o
rt

h
(m

et
er

s)

West-East (meters)

sensors
cluster head
static target

AAV

Fig. 6. Sensor deployment and the trajectory of
AAV.

0

1

2

3

50 100 200 300 400 500

R
M

S
D

o
f
P

E
(%

)

m

our approach
heuristic

Fig. 7. The RMSD of PE with respect to the om-
niscient approach vs. m.

omniscient approach. From Fig. 5(a) and 5(b), we can see that our approach converges
to the optimal results after 8 calibration cycles. Moreover, our approach can respond
to the target change within 3 calibration cycles. In contrast, the heuristic approach
has considerably large deviations from the optimal results. Specifically, in Fig. 5(a),
the average relative errors of our approach and the heuristic approach after the 10th

calibration cycle are 12.8% and 30.5%, respectively.

10. TRACE-DRIVEN SIMULATIONS

In addition to the testbed experiments, we also conduct trace-driven simulations to
extensively evaluate the performance of our calibration approach.

10.1. Simulation Methodology and Settings

We use the real data traces collected in the DARPA SensIT vehicle detection experi-
ment [Duarte and Hu 2004], where 75 WINS NG 2.0 nodes are deployed to detect Am-
phibious Assault Vehicles (AAVs) driving through a road section. We refer to [Duarte
and Hu 2004] for detailed setup of the experiment. The dataset used in our simulations
includes the ground truth data and the acoustic time series recorded by 17 nodes at a
frequency of 4960Hz. The ground truth data include the positions of sensors and the
trajectory of the AAV recorded by a GPS device. Fig. 6 [Duarte and Hu 2004] shows the
sensor deployment and the trajectory of an AAV run. In order to evaluate the calibra-
tion algorithms in the case of changing noise level, we first let the target appears at a
fixed location shown in Fig. 6. A sensor’s measurement is set to be the real measure-
ment when the AAV is closest to the fixed location. Besides the case of static target,
we also evaluate our approach in detecting the moving target, where the whole data
traces are used. The AAV is regarded to be present when it is in the circular region
shown in Fig. 6. As it often takes tens of seconds for the AAV to drive through the
road section in Fig. 6, the sampling period of the sensors, i.e., D, is set to be 15 sec-
onds in the simulations. The target appearance probability Pa is set to be 25% except
those explicitly specified. As there is no extra high-quality sensor such as camera in
the SensIT experiment, we use a pseudo camera in the simulations, which generates
random detection results based on the ground truth data. The pseudo camera’s false
alarm rate and missing probability, i.e., PFH and PMH , are both set to be 1%.

10.2. Simulation Results

10.2.1. Convergence and Adaptability. In this set of simulations, we evaluate the con-
vergence and adaptability of our calibration approach in the cases of changing noise
and moving targets, respectively. Fig. 8(a) plots the detection thresholds calibrated by
various approaches in detecting a static targets with changing noise level. The noise
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Fig. 9. Camera’s wasted energy caused by false alarms vs. index of calibration cycle.

standard deviation of each sensor, i.e., σi, decreases by 4 × 10−4 in each calibration
cycle from the 10th calibration cycle. Fig. 8(b) plots the results of detecting moving tar-
gets. Note that calibrating the sensors for detecting moving target is challenging as the
aggregated signal energies, i.e., S, significantly varies when the target is at different
locations. In our experiment, the optimal detection threshold Topt in each calibration
cycle varies from 0.528 to 2.379 due to the changing S caused by the movement of the
target. The detection threshold of the omniscient approach plotted in Fig. 8(b) is cal-
culated using (2) where the S is computed as the average of the aggregated signal
energies when the target is within the circular region shown in Fig. 6. From the fig-
ures, we can see that our approach converges to the optimal results after 10 calibration
cycles and can adapt to changing noise level as well as moving target. Although the
heuristic approach has short rise time, it has considerably large steady-state error.

We now evaluate the energy consumed by the camera in processing images triggered
by false alarms. Suppose the camera consumes e Joules per target recognition task.
Fig. 9 plots the camera’s wasted energy caused by false alarms of the low-end sensors,
which corresponds to the results shown in Fig. 8. We can see from the figure that the
wasted energy drops to a low level when the system converges. The results show that,
by taking advantage of the on-demand activation strategy, the calibrated system is ef-
fective in reducing the energy consumption of the high-quality sensor. As the detection
threshold calibrated by the heuristic approach is higher than our approach in Fig. 8(a),
the heuristic approach has fewer false alarms leading to less wasted energy as shown
in Fig. 9(a). However, the error rate of the heuristic approach does not converge to
its minimum due to the considerably large steady-state errors shown in Fig. 8(a). In
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Fig. 9(b), the heuristic approach incurs more wasted energy due to its lower detection
threshold as shown in Fig. 8(b).

From the error analysis in Section 5.2, the number of detections in a calibration
cycle, i.e., m, affects the accuracy of feedback. The second set of simulations evaluate
the impact of m on the performance of our calibration algorithm. We employ the root
mean square deviation (RMSD) of PE with respect to the omniscient approach as the
performance metric. Specifically, RMSD(PE) =

√
E[(PE − PE,opt)2], where PE,opt is the

average error rate of the omniscient approach. Fig. 7 plots the RMSD of PE versus
m. The system shows better convergence for larger m, which is consistent with our
analysis in Section 5.2. Moreover, our approach yields smaller RMSD of PE than the
heuristic approach under a wide range of m.

10.2.2. Impact of Communication Performance. In this set of simulations, we evaluate the
impacts of packet loss and feedback delay that are analyzed in Section 7. We employ
the link model in [Zuniga and Krishnamachari 2004] to compute the PRR of each link
in the system. The routing path from each sensor to the cluster head (shown in Fig. 6)
is computed by Dijkstra’s algorithm. Besides the optimal routing algorithm proposed
in Section 7.1, we employ a baseline routing algorithm in which the cost of link h is
1

p(h) , where p(h) is the PRR of link h. Such a metric is widely adopted to characterize

the expected number of transmissions on a lossy link [Woo et al. 2003]. Fig. 10 plots
the RMSD of PE under various routing algorithms versus the transmission power PTx

at each sensor. We can see from the figure that our approach with the optimal routing
algorithm converges when the PTx is no lower than 9 dBm. However, the system shows
considerably large deviation when the baseline routing algorithm is used. Fig. 11 plots
the RMSD of PE versus the feedback delay d. We can see that our calibration algorithm
is robust to feedback delay. Specifically, the RMSD of PE increases 1% even if the delay
is 10 calibration cycles.

10.2.3. Handling Rapidly Changing Pa. We finally evaluate the minimax detection ap-
proaches that are proposed in Section 8 to handle unknown and changeable target
appearance probability. In the simulations, the target appearance probability Pa is
randomly chosen from [0.1, 0.9] for each calibration cycle. Moreover, in order to evalu-
ate the adaptability of the proposed approaches, the noise standard deviation of each
sensor, i.e., σi, decreases by 4 × 10−4 in each calibration cycle from the 10th calibra-
tion cycle. As discussed in Section 8.1, due to unknown Pa, extra camera activations
are needed to estimate the number of target appearances so that we can compute the
false alarm rate and missing probability. In the simulations, the camera is periodically
activated for na times during each calibration cycle. Therefore, the extra camera uti-
lization is na

m
. Besides the minimax detection approaches proposed in Section 8, we

employ an online estimation approach to study the impact of rapidly changing target
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appearance probability on system detection performance. We assume that the online
estimation approach can accurately estimate S, µ and σ2. Moreover, it uses the Pa that
is estimated from the extra camera activations in the previous calibration cycle to cal-
culate the detection threshold for the current cycle using (2). Therefore, the estimated
Pa can be significantly different from the true value due to the rapid change of Pa.

Fig. 12 plots the deviation of PE from the omniscient approach. We can see that the
detection performance of the online estimation approach varies significantly. This re-
sult is consistent with the conclusion in [Duda et al. 2001] that the performance of
an optimal Bayesian detector based on inaccurate prior probabilities can deteriorate
seriously. In contrast, we can see from Fig. 12 that the minimax approaches based on
value fusion and decision fusion models show significantly less variance than the on-
line estimation approach. Moreover, they achieve comparable detection performance.
Fig. 13 plots the RMSD of PE with respect to the omniscient approach versus the extra
camera utilization. We can see that the detection performance of the online estima-
tion approach and the value fusion-based minimax approach does not degrade when
the extra camera utilization is as low as 1/10. However, the error rate of the decision
fusion-based minimax approach increases when camera utilization decreases. There-
fore, value fusion is more robust to the inaccurate estimation of the number of target
appearances in case of unknown Pa.

11. CONCLUSION

The performance of a CPS system composed of low-cost sensors is inevitably under-
mined by the physical uncertainties from sensor hardware, environment and the mon-
itored physical process. In this paper, we focus on calibrating a class of CPS systems
whose primary objective is to detect events or targets of interest. We propose an adap-
tive calibration approach that exploits sensor heterogeneity and features a feedback
control loop to deal with these uncertainties. We develop a control-theoretical cali-
bration algorithm that ensures provable system stability and convergence. We also
systematically analyze the impacts of several communication issues such as communi-
cation reliability and delay, and propose an optimal routing algorithm that minimizes
the impact of packet loss on system stability. Moreover, we extend our approach to
address various data fusion models and rapidly changing dynamics of the monitored
physical process. The experiment results on a testbed of Tmotes as well as extensive
trace-driven simulations demonstrate that the calibrated system maintains the opti-
mal detection performance in the presence of various system and environmental dy-
namics.
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APPENDIX

A. OPTIMAL BAYESIAN DETECTOR

The optimal decision rule that minimizes E[c] is given by the likelihood ratio test

[Duda et al. 2001]: p(Y |H1)
p(Y |H0)

H̃1

≷
H̃0

P(H0)
P(H1)

· C10−C00

C01−C11

. We now derive the likelihoods p(Y |H0)

and p(Y |H1). When the target is present, Y |H0 =
∑N

i=1ni ∼ N
(
µ, σ2

)
. When the tar-

get is present, Y |H1 =
∑N

i=1si+
∑N

i=1ni ∼ N
(
µ+S, σ2

)
. Hence, p(Y |H0) = φ(Y |µ, σ2)

and p(Y |H1) = φ(Y |µ + S, σ2), where φ(x|µ, σ2) is the probability density function of

the normal distribution N (µ, σ2), i.e., φ(x|µ, σ2) = 1√
2πσ

exp
(
− (x−µ)2

2σ2

)
. Therefore, the

likelihood ratio is p(Y |H1)
p(Y |H0)

= exp
(

(2Y−2µ−S)S
2σ2

)
and the likelihood ratio test becomes the

threshold-base decision rule presented in Section 4.2.

B. ERROR ANALYSIS FOR FEEDBACK OF HIGH-QUALITY SENSOR

As the high-quality sensor can detect the target with high fidelity, the number of false
alarms and misses made by the low-end sensors (i.e., nf1 and nd1, respectively) can
be accurately estimated. Therefore, we ignore the detection errors of the high-quality
sensor in the following analysis. The true PFL is given by PFL =

nf1

n0

, where n0 de-

notes the number of detections when no target is present. As the estimate P̃FL given

by (5) uses the mean value of n0, i.e., P̃FL =
nf1

E[n0]
where E[n0] = m − m · Pa, the

error of P̃FL is mainly due to the fluctuation of n0. The relative error of P̃FL, de-

noted by e, is given by e = P̃FL−PFL

PFL
= n0−E[n0]

E[n0]
. Moreover, Var[n0] =E[(n0 − E[n0])

2] =

E[e2(E[n0])
2] =E[e2](E[n0])

2, where n0 − E[n0] is replaced by eE[n0]. Therefore, the rel-

ative root mean square error (RRMSE) [NIST/SEMATECH 2010] of P̃FL is given by

RRMSE =
√
E[e2] =

√
Var[n0]

E[n0]
=

√
Pa

1−Pa
· 1
m

. Note that as n0 follows the binomial dis-

tribution with success probability of 1 − Pa, Var[n0] = m(1 − Pa)Pa. The error analy-

sis for P̃ML is omitted as it has similar result. Suppose the accuracy requirement is
RRMSE ≤ ǫ, we can choose m ≥ Pa

1−Pa
· 1
ǫ2

. For instance, if Pa = 10%, we can choose

m = 50 to achieve an accuracy of ǫ = 5%.

C. STABILITY ANALYSIS ON FEEDBACK DELAY

In this section, we discuss the impact of feedback delay on the calibration algorithm in
Section 6. When H(z) = z−d, the closed-loop transfer function of the system is Tc(z) =
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Gc(z)Gp(z)
1+Gc(z)Gp(z)H(z) =

2aS

σ2
·zd

zd−zd−1+ 2aS

σ2

. Note that Gc(z) =
a

1−z−1 which is derived in Section 6.

The characteristic polynomial is P (z) = zd − zd−1 + 2aS
σ2 . In the Jury test [Ogata 1995],

the following conditions must be satisfied for the system stability under any d > 1: 1)∣∣2aS
σ2

∣∣ > 1; 2) P (1) > 0; and 3) (−1)d · P (−1) > 0. By solving the above inequalities,

we have σ2

2S < a < σ2

S
. We now investigate the stability condition under particular

d. From the Jury stability tables shown in Fig. 14, the stability condition for d = 2

is
∣∣ 2aS
σ2

∣∣ > 1
⋂

σ2

2S < a < σ2

S
, i.e., σ2

2S < a < σ2

S
, and the stability condition for

d = 3 is
∣∣∣
(
2aS
σ2

)2 − 1
∣∣∣ >

∣∣− 2aS
σ2

∣∣ ⋂
σ2

2S < a < σ2

S
, i.e., 1+

√
5

4 · σ2

S
< a < σ2

S
. The stability

conditions for d = 4 and d = 5 are 0.901 · σ2

S
< a < σ2

S
and 0.94 · σ2

S
< a < σ2

S
, respectively,

which are computed via numerical method.

D. EVALUATION OF MONOTONICITY

In this section, we evaluate the monotonicity of f(α,β) with respect to
∑N

i=1(αi+βi) by
Monte Carlo method. For each trial, two points are randomly and uniformly sampled
from the 2N -dimensional space {αi, βi|i ∈ [1, N ], αi ∈ (0, 1), βi ∈ (0, 1)} to calculate

f(α,β) and
∑N

i=1(αi + βi). We conduct a large number of trials (106 in this paper)

to estimate the probability that f(α,β) decreases with
∑N

i=1(αi + βi). Fig. 15 plots the

probability that f(α,β) decreases with
∑N

i=1(αi+βi) versus the number of sensors, i.e.,

N . The results show that f(α,β) decreases with
∑N

i=1(αi + βi) with a high probability
(> 98% when N ≥ 3).
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