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Data centers have become a critical computing infrastructure in the era of cloud computing. Tempera-
ture monitoring and forecasting are essential for preventing server shutdowns because of overheating and
improving a data center’s energy efficiency. This article presents a novel cyber-physical approach for tem-
perature forecasting in data centers, one that integrates Computational Fluid Dynamics (CFD) modeling, in
situ wireless sensing, and real-time data-driven prediction. To ensure forecasting fidelity, we leverage the
realistic physical thermodynamic models of CFD to generate transient temperature distribution and cali-
brate it using sensor feedback. Both simulated temperature distribution and sensor measurements are then
used to train a real-time prediction algorithm. As a result, our approach reduces not only the computational
complexity of online temperature modeling and prediction, but also the number of deployed sensors, which
enables a portable, noninvasive thermal monitoring solution that does not rely on the infrastructure of a
monitored data center. We extensively evaluated the proposed system on a rack of 15 servers and a testbed
of five racks and 229 servers in a small-scale production data center. Our results show that our system can
predict the temperature evolution of servers with highly dynamic workloads at an average error of 0.52◦C,
within a duration up to 10 minutes. Moreover, our approach can reduce the required number of sensors by
67% while maintaining desirable prediction fidelity.
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1. INTRODUCTION

Data centers have become a critical computing infrastructure in the era of cloud com-
puting. Research has shown that more than 23% of data center outages are caused by
servers’ self-protective shutdowns because of overheating [Aperture Research Institute
2007]. For instance, Wikipedia, a popular online encyclopedia, went down on March
24, 2010 because of server overheating [WikiMedia Foundation 2010]. Currently, the
common practice to prevent overheating is to overcool server rooms. Due to such a
conservative strategy, the cooling systems consume excessive power, which makes up
to 50% of the total energy consumption in many data centers [U.S. Environmental
Protection Agency 2007].

Various thermal management schemes for improving the energy efficiency of data
centers rely on real-time and high-fidelity ambient temperature monitoring [Bash
et al. 2006; Bash and Forman 2007; Moore et al. 2005; Tang et al. 2008]. However,
the existing data centers typically have limited temperature monitoring capability.
For instance, the servers in many legacy data centers are equipped with motherboard
temperature sensors only, which cannot accurately measure the ambient temperature
[Liang et al. 2009]. Recently, the Wireless Sensor Network (WSN) has been identified
as an ideal enabling technology for thermal monitoring in data centers due to several
of its salient advantages, including sufficient coverage and no reliance on additional
network and facility infrastructure in already complicated data center environments.
However, precise temperature monitoring alone may not be sufficient for preventing
unexpected server shutdowns because various thermal emergencies may quickly cause
overheating. Therefore, it is important to design temperature prediction systems to
forecast potential overheating events such that the thermal actuators (e.g., the cooling
systems) have enough time to react. Moreover, the prediction system can also send
alarm messages to the data center administrators for human intervention if necessary.
In addition to overheating alarms, proactive thermal control systems for data centers
[Chen et al. 2013] can be built on real-time temperature prediction, through which
energy efficiency and hardware reliability can be significantly improved. Specifically,
with accurately predicted temperature evolution in the near future, cooling systems can
safely increase the temperature setpoints without leading to server overheating and
thus improve energy efficiency in data centers [Bash et al. 2006]. Moreover, proactive
control can reduce transient temperature variation, which is shown to contribute to
the hardware failure rates in data centers [El-Sayed et al. 2012].

However, several major challenges must be addressed in designing a real-time and
high-fidelity temperature prediction system. First, data centers are complex Cyber-
Physical Systems (CPS) whose thermal characteristics are inherently affected by both
physical (e.g., complex airflows and server deployment layout) and cyber (dynamic
server workloads) factors. Therefore, prediction algorithms based on simplified phys-
ical and cyber models would not yield satisfactory performance. Second, the number
of locations where temperatures are of particular interest (e.g., the inlets and outlets
of all servers) is often large, making it prohibitively expensive to deploy a sensor at
each such location. It is challenging to reduce the number of sensors while maintain-
ing satisfactory temperature prediction accuracy. Third, it is desirable to decouple the
prediction system and the computing resources of the monitored data center. This de-
sign not only avoids potential interruptions to the prediction system due to unexpected
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server shutdowns, but also improves system portability. To this end, the prediction sys-
tem must operate on limited computing resources while maintaining high prediction
fidelity.

To address these challenges, we propose a novel cyber-physical approach that inte-
grates in situ wireless sensors, transient Computational Fluid Dynamics (CFD) mod-
eling [Wendt 1995], and real-time data-driven prediction algorithms. CFD is a widely
adopted numerical tool that can simulate the future evolution of temperature dis-
tribution in data centers. However, without accounting for runtime behaviors of the
data center, CFD has highly variable accuracy, poor scalability, and prohibitive com-
putational complexity, which make it ill-suited for high-fidelity online prediction. To
overcome these limitations, our approach leverages the realistic physical thermody-
namic models provided by CFD to generate simulated temperature distribution, which
is then integrated with the real sensor measurements to train the real-time prediction
algorithm. Moreover, unlike traditional thermal management solutions where CFD is
used in an open-loop fashion, our approach utilizes real sensor feedback to calibrate
the CFD simulation results. Our approach has the following advantages.

First, by leveraging transient CFD modeling, our approach ensures the fidelity of
predicting many rare but critical thermal emergencies (e.g., cooling system failures)
that may not be captured by real sensors in operational data centers. Second, by in-
tegrating realistic physical CFD models and real sensor measurements, our approach
only requires prediction algorithms with low computational complexity. This enables
the development of portable thermal management systems that do not rely on the in-
frastructure of the monitored data center. Finally, because CFD can simulate the tem-
perature at uninstrumented locations, our approach significantly reduces the number
of sensors without leading to substantial degradation of prediction fidelity.

We implemented our temperature prediction system using 36 wireless motes
equipped with temperature and airflow sensors. We deployed our system in a single-
rack testbed composed of 15 running servers and in a small-scale production data
center testbed composed of five racks and 229 servers. The extensive evaluation shows
that our system can predict the temperature evolution of servers with highly dynamic
workloads at an average error of 0.52◦C, within a duration up to 10 minutes.

2. RELATED WORK

Existing approaches for data center thermal management can be broadly divided into
two groups. The first group of approaches focuses on assignment of server workload
based on physical thermodynamic models to improve the energy efficiency of data cen-
ters. In Bash and Forman [2007], cooling-efficient servers are identified and assigned
with more workload. In Moore et al. [2005], heat recirculation is minimized by dis-
tributing computing power to those servers with less heat recirculation at their inlets.
Tang et al. propose abstract models to distribute computing power in a data center by
minimizing peak inlet temperatures [Tang et al. 2008].

The second group of approaches focuses on the modeling and prediction of temper-
ature distribution to prevent thermal emergencies. In Heath et al. [2006] and Ramos
and Bianchini [2008], the temperature distribution of a single server is emulated based
on simplified thermodynamic laws, CPU temperature/utilization, and airflow velocity.
In Tang et al. [2006], a heat flow model is proposed to characterize heat recirculation
and predict the temperature distribution. In Moore et al. [2006], an artificial neural
network is employed to learn and predict steady-state temperature distribution under
static workload assignment. However, these approaches rely on steady-state thermal
models that cannot well model temperature evolution when the heat dissipation from
servers is dynamic. They also require a controlled training procedure that is usually
intrusive or even infeasible in a production data center. Moreover, such data-driven

ACM Transactions on Sensor Networks, Vol. 11, No. 2, Article 30, Publication date: December 2014.



30:4 J. Chen et al.

approaches often suffer low prediction fidelity due to insufficient training data, espe-
cially for rare but critical thermal emergency conditions like cooling system failures. In
Choi et al. [2007], a CFD model is constructed to enable offline temperature prediction
and analysis for critical thermal emergencies but without online prediction capability.
In Li et al. [2011], a forecasting model, called ThermoCast, predicts the temperature
distribution in the near future based on a simplified thermodynamic model. However,
the model relies on several specific assumptions on airflow dynamics that may not hold
in diverse data center environments. For instance, it assumes that the cold air runs
vertically from raised floor tiles. This does not hold in many data centers where the
cooling equipment is placed in the rows of the racks [Niemann 2006; Bell 2012] or near
the racks [Rasmussen 2011], which generates significant side-to-side airflow. A recent
work [Jonas et al. 2012] predicts the temperature as a weighted average of contribut-
ing temperatures of each heat source, where the model coefficients are determined via
offline CFD simulations. Thus, this approach does not leverage the real temperature
measurements in a data center to ensure prediction accuracy.

Several sensor systems have been developed for temperature monitoring in data cen-
ters [Liang et al. 2009; Choochaisri et al. 2010]. RACNet [Liang et al. 2009] is designed
for reliable data collection in large-scale data centers, where each node is connected
with multiple daisy-chained temperature sensors. In Wang et al. [2011], a fusion-based
approach is developed to detect hot spots in data centers using measurements of mul-
tiple sensors. Robotic systems have also been designed to roam inside the data centers
for plotting thermal maps [Mansley et al. 2011] and energy management [Lenchner
et al. 2011]. In Biswas et al. [2011], thermoelectric coolers on server processors are used
to remove heat directly from hot processors. However, these studies are not concerned
with real-time temperature prediction or could not be used for legacy data centers
where the servers are not equipped with thermoelectric coolers.

3. PROBLEM STATEMENT AND APPROACH OVERVIEW

3.1. Problem Statement

The temperatures at the inlet and outlet of a server are critical thermal conditions
for the operation of the server. The inlet temperature is often defined as the server’s
operating ambient temperature, which must be within a small range (e.g., 15◦C to
27◦C [ASHRAE Technical Committee 9.9 2011]). The outlet temperature characterizes
the amount of heat that needs to be removed by Air Conditioners (ACs) to avoid over-
heating. Therefore, in this work, we aim to predict the temperatures at the inlets and
outlets of the servers of interest. The set of these temperatures is referred to as temper-
ature distribution. The accurate prediction of the temporal evolution of temperature
distribution is challenging because of the complex thermal and air dynamics in data
centers. Specifically, the dynamic workload and other server activities (e.g., disk and
network access) generate different amounts of heat over time. The heat is dissipated by
extremely complex airflows that are driven by server internal fans and ACs. Moreover,
the heat dissipation is highly dependent on the racks and other physical structures in
a data center.

Our temperature distribution forecasting system is designed to meet the following
objectives. (1) High fidelity. We aim to achieve high prediction fidelity with about a 1◦C
error bound. This requirement ensures that the predicted temperature will not trigger
excessive false overheating alarms or miss real overheating events. Moreover, as shown
in Moore et al. [2005], a 1◦C increase of the maximum server inlet temperature can
lead to 10% higher cooling costs. Therefore, high prediction fidelity allows servers to
operate with less conservative temperature setpoints, improving the energy efficiency
of data centers. (2) Long prediction horizon. The system should achieve satisfactory
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prediction accuracy over a considerably long time duration (e.g., 10 minutes), referred
to as the prediction horizon, into the future. We focus on providing a prediction horizon
in the order of minutes. This is motivated by the fact that it usually takes up to several
minutes to reach the overheating temperature [Active Power, Inc. 2007] in thermal
emergencies (e.g., excessive server overload or AC failure). This provides enough time
for the thermal actuators (e.g., ACs) to prevent overheating, as well as for data center
administrators to make necessary interventions. However, a longer prediction horizon
often requires the sacrifice of prediction fidelity. (3) Full coverage of thermal condi-
tions. Our approach is designed to predict the temperature distribution under normal
working conditions of the data center, in which overheating is mainly due to high
workload, as well as those abnormal and emergency situations (e.g., AC failures) that
can lead to catastrophic consequences. (4) Timeliness and low overhead. To enable
prompt actuation, the prediction should be performed in an online fashion with tight
real-time requirements. The overhead of the prediction system should be affordable
for low-end servers, desktop computers, or even embedded computing devices so that
the system can be easily deployed and operated in a noninvasive fashion and without
relying on the infrastructure of the monitored data center.

CFD [Wendt 1995] is a widely used tool to guide data center layout and cooling
system design. The predictive nature of CFD also allows the user to simulate the
future evolution of temperature distribution. However, CFD has the following two
major limitations. First, the accuracy of CFD highly depends on how well the adopted
thermodynamic models reflect the realities. Considerable expertise and labor-intensive
fine- tuning are often required in the modeling process, which makes fine-grained CFD
simulation intractable for medium- to large-scale data centers. Moreover, CFD often
has considerable temperature modeling errors that range from 2◦C to 5◦C [Wang et al.
2011; Singh et al. 2010]. This often leads to highly conservative temperature setpoints,
resulting in excessively high power consumption by cooling systems in a data center.
Second, CFD has high computational complexity that prohibits it from temperature
prediction at runtime. For instance, it can take 5 minutes on a high-end 12-core server
to simulate 5 seconds of the temperature evolution of a rack equipped with 15 servers.
As a result, CFD alone is not sufficient for high-fidelity and real-time temperature
prediction in data centers.

3.2. Approach Overview

Our approach integrates in situ wireless/on-board sensors, transient CFD simulation,
and real-time prediction modeling to achieve high-fidelity temperature prediction in
data centers. The sensors collect environment temperature and airflow velocity data
at various physical locations (e.g., server inlets, outlets, fans, raised floor tiles, AC cold
air inlets and hot air outlets). The collected data are then used to train the time series
prediction models. To ensure modeling fidelity, multiple models are used to capture nor-
mal and various abnormal working states, such as the failure of different AC units. A
challenge for such a training-based approach is to collect sufficient datasets that cover
various thermal conditions, especially for those abnormal and emergency situations
that rarely happen but have catastrophe consequences. The controlled experiments for
generating these situations are often intrusive or even harmful in operational data
centers. To address this issue, we leverage transient CFD simulation, which is capable
of simulating any overheating condition, to generate additional training data for the
prediction models. This approach avoids running the computationally intensive CFD
in an online fashion, yet preserves the realistic physical characteristics of the training
data. The CFD simulation results are also calibrated by runtime sensor measurements.
As a result, our approach only requires moderately accurate CFD modeling, thus signif-
icantly reducing the efforts of CFD model tuning. Another advantage of our approach
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Fig. 1. Prediction system architecture.

is that, by integrating CFD simulation and runtime sensor measurements, the number
of required sensors is significantly reduced, leading to lower deployment costs and less
intrusiveness to production data centers.

Figure 1 illustrates the architecture of our prediction system. The system con-
sists of three major components. (1) Data collection. This component periodically
collects the measurements of CPU utilization and server fan speed through on-board
sensors while using a WSN to collect the measurements of temperatures and airflow
velocities. The historical measurements are used to calibrate the CFD modeling and
train the prediction models, whereas the runtime sensor measurements are fed to the
real-time prediction component to predict temperatures. (2) CFD modeling and cali-
bration. In addition to sensor measurements, a key feature of our system is to leverage
the transient CFD simulation to compute fine-grained temperature evolution, which
assists the training of the time series prediction models. Our system uses in situ sensor
measurements to calibrate the transient CFD simulations and generate calibrated tem-
perature time series data for normal and various abnormal thermal conditions, such
AC failures. These results are then fed as training data to the real-time prediction
component. (3) Real-time multichannel and multihorizon temperature predic-
tion. The real-time prediction component constructs time series prediction models with
training data from both historical measurements and CFD simulations, and it outputs
the runtime temperature predictions. Although complex nonlinear models may achieve
good prediction accuracy, they often have high complexity. Our solution uses multiple
simple linear models to approximate the complex nonlinear thermodynamic laws. For
each different major thermal condition (hereafter referred to as a channel), such as the
failure of different AC units, multiple prediction models with different prediction hori-
zons are constructed. Different prediction horizons in our system give administrators
more flexibility in implementing thermal actuators (e.g., taking appropriate measures
in an incremental fashion).

4. CFD MODELING AND CALIBRATION

In this section, we first briefly introduce CFD and then present a case study of mod-
eling a rack of servers using CFD. The case study helps us understand the major
limitations of CFD. We then present an approach to calibrating CFD using real sensor
measurements.
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Fig. 2. (a) Server geometries with temperature sensor locations; (b) Side view of the steady-state tempera-
ture map when the servers in Group 1 and Group 2 are running with full utilization.

4.1. Background on CFD

CFD is a widely adopted numerical tool to simulate future temperature evolution. It
iteratively solves a system of fluid and heat transfer equations in the form of non-
linear partial differential equations under the constraints of mass, momentum, and
energy conservation. The nonlinear nature of these equations and the complex bound-
ary conditions in data center environments (e.g., the physical structures) usually make
it impossible to solve these equations analytically. Therefore, CFD typically solves
these equations using numerical approaches. Specifically, by dividing the continuous
fluid field into small cells, CFD solves the fluid and heat transfer equations in each
cell with significantly simplified boundary conditions. The global optimal solution is
found iteratively, in which all cells meet the convergence requirements, thus giving
the steady-state temperature distribution. For the transient simulation, the model is
also discretized into small time steps in the time domain. At each time step, CFD
iteratively finds the global optimal solution, giving the transient temperature distri-
bution. The boundary conditions such as AC airflow temperature, velocity, and power
consumption of servers can also be set for each time step with user-defined values (e.g.,
sensor measurements) so that CFD can simulate any normal or abnormal thermal sit-
uations. Therefore, the accuracy of transient CFD modeling is particularly important
for achieving high prediction fidelity.

4.2. A Case Study

We now present a case study using CFD to model a testbed of rack servers, which helps
us understand the performance limitations of CFD. Figure 2(a) shows the physical
geometry of a rack server testbed. A total of 15 servers on the rack are grouped into
five server groups. The detailed settings of the server rack can be found in Section 6. For
CFD modeling, we use wireless sensors to measure the boundary conditions, including
the temperatures and velocities of the air discharged by the AC and exhausted by the
ceiling vent. A total of 30 sensors are deployed to measure the temperature distribution
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Fig. 3. Real sensor readings and CFD prediction. Case 1: Servers in Group 1 and Group 2 run with full
utilization; Case 2: AC failure.

Fig. 4. Transient temperatures at the outlet of the lowest server (sensor: real sensor readings; CFD: tran-
sient simulation result of CFD; calibrated: calibrated transient simulation result of CFD).

around the rack. Nodes 1–15 are installed at the outlets of the servers, and Nodes 16–30
are installed at the inlets of the servers.

Figure 2(b) shows the steady-state temperature map calculated by CFD software
(Fluent) when servers in Group 1 and Group 2 are running with full utilization (re-
ferred to as Case 1). We can see that the cold air is mostly drawn by the lower servers,
and the two groups of servers running with full utilization have much higher exhaust
air temperatures than other servers. Figure 3 plots the sensor readings as well as the
temperatures calculated by CFD. We can see that, for Case 1, CFD can accurately pre-
dict the steady-state temperature distribution. The Root-Mean-Square Error (RMSE)
across all sensors is only 0.7◦C. The result in Figure 3 is achieved by extensively tun-
ing CFD with the help from an expert with 20 years of experience in CFD modeling.
For instance, the exhaust airflow of servers, the cooling airflow of the AC, and the
corresponding sensor locations in the CFD physical model were carefully adjusted in
a number of iterations. We note that such an extensive tuning process is a common
practice for constructing CFD for real data centers. We then use the well-tuned CFD
to predict the steady-state temperature distribution for the case of AC failure (referred
to as Case 2). Figure 3 shows that the CFD exhibits considerable errors (RMSE of
4.4◦C) in case of AC failure. In addition to the steady-state prediction, we also examine
the accuracy of CFD in a transient simulation, which is critical for the performance of
real-time prediction. Figure 4 shows the temporal evolution at the location of sensor
1 computed by CFD, as well as the real readings from sensor 1. During this period,
the CPU utilizations of servers are varied, resulting in highly dynamic temperatures
at this sensor location. It can be clearly seen that the CFD result contains significant
biases with respect to the real sensor readings. The major reason for those errors
is that CFD does not exactly model the true data center environment and all its
important system parameters (e.g., material properties). In practice, it is extremely
difficult and labor-intensive to construct a CFD model that is accurate in all thermal
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conditions. Therefore, to make CFD practical in our prediction system, we discuss in
Section 4.3 how to calibrate the temperature data simulated by CFD using real sensor
measurements collected in the data center. Such calibration significantly reduces the
dependency of prediction performance on CFD modeling.

4.3. CFD Calibration

The results from Section 4.2 show that the CFD simulation exhibits considerable errors,
particularly in transient-state simulations. To address this limitation, we propose cali-
brating the CFD simulation results using runtime sensor measurements. By denoting
xi and yi as the temperature calculated by CFD and the calibrated temperature at the
position of sensor i, the calibration function is given by yi = ∑K

k=0 ai,k ·xk
i , where K is the

order of the calibration function and ai,k are the coefficients to be learned from training
data. By providing real sensor data as yi, the coefficients ai,k can be learned based on
the least-square criterion. For each sensor, a calibration function is constructed as long
as there are sufficient real sensor measurements collected. As an example, we use the
first 3 hours of data in Figure 4 to construct the calibration function for each sensor
and then use all the data for testing. Figure 4 also shows an example of calibrated CFD
results with K = 1.

5. REAL-TIME TEMPERATURE PREDICTION

This section first presents our approach of predicting temperature distributions using
a linear prediction model and then discusses the training of the prediction model.

5.1. Real-Time Prediction Model

Suppose that wireless temperature sensors are deployed at the inlets and outlets
of a total of N monitored servers. The temperature distribution is defined as t =
[t1

in; t1
out; . . . ; tN

in ; tN
out] ∈ R

2N×1, where tn
in and tn

out denote the temperatures at the inlet and
outlet of the nth server. The prediction model should include the observable variables
that significantly affect t to achieve the accurate prediction of t. In this work, our
prediction model accounts for the temperatures (denoted by c) and velocities (denoted
by v) of the cold airflow distributed by the ACs, CPU utilization (denoted by u), and
internal fan speeds (denoted by s) of all monitored servers. Moreover, the historical
temperature distributions also largely affect the temperature distributions in the near
future. Therefore, we define the state of the monitored servers at a time instance,
denoted by p, as the concatenation of t, c, v, u, and s. Specifically, p = [t; c; v; u; s].
Our approach can be easily extended to include other observable variables to address
various kinds of servers. For instance, hard disc access rates can play an important
role in the temperature distribution of file servers.

We assume that each variable in p can be measured periodically and synchronously
by multiple sensors. In the rest of this article, the period of data collection is referred
to as the time step. Intuitively, the most recent states significantly affect the current
and the future states. In our approach, we predict the temperature distribution at
time step (t + k) based on the most recent R states, where t ∈ Z denotes current time
step, and k ∈ Z is referred to as the prediction horizon. For a given k, we assume
that the predicted temperature distribution1 at time step (t + k) is given by t̂(t +
k) = fk(p(t), p(t − 1), . . . , p(t − R + 1)), where fk(·) is the function characterizing the
physical law governing the thermodynamic process. However, fk(·) is often difficult
to find in practice due to the highly complex data center environment. In this work,
we propose a linear prediction model to approximate fk(·), which allows the online

1For clarity of presentation, we let x̂ denote the predicted value of x.
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real-time prediction at low overhead. Supposing p = [p1; p2; . . .], define ps = [ps
1; ps

2; . . .]
where s ∈ Z. Moreover, we define q(t) = [p(t); p2(t); . . . ; ps(t)] and x(t) = [q(t); q(t −
1); . . . ; q(t − R + 1)]. According to Taylor’s theorem, the high-order Taylor polynomial
can well approximate a function. The sth order Taylor polynomial of fk(·) is given by
the linear combination of all the combinatorial terms of the elements in x(t), which,
however, results in exponential complexity with respect to N. Therefore, we ignore all
cross terms in the Taylor polynomial and adopt the following linear prediction model:

t̂(t + k) = Ak · x(t), (1)

where Ak ∈ R
2N×M , and M is the length of x(t).

Since only the arithmetic calculations are involved in Equation (1), the prediction can
be efficiently computed even on low-power embedded platforms. Note that Ak is differ-
ent for each prediction horizon k. By setting increasing prediction horizons, Equation (1)
predicts the temporal evolution of the temperature distribution. Intuitively, because
the correlation between t and p decreases over time in a dynamic environment, the
prediction with a larger k becomes less accurate.

5.2. Model Training

During the normal running state of the data center, the training data are collected
from the wireless sensors (e.g., temperature and airflow velocity) or server on-board
sensors (e.g., CPU utilization and fan speed). In addition to sensor data, CFD data
are generated for normal and abnormal running states by manually giving different
boundary conditions to the CFD transient simulations. For example, different ACs can
be shut down during the CFD transient simulation. Suppose a dataset with a time step
index from 1 to L is collected after system deployment or generated by CFD to train
the linear model Ak for any given k. We adopt the least-square criterion to train Ak.
Specifically,

Ak = arg min
Ak

L−k∑

t=R

‖t(t + k) − t̂(t + k)‖2
�2

= arg min
Ak

L−k∑

t=R

‖t(t + k) − Ak · x(t)‖2
�2

,

where ‖ · ‖�2 represents the Euclidean norm. A desirable property of this formulation
is that the problem can be decomposed to the subproblems of finding the rows of
Ak separately. The separation can significantly reduce the computation complexity in
training. By denoting a j as the jth row of Ak and tj(t + k) as the jth element in t(t + k),
the subproblem is

a j = arg min
a j

L−k∑

t=R

(
tj(t + k) − a j · x(t)

)2
. (2)

The closed-form solution of a j is a j = (X�X)−1X�t j , where X = [x(R), x(R+1), . . . , x(L−
k)]� and t j = [tj(R + k); tj(R + k + 1); . . . ; tj(L)]. The matrix Ak can be constructed once
all its rows are computed.

We now discuss two practical issues related to model training.

5.2.1. Regularized Regression. Because the variables in the state p may be affected by
the same thermal conditions, they may be correlated with each other. This is called
multicollinearity in regression analysis. Multicollinearity can lead to inflation of the
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estimated coefficients in a j and hence adversely affects the performance of model train-
ing. A common approach to deal with multicollinearity problem is to use regularized
regression [Hoerl and Kennard 1970]. Specifically,

a j = arg min
a j

L−k∑

t=R

(tj(t + k) − a j · x(t))2 + λ‖a j‖2,

where λ is the regulation factor. By including the norm of a j in the minimization, the
inflation of the coefficients in a j can be effectively restricted. The closed-form solution
of a j is a j = (X�X − λI)−1X�t j . As shown in Section 7.1.3, with proper settings for λ,
the regulation can improve the performance of the model training.

5.2.2. Training Data Generation Using CFD. A practical issue about training data genera-
tion using CFD is how to generate sufficient training data to ensure that the trained
model well captures the underlying thermal dynamics and thus delivers accurate pre-
dictions. A naive solution is to generate training data to fully cover all possible thermal
conditions. For instance, to generate training data for the channel that addresses AC
failure, the naive solution needs to simulate the AC failure under all possible initial
states. However, a major challenge here is that the state p has combinatorial complex-
ity. Due to the high dimensionality of p, enumerating all possible initial states in the
generated training data will incur extremely high computation overhead. Intuitively,
a certain amount of simulated data traces with initial states that sparsely span in
the state space may be sufficient to train the linear regression model. Based on this
intuition, we generate data traces with a random initial state p that is uniformly dis-
tributed within its possible range. The number of generated data traces should be large
enough to prevent overfitting. In Section 7.1.6, our experiments show that 10 transient
data traces generated by CFD are sufficient for training the model characterizing AC
failure for a rack of 15 servers.

5.3. Dimension Reduction

A monitored temperature instance (i.e., an element of the temperature distribution t)
may not be strongly correlated with every other variable in the state p. For small-scale
deployments such as a rack, the dimension of the state p is limited. With sufficient
training data, the regression result can accurately characterize the correlations be-
tween the monitored temperature and every other variable in p. However, for large-
scale deployments, such as a server room with many racks, the dimension of p is high.
For instance, on our small-scale production data center testbed (cf. Section 7.2), the
dimension of p is 229. As a result, the regression is prone to overfitting, which leads
to poor prediction performance. Therefore, before constructing the prediction model in
Equation (1), it is desirable to choose a subset of variables in p that are most corre-
lated to the monitored temperature to increase the prediction accuracy. In this work,
we present a dimension reduction approach that adopts the partial correlation metric
[Stuart et al. 2009] to rank the variables in p regarding their correlation with the
monitored temperature. We note that other approaches may also be applicable to the
dimension reduction problem [Van der Maaten et al. 2009]. Our approach performs
dimension reduction based on the variable ranking for each monitored temperature
separately. Specifically, let n denote the dimension of state p and pi denote the ith

element of p. To compute the partial correlation of the monitored temperature tj and a
variable pi, we first construct the linear regression models for predicting tj and pi based
on the remaining variables in p (i.e., {p1, . . . , pi−1, pi+1, . . . , pn}) using the approach de-
scribed in Section 5.2. Let t̂j and p̂i denote the predictions based on the remaining
variables in p. The partial correlation, denoted by ρ(tj, pi), is given by the correlation
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Fig. 5. Testbeds. (a) Single-rack testbed; (b) Production testbed (HPCC).

coefficient of the errors in predicting tj and pi using remaining variables; that is,

ρ(tj, pi) = r(tj − t̂j, pi − p̂i),

where r(·) measures the correlation coefficient. Therefore, the ρ(tj, pi) measures the
partial correlation between tj and pi at a particular horizon while the effects from
all other input variables are removed. After calculating the partial correlations
{ρ(tj, pi)|i ∈ [1, n]}, we choose a subset of variables in p with the highest partial de-
termination coefficients (i.e., ρ2(tj, pi)). With the chosen variables, we construct the
linear regression model in Equation (2), where the elements of a j corresponding to the
unselected variables are set to zero. Note that the dimension reduction result varies
with prediction horizon k.

6. SYSTEM IMPLEMENTATION AND DEPLOYMENT

We implemented the proposed system and deployed it on two testbeds. Here, we first
describe the set-up of the two testbeds and then discuss the system implementation.

6.1. Testbeds and Sensor Deployment

Our first single-rack testbed, shown in Figure 5(a), consists of a rack of 15 1U2 servers
in a 5 × 6-square-foot room insulated by foam boards. Two types of servers (4 Dell
PowerEdge 850 nodes and 11 Western Scientific nodes) are placed on the rack. The
rack is placed directly under an infrastructure ceiling vent that exhausts the hot air
out of the room. A portable AC made by Tripp Lite, Inc. (model SRCOOL12K) is placed
outside the room. It delivers cold air through the AC inlet located at the bottom of
the room in front of the rack, which is consistent with the cooling airflow used in

2U is the unit of the height of a server, which is 1.75 inches.
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the popular raised-floor cooling design. On the rack, the 15 servers are grouped every
three servers with a 2U distance between every adjacent two groups. A total of 15 Iris
[Memsic Corp. 2012] temperature sensors are mounted with brackets at the inlets of
the group of five servers, and another 15 temperature sensors (eight Iris and seven
TelosB [Memsic Corp. 2012]) are mounted with brackets at the outlets of these servers.
At the ceiling vent, a temperature sensor (TelosB) is mounted with a bracket, and a
F333 airflow velocity sensor [Degree Controls, Inc. 2011] is taped to face the exhausting
airflow. To monitor the AC cold airflow, we place a temperature sensor (Iris) in the AC
inlet register and tape an identical airflow velocity sensor in front of the register.
This small testbed allows us to study the fine-grained thermal dynamics of a single
rack. Moreover, by controlling the AC system, the testbed can emulate various thermal
emergency scenarios.

Figure 5(b) shows the second testbed in a server room of High Performance Computer
Center (HPCC) at Michigan State University. The testbed consists of 229 servers with
2,016 CPU cores on five server racks. Those racks are arranged in two rows with a
cold aisle between them. One row of racks is shown in Figure 5(b). In addition to the
raised-floor cooling system that blows cold air vertically from the floor tile into the cold
aisle, two in-row AC cooling units are installed between the racks for each row, which
produce major cold air at different heights and generate significant side-to-side airflow.
To prevent major hot air recirculation, two pieces of glass wall are installed at the end
of the cold aisle. We chain the sensors and mount them at both the front and rear doors
of the server racks to monitor the inlet and outlet temperatures, respectively. For one
rack, we evenly deploy eight sensors to monitor the server inlets and eight sensors to
monitor the server outlets. For other racks, we mount one or two sensors to monitor
the server inlets and outlets at different heights. We monitor two out of four in-row
AC units by mounting a bundle of temperature sensors and airflow sensors at cold air
inlets. Another two bundles are fixed at the floor tile and the ceiling vent. The details
of sensor deployment can be found in Figure 16.

6.2. Implementation of the Sensor Network

Wireless Sensors: In each of our testbed implementations, we use a single-hop net-
work architecture in which the base station sends data collection requests to sensors
sequentially, and each sensor transmits the measurements. Every 5 seconds, the base
station performs a round of sequential data collection from all sensors. We note that a
multihop network topology can be employed when more server racks need to be mon-
itored. Because this collection scheme works in a time-division fashion, the system
does not generate many collisions between the data transmissions of different sensors.
TelosB [Memsic Corp. 2012] and Iris [Memsic Corp. 2012] motes are used for collecting
temperature data. To collect the airflow velocity data, we connect the Senshoc mote,
an implementation of the open design of TelosB, to a standalone air velocity sensor
[Degree Controls, Inc. 2011] via an I2C interface. The programs on these motes are
implemented in TinyOS 2.1 [Levis et al. 2005].

On-board Sensors: CPU utilization and fan speed are two important thermal vari-
ables that the system needs to collect from the on-board sensors of each server. Data
centers typically run various server-monitoring utility tools (e.g., atop, ganglia) that
can collect on-board sensor information. These tools are used to implement the data col-
lection of CPU utilization and fan speed for our production testbed. In our single-rack
testbed, we implement a simple program to control and measure CPU utilization and
report fan speed from lm-sensors utilities, which are commonly available in GNU/Linux
distributions. Similar to the wireless sensor data collection, the base station requests
the CPU utilization and fan speed from each server sequentially. However, instead of
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using wireless links, the base station takes advantage of the existing Ethernet infras-
tructure to collect these on-board sensor data.

6.3. Discussion

We now discuss the costs and benefits of deploying our temperature prediction system
in data centers. Our prediction system comprises low-cost wireless sensor nodes and
PC-class base stations. Moreover, it is even more cost-effective in newer data centers
where the servers may have already been equipped with inlet temperature sensors.
In addition to the costs of the WSN, our system requires computer-intensive CFD
simulations to assist in temperature prediction, where the major costs are due to the
computing resources, labor of model construction, and CFD software license. Since our
system only requires offline CFD simulations, it can leverage the existing data center
computing resources during off-peak hours to train the prediction models. Once the
models are constructed, our system will no longer consume any computing resources
in the data center. In addition, many data centers have already incorporated CFD
analysis in their thermal design, which can be reused to reduce the extra labor and
license costs for CFD.

The benefits of deploying our prediction system are twofold. First, heat-induced
server shutdown contributes to more than 23% of server outages in data centers
[Aperture Research Institute 2007]. It equals US$ 0.2 million in loss per year for a
data center on average [Emerson Network Power 2011]. With accurate multihorizon
temperature prediction, data center administrators can be alerted to potential thermal
emergencies (e.g., server overheating), thus allowing more time for necessary actions
such as migrating server workload to prevent these emergencies. Second, real-time
temperature prediction could enable proactive thermal control at a higher room tem-
perature in data centers without causing server overheating, thereby achieving as
much as 30% of total energy saving [Chen et al. 2013]. For instance, the proactive ther-
mal control system can dynamically adjust the cold air temperatures and velocities
of the cooling system based on predicted future temperatures instead of on measured
temperatures.

7. PERFORMANCE EVALUATION

To evaluate the performance of our prediction system, we conduct extensive experi-
ments on the single-rack testbed and the small-scale production testbed. On the single-
rack testbed, we can conduct controlled experiments such as simulating AC failures
to extensively evaluate our system. The production testbed allows us to evaluate our
system under realistic, long-term computation workloads.

7.1. Single-Rack Testbed Experiments

Figure 2(a) shows the server groups and the temperature sensor locations on the rack
of single-rack testbed. Five server groups, denoted Group 1 to Group 5, are controlled
to run in either idle state (about 2% CPU utilization) or full utilization (about 90%
CPU utilization). These settings are consistent with many data centers where servers
running computational-intensive batch jobs tend to use all available CPUs [Moore et al.
2005]. We conduct various controlled experiments by adjusting servers’ CPU utilization
to simulate the normal running state of data centers, as well as turning off the cooling
function of the AC to simulate a thermal emergency.

7.1.1. Prediction under Dynamic Workloads. The first experiment evaluates the perfor-
mance of our system in response to CPU utilization changes. A total of 25 hours of data
were collected during 6 days. Because the infrastructure ceiling vent is regularly shut
down every night, we concatenate the data collected on different days when the ceiling
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Fig. 6. CPU utilization of the training data.

Fig. 7. Top: CPU utilization of test data. Middle: temperature measurements and predictions at an outlet
of Group 5 with a 10-minute prediction horizon. Bottom: Temperature measurements and predictions at an
inlet of Group 3 with a 10-minute prediction horizon.

vent is running. We use the first 20 hours of data as training data and the remaining
5 hours of data for testing. The settings of the prediction model include R = 1 and
k = 10 min. Figure 6 shows CPU utilization of the training data, and Figure 7 shows
the CPU utilization and temperature prediction at both inlets and outlets. We can see
that our system can accurately predict the temperatures. From the middle graph of
Figure 7, at about 30 minutes from the start, the temperature reached equilibrium
as the start of our experiment. In the first 3 hours, because only Group 1 to Group 4
changed their running states, the measurements of Sensor 2 at an outlet of Group 5
did not change significantly. A small temperature rise during this period was caused
by the complex airflow at the back of the rack. When the servers in Group 5 changed
to full utilization during the 4th hour, a significant temperature rise is observed. With
a 10-minute prediction horizon, each point on the dashed curve is calculated using
measurements of all sensors 10 minutes earlier. We can see that the temperature at
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Fig. 8. Temperature evolution prediction. Each solid rectangle represents the temperature measurement at
current time instance, and the white rectangles are the predicted temperatures at four different prediction
horizons (0.5, 2.5, 5, and 7.5 minutes).

Fig. 9. Root-mean-square error (RMSE) of multihorizon temperature prediction.

the future time instant B is accurately predicted at the actual time instant A when
the system observes the CPU utilization change. Although the prediction results well
match the sensor measurements during the first 3 hours, we observe a considerable
gap between the predicted temperatures and sensor measurements for a duration of 10
minutes (i.e., between A and B shown in the figure) after the CPU utilization change
of Group 5. This is due to the fact that the system is not aware of the state change
of Group 5 at time instance A. In this article, this type of error is referred to as a
horizon-induced prediction error. According to the multihorizon prediction scheme dis-
cussed in Section 7.1.2, the duration that suffers horizon-induced prediction error can
be shortened by setting a smaller prediction horizon. This hypothesis is verified in
Section 7.1.6. Different from the temperature at the outlets, the temperature at the
inlets is mainly affected by the complex heat recirculation. The bottom graph shows
that our system can also accurately predict the temperature at the inlet. During the
5-hour testing period, the average absolute prediction error over all sensors is only
0.3◦C.

7.1.2. Multihorizon Prediction. In our prediction system, by training models with differ-
ent k in Equation (1), we can build multiple models to predict the evolution of tempera-
ture in the future. Figure 8 shows the results of different prediction horizons of 0.5, 2.5,
5, and 7.5 minutes. At about the 4th minute, when the CPU utilization just begins to
increase, the predicted temperatures at different prediction horizons are similar to the
current measurement. After the system evolved to the second solid rectangle, where
the CPU utilization had increased significantly from 2% to 90%, the system predicts
an increasing trend of temperature evolution for the following four horizons. From the
time instance of the 3rd solid rectangle, the predicted temperature evolution starts to
match the groundtruth. Figure 9 shows the RMSE of multihorizon predictions for each
sensor. We can see that the RMSE generally increases with the prediction horizon.
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Fig. 10. RMSE of prediction versus λ in cross-
validation experiments.

Fig. 11. RMSE under noisy data.

This conforms to the intuition that the temperature at a further time instance in
the future is less correlated with historical measurements in a dynamic environment.
The RMSEs are less than 0.5◦C for most sensor locations. Slightly larger RMSEs are
observed at sensor 28 and 29. We found that this is caused by the slight displacement
of the two sensors during the experiment. Nevertheless, the RMSEs are still less than
1◦C.

7.1.3. Effectiveness of Regularized Regression. In this experiment, we conduct cross-
validation based on the 14-hour dataset used in Section 7.1.2 to evaluate the effective-
ness of the regularized regression discussed in Section 5.2.1. Performance evaluation of
model training depends on how the dataset is partitioned into training and test data.
Ten-fold cross-validation [Ye 2003, p. 435] is commonly used to mitigate the impact
of dataset partitioning in evaluating model training performance. Specifically, in each
fold, we choose 1.4 hours of continuous data for testing and the remaining data for
training. For each fold, given a regulation factor λ, we conduct model trainings and
predictions with five different horizons from 0.5 minutes to 10 minutes. The average
RMSE of prediction over all horizons is used to represent the average prediction error
given λ. This process is repeated 10 times (i.e., 10 folds) with different partitions of
training and test datasets. Figure 10 shows the average RMSE for three individual
folds versus λ. In the experiment of fold 4, the average RMSE of prediction is as high
as 1◦C when the training is not regularized (i.e., λ = 0). The average RMSE decreases
with λ when λ < 0.3 and exhibits a slight increase after that. The experiment of fold 5
shows a similar trend, with much lower RMSE. In the experiment of fold 2, the average
RMSE always increases with λ. Figure 10 also shows the average RMSE over all folds,
which characterizes the expected performance given any training/test data partition.
From the average RMSE over all folds shown in Figure 10, we can see that in a large
range of λ (i.e., from 0 to 0.4), the regularized regression outperforms the unregularized
version (i.e., λ = 0). Note that the typical setting of λ is no greater than 1. Moreover,
when λ = 0.04, the average RMSE is minimized and reduced by 25% with respect to
the unregularized result. Under this setting, the trained models yield good prediction
accuracy across all folds. Therefore, 0.04 is a desirable setting for λ for our single-rack
testbed.

7.1.4. Performance under Noisy Sensor Measurements. In this section, we evaluate the pre-
diction performance under noisy sensor measurements with dynamic CPU utilizations.
In particular, we manually add Gaussian white noise to the sensor measurements. The
standard deviation of noise is proportional to the range of its readings in the data traces.
Figure 11 shows the RMSE of predictions versus the increasing noise standard devi-
ation for each thermal variable under different prediction horizons. Consistent with
intuition, the RMSE increases with the noise level. However, even with noise standard
deviation of up to 15% of the sensor reading range, the RMSEs are still within 1◦C. In
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Fig. 12. Average absolute temperature prediction error (prediction horizon = 5 minutes).

practice, various noise suppression techniques (e.g., moving window average) can be
employed to mitigate sensor measurement errors and improve prediction accuracy.

7.1.5. Multichannel Prediction. In this experiment, we evaluate the accuracy of prediction
in multiple thermal conditions (i.e., channels). Because AC malfunction is a major cause
of server overheating in data centers, we conducted a controlled experiment to simulate
the AC failure on our single-rack testbed. We construct two channels corresponding
to the normal running state and AC failure, respectively. A total of 10 hours of data
were collected while the servers ran in a normal state with different CPU utilization
combinations. These data are used to train the normal channel of the prediction system.
The prediction horizon is set to 5 minutes. Then, another 14 hours of data, which contain
both normal running state and AC failure, were collected. A transient CFD simulation
is conducted using the sensor data (after excluding the temperature measurements
at server inlets/outlets) collected during this 14-hour experiment. The CFD-simulated
training data, together with the 10 hours of real measurements in normal running
state, are then used to train the channel of AC failure. In real data centers, it is often
infeasible to collect training data for the scenario of AC failure. Therefore, to ensure
the realism of our experiments, we did not use the sensor measurements during AC
failure to calibrate the CFD.

Figure 12 shows the absolute prediction errors of the two channels with respect
to the groundtruth sensor measurements. The system exhibits a very small absolute
error in the normal state, whereas it suffers from up to 6◦C absolute error during AC
failure. This is because the training data for the normal channel do not capture this
abnormal situation. On the contrary, the AC failure channel exhibits a slightly higher
absolute error than the normal channel during the normal state, whereas it has a
significantly lower absolute error during the AC failure. From this result, we can see
that the simulated training data generated by CFD can help the real-time prediction
model capture various thermal emergencies. In practice, several different abnormal
channels can be constructed with CFD according to the possible cooling system failure
situations. The detection results from different channels can further be fused using
existing data fusion techniques [Varshney 1996].

7.1.6. Sufficiency of Traning Data from CFD. In this set of experiments, we evaluate the
training data generation approach described in Section 5.2.2. These experiments focus
on the thermal emergency of AC failure. We first explain how we generate the training
data traces. Figure 13 shows the temperature trace of a server inlet in one of the
transient simulations. The simulation starts with all servers in idle state with 0%
CPU utilization, followed by a change of CPU utilization at about the 4th minute.
Following the random approach described in Section 5.2.2, the new CPU utilization of
a server group is randomly drawn from a uniform distribution over [0%, 100%]. The
inlet temperature shown in Figure 13 starts to rise because of air recirculation. The
simulated AC failure occurs at about the 14th minute, and the AC recovers from
failure at about the 24th minute. We conduct 50 transient simulations to generate
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Fig. 13. Example of training data generated from CFD for an AC failure emergency. The simulation starts
with all the servers in idle status, followed by a uniform random change on CPU utilization at about the 4th
minute. Then, the AC fails at about the 14th minute and resumes at about the 24th minute.

Fig. 14. Horizon-induced prediction error. Fig. 15. Prediction errors with incremental training
samples.

the training data, in which the CPU utilization of each server group is drawn from the
uniform distribution. Moreover, we conduct two transient simulations with extreme
conditions; that is, the CPU utilization of all server groups is either 100% or 0%.

As discussed in Section 5.2.2, the number of generated data traces should be large
enough to prevent overfitting. We design an experiment to evaluate the impact of the
amount of training data on the performance of model training. We choose 10 out of 50
transient simulations as the test data. Initially, only the two transient simulations with
extreme conditions are included in the training dataset. We then incrementally add a
simulation that is chosen from the unused simulations to the training dataset. For each
training dataset, we evaluate the prediction performance of the trained model using
the test data of 10 transient simulations. When we compute the RMSE to characterize
the prediction error, we carefully choose the testing results to exclude the horizon-
induced prediction error, which is explained in Section 7.1.1. For instance, we exclude
the durations labeled by “Horizon” in Figure 13, which suffer from horizon-induced
errors. The root cause of this type of errors (as shown in Figure 14) is the horizon,
rather than the insufficiency of training data.

Figure 13 shows two traces of prediction when 2 and 40 transient simulations are
used as training data, respectively. Figure 15 shows the prediction error versus the size
of the training dataset (i.e., the number of transient simulations) under various settings
of prediction horizon. We can see that the prediction error generally decreases with the
size of the training dataset. In particular, when more than 10 transient simulations
are used to train the model, the prediction error becomes flat. This result shows that,
by our training data generation approach, a small number of transient simulations
can be sufficient to train the model. Moreover, from Figure 15, we do not see strong
correlation between the prediction error and horizon. This is because, after excluding
the durations suffering from horizon-induced prediction error, the remaining durations
are mostly steady states in which horizon is not a major factor.
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Fig. 16. Front view of the two rows of racks, which face each other in the server room.

Fig. 17. CPU utilization of servers on upper and lower levels of Rack-2.

7.2. Production Testbed Experiments

We also deployed and evaluated our system on a small-scale production testbed in a
server room of the HPCC at Michigan State University. In this testbed, we deployed
35 temperature sensors and four airflow velocity sensors. Figure 16 shows the sensor
deployment from the front view of the two rack rows. To evaluate the impact of sensor
density, we deploy 16 sensors on one rack (Rack-2) while other racks are instrumented
with two or four sensors. Differing from the single-rack testbed whose CPU utilization
is controlled, the CPU utilization in the HPCC testbed is subject to real use and
is thus dynamic. Therefore, accurate temperature prediction is more challenging.
Figure 17 shows the average CPU utilization of the upper and lower section of the
servers on Rack-2 in a 12-day period. We can observe that the lower section of servers
usually has high CPU utilization, except on April 8, which is a Sunday. On the contrary,
the upper section of servers has more variable CPU utilization. In this section, we
evaluate our prediction approach in the HPCC testbed using data collected over the
course of 15 continuous days. The data from the first three days (March 31–April 2,
2012) are used as training data, whereas data from the following 12 days are used for
prediction evaluation.

7.2.1. Dimension Reduction. On our single-rack testbed described in Section 7.1, the
dimension of the state p is 64. However, on the production data center testbed, the
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Fig. 18. Prediction error versus the percentage of selected variables in dimension reduction. (a) All data are
used for testing; (b) only transient data are used for testing.

dimension of the state p grows to 229. As discussed in Section 5.3, it is desirable to
perform dimension reduction to avoid overfitting. In addition to the Partial Correla-
tion described in Section 5.3, we employ two baseline approaches. The first baseline
approach, referred to as Random, randomly selects variables. The second baseline ap-
proach, referred to as Location, selects the variables that are geographically closest
to the monitored location. In the following experiments, we vary the percentage of
selected variables over all available variables.

Figure 18(a) shows the average RMSE of the prediction results with prediction hori-
zons of 5 and 10 minutes. For the Partial Correlation, RMSE drops from 3◦C to about
0.6◦C when the percentage of selected variables reduces from 100% to 7%. This result
conforms to our motivation for dimension reduction discussed in Section 5.3. However,
when the percentage continues to decrease, RMSE starts to increase since the number
of variables is too small to contain enough information for a good prediction. When
the percentage reduces from 100% to 7%, the RMSE of Location is larger than that
of the Partial Correlation. However, the Location outperforms the Partial Correlation
when the percentage is lower than 7%. Under the Location approach, the monitored
temperature itself is assigned with a very high weight in a j given by Equation (2)
when a small percentage of variables are chosen. Therefore, the resulted prediction
models tend to follow an autoregression model. As a result, when the temperatures
are in steady state, the autoregression prediction is highly accurate. Because the test
data used for Figure 18(a) includes many steady states, the Location yields good perfor-
mance when the percentage is low. However, such an autoregression prediction model
is not helpful for predicting overheating in emergencies, such as AC failures, because
the variables related to AC may not be chosen by the Location. However, it is unlikely
to create these thermal emergencies in the production data center for system training.
As a compromise, we manually select transient states, which are mainly caused by
the changes of CPU utilization, as the test data. With these transient test data, the
Partial Correlation consistently outperforms the Location, as shown in Figure 18(b).
The Partial Correlation achieves minimal RMSE when 4% of variables are selected.
Moreover, from both Figure 18(a) and Figure 18(b), the Partial Correlation achieves
low RMSE in a wide range of settings (2–70%), which allows flexible setting without
sacrificing the prediction performance substantially. For the experiments conducted in
the rest of this article, we perform dimension reduction using Partial Correlation with
the setting of 4%. From Figure 18(a) and Figure 18(b), Random consistently yields the
worst performance.
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Fig. 19. Long-term monitoring with a 10-minute prediction horizon. Sensor 20 and sensor 12 are located at
server outlet and inlet, respectively.

Fig. 20. Absolute errors with the 90% error bound for each sensor with 10-minute prediction horizons.

7.2.2. Long-term Monitoring. Figure 19 shows the prediction results at two locations
during 12 days. The prediction horizon is set to 10 minutes. We can observe that our
prediction results well match the groundtruth measurements of both server inlet and
outlet sensors. Sensor 20, located at a server outlet, exhibits slightly larger prediction
errors. This is because the server outlets suffer more influence from system workloads
and hence have more dynamic thermal profiles. Figure 20 shows the average absolute
prediction error and the 90% error bound for all sensor locations. We observe that the
prediction errors on outlet sensors are slightly higher than on inlet sensors. Neverthe-
less, the average absolute error of outlet predictions is only around 1◦C, and 90% of
predictions have errors lower than 2◦C. We also evaluate the prediction errors under
different prediction horizon settings. Figure 21 shows the empirical Cumulative Dis-
tribution Function (CDF) of prediction error over all sensor locations. Similar to the
results in Figure 10, the prediction error increases with the prediction horizon.

7.2.3. CFD-Assisted Prediction. In this section, we evaluate the performance of using
CFD to assist temperature predictions. We focus on evaluating how effectively CFD
modeling reduces the number of required sensors under the normal running state
because no thermal emergencies were observed on the production testbed during the
15-day experimental period. Specifically, during the model training, we remove the mea-
surements of some sensors and replace them with CFD transient simulation results.
The removed temperature sensors will not be selected as thermal variables. However,
with their CFD replacements, they can be used as output to train the temperature pre-
dictions at those locations. We use the first 3 days of boundary condition data (e.g., CPU
utilization) to drive the CFD transient simulation. Then, the sensor data of the first
day are used to construct the calibration functions discussed in Section 4.3. After that,
all the 3-day simulated training data are calibrated using the calibration functions.
Figure 23 shows a significant accuracy improvement after CFD calibration.

We evaluate the performance of the CFD-assisted prediction by gradually removing
sensors in the model training. As shown in Table I, we gradually replace measurements
of some sensors with CFD simulation results. In Case 1, all 39 sensors are used for
training. Then, we replace sensor 10, 12, . . . , 24 from Case 1 to generate Case 2, which
uses 31 sensors in total for training. In Case 5, 26 sensors (i.e., 67% of all sensors)
are replaced with data generated from CFD. The empirical CDF of absolute errors
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Fig. 21. Empirical CDF of absolute error for all sen-
sors with different prediction horizons.

Fig. 22. Empirical CDF of absolute error when dif-
ferent subsets of sensors are used in model training.

Table I. Evaluation Scheme of Replacing Sensors with CFD

Case Sensors Removed Total

1 None 39
2 10, 12, 14, 16, 18, 20, 22, 24 31
3 32, 3, 29, 27, 4, 26 25
4 9, 17, 13, 21, 36, 1 19
5 5, 6, 25, 37, 7, 28 13

Fig. 23. RMSE of CFD calibration in production testbed.

of different cases is plotted in Figure 22. The prediction horizon is 10 minutes. We
see that prediction accuracy increases with the number of sensors. This is consistent
with the intuition that the CFD data is not as accurate as actual sensor measurements.
However, it can be seen that, even when fewer than 40% of sensors are deployed in Case
5, 85% of predictions have absolute errors lower than 1◦C. Overall, our approach can
remove 67% of sensors for monitoring the inlets and outlets of all servers while only
increasing the average prediction error by 0.2◦C. For all cases, the average RMSEs
are less than 1◦C, whereas the maximum RMSE is within 2◦C. This result clearly
demonstrates the advantage of integrating calibrated transient CFD modeling with
real sensor measurements. Currently, the sensor reduction is performed empirically.
The number of required sensors to achieve a certain prediction accuracy is highly
affected by physical properties in the data center. This is still an open issue and left for
our future work.

8. CONCLUSION AND FUTURE WORK

In this article, we describe the design and implementation of a novel cyber-physical
system for predicting the temperature distribution of data centers. Our approach in-
tegrates CFD modeling and real-time data-driven prediction to achieve high-fidelity
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temperature forecasting in various thermal conditions found in data centers, including
rare but critical thermal emergency situations like AC failures. We implemented the
system on a single-rack testbed and a testbed of five racks and 229 servers in a pro-
duction high-performance computing center. Extensive experimental results show that
our approach can accurately predict temperatures up to 10 minutes into the future,
even in the presence of highly dynamic server workloads.

A key advantage of our approach is to leverage those CFD simulation models that
are already available for many production data centers. However, the CFD models cre-
ated for large-scale data centers typically have a coarse granularity and considerable
errors. In the future work, we will evaluate the impact of CFD accuracy on tempera-
ture forecasting fidelity in large-scale data centers. In addition, we will study thermal
actuation mechanisms that can control server workloads and cooling systems based on
the predicted temperature evolution.
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