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ABSTRACT

Recent years have witnessed pilot deployments of inexpen-
sive wireless sensor networks (WSNs) for active volcano mon-
itoring. This paper studies the problem of picking arrival
times of primary waves (i.e., P-phases) received by seis-
mic sensors, one of the most critical tasks in volcano mon-
itoring. Two fundamental challenges must be addressed.
First, it is virtually impossible to download the real-time
high-frequency seismic data to a central station for P-phase
picking due to limited wireless network bandwidth. Sec-
ond, accurate P-phase picking is inherently computation-
intensive, and is thus prohibitive for many low-power sensor
platforms. To address these challenges, we propose a new
P-phase picking approach for hierarchical volcano monitor-
ing WSNs where a large number of inexpensive sensors are
used to collect fine-grained, real-time seismic signals while
a small number of powerful coordinator nodes process col-
lected data and pick accurate P-phases. We develop a suite
of new in-network signal processing algorithms for accurate
P-phase picking, including lightweight signal pre-processing
at sensors, sensor selection at coordinators as well as signal
compression and reconstruction algorithms. Testbed experi-
ments and extensive simulations based on real data collected
from a volcano show that our approach achieves accurate P-
phase picking while only 16% of the sensor data are trans-
mitted.
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1. INTRODUCTION

Volcanic eruptions have become a major hazard due to
ever growing human population and urbanization around
volcanoes. It is estimated that about 500 million people
today live close to active volcanoes [1]. Existing volcano
monitoring systems often employ broadband seismometers
that collect high-fidelity seismic signals, but are expensive,
bulky, and difficult to install. As a result, many of the most
threatening volcanoes are monitored by fewer than 20 sta-
tions. Such poor spatial granularity limits scientists’ ability
to study the volcano dynamics and predict eruptions.

Recent years have witnessed pilot deployments of inex-
pensive wireless sensor networks (WSNs) for active volcano
monitoring [30, 31, 27]. These deployments demonstrated
the potential of long-term, large-area, and fine-grained vol-
cano coverage by deploying large numbers of low-cost sen-
sors. Significant research has been focused on improving
system robustness, time synchronization, network efficiency,
and communication performance issues. In previous small-
scale deployments [30, 31, 27|, detection and analysis of vol-
cano activity were accomplished by transmitting raw data
to a base station for centralized processing. However, as the
sensor signals are sampled at high frequencies (e.g., 50 to
200 Hz), it is virtually impossible to continually collect raw,
real-time data from a large-scale and dense WSN. This is
due primarily to severe limitations of energy and bandwidth
of current WSN platforms.

The goal of this paper is to design algorithms that can ac-
curately determine the arrival times of primary waves (i.e.,
P-waves) received by seismic sensors inside the network,
without transmitting raw measurements to the base sta-
tion for centralized processing. Earthquake signal timing
is a fundamental task in seismology. P-wave arrival times
(i.e., P-phases) are essential information for advanced vol-
cano monitoring tasks such as earthquake hypocenter esti-
mation and seismic tomography [20]. Hypocenter estimation
uses the P-phases of distributed sensors and a model of the
P-wave propagation speed at different depths (a.k.a. veloc-
ity model) to estimate the earthquake source location. Seis-
mic tomography updates the velocity model based on the
sensors’ P-phases and the associated hypocenters of earth-
quakes. The estimated dynamic velocity model is important
for understanding the physical processes inside the volcano



conduit systems and issuing early warnings. In volcano ob-
servatories, P-phase picking is often done by visual inspec-
tion of experienced seismologists. When the volume and rate
of data capture is large, however, this process is extremely
labor-intensive, time-consuming, and subject to inconsis-
tency across different examiners. In the last two decades,
automated P-phase picking algorithms have been developed
in seismology community for earthquake timing [14, 32, 26].
However, these algorithms are designed for powerful nodes
with substantial computation, storage and power resources.
It remains an open question if it is possible to implement
automated in-situ volcanic earthquake timing in resource-
constrained WSNs without transmitting a large volume of
raw sensor data.

The key contribution of this paper is the development
of new in-network signal processing algorithms for P-phase
picking. To balance the system lifetime and network cover-
age, we adopt a hierarchical network architecture that con-
sists of low-end nodes (referred to as sensors) and high-end
nodes (referred to as coordinators). A large quantity of in-
expensive, mote-class sensors can provide fine-grained mon-
itoring with long lifetime, while a small number of coordi-
nators (e.g., Imote2 and embedded PCs like Gumstix [2])
enable advanced in-network seismological signal processing.
Based on this network architecture, we develop a suite of in-
network P-phase picking algorithms. (1) Lightweight algo-
rithms are designed for sensors to coarsely pick the P-phases
and estimate the signal sparsity. The coarse P-phase is an
important hint of the amount of new information that the
sensor can contribute. The signal sparsity determines the
volume of data transmission if the sensor sends its signal to
a coordinator for accurate P-phase picking. (2) A sensor se-
lection algorithm uses signal sparsities and coarse P-phases
to choose a subset of the most informative sensors to trans-
mit compressed data subject to a given upper bound on
communication overhead. The bound can be set by the net-
work designer to meet various practical system constraints,
such as bandwidth limitation, energy budget, and real-time
requirement. (3) A signal compression algorithm for sensors
and a reconstruction algorithm for coordinators are devel-
oped based on wavelet transform and compressive sampling
theory [12]. The above algorithms work collaboratively to
achieve energy-efficient and accurate in-network earthquake
timing. The approach presented in this paper can be ex-
tended and then applied in various monitoring applications
that need accurate signal arrival times. Moreover, it has
important implications to a broader class of applications
that need to accurately extract features from real-time, high-
frequency signals gathered by resource-constrained WSNs.

We implement and evaluate the proposed algorithms on
a testbed of TelosB motes that are loaded with real seismic
data collected on Mount St. Helens. The results demonstrate
the feasibility of deploying our algorithms on volcano moni-
toring WSNs. We also conduct extensive simulations based
on real data traces that contain 30 earthquakes. The results
show that our algorithms can achieve accurate earthquake
timing while only 16% of the sensor data are transmitted.

The rest of this paper is organized as follows. Section 2
reviews related work. Section 3 states the problem and ap-
proach overview. Section 4 studies the sparsity of earth-
quake signal and presents the signal pre-processing algo-
rithms at sensors. Section 5 formulates the sensor selection
problem. Section 6 discusses the compression /reconstruction

algorithms. Section 7 discusses how to apply our approach
to other applications. Section 8 presents the evaluation re-
sults. Section 9 concludes this paper.

2. RELATED WORK

The first field application of WSN for monitoring vol-
cano was in 2004 [30], where four MICA2 nodes were de-
ployed on Volcdn Tungurahua, Ecuador. The system suc-
cessfully collected three days of acoustic data. In 2005, the
same research group deployed sixteen Tmote nodes equipped
with seismic and acoustic sensors on Volcdn Reventador,
Ecuador, for three weeks [31]. In 2007, they deployed eight
Tmote nodes on Volcan Tungurahua again and applied the
Lance framework [29] to select a subset of sensors such that
the total value of the raw data collected from the selected
sensors is maximized subject to the network lifetime con-
straint. However, Lance adopts a heuristic metric to guide
the sensor selection and does not apply signal compression
before transmission. In the Optimized Autonomous Space
In-situ Sensorweb (OASIS) project [27], twelve Imote2 nodes
were deployed on Mount St. Helens in 2008. It demon-
strated a long-term sustainable WSN in a challenging en-
vironment, and delivered a long-period (up to half a year),
high-fidelity sensor dataset. The design of the above vol-
cano monitoring WSNs [30, 31, 29, 27] mainly focused on
the basic network services such as node sustainability, net-
work connectivity, time synchronization and data collection.
As raw sensor data were continually collected, these systems
either had short lifetimes [30, 31] or had to employ heavy
batteries [27]. We previously proposed a volcanic earthquake
detection approach based on in-network signal processing
[28]. The TelosB-based testbed experiments show that the
in-network signal processing scheme reduces the node en-
ergy consumption to one sixth of the raw data collection
approach. In contrast to [28], whose target was to detect
the occurrence of earthquakes, this work builds on previous
results by adding in the task of accurately picking P-phases
after an earthquake is detected.

The seismology community previously developed several
algorithms for P-phase picking. They are typically based on
the identification of changes in signal characteristics such as
energy, frequency and characteristics of autoregressive mod-
els [32]. The widely adopted STA /LTA approaches [14] con-
tinuously compute the ratio of short-term average (STA)
to long-term average (LTA) over a signal characteristic and
raise a detection once the ratio exceeds a specified thresh-
old. Although STA/LTA approaches are suitable for sensors
with limited resources, associated accuracies are much lower
than minimal requirements of volcanic earthquake timing
[32]. Moreover, the heuristic STA/LTA approaches often
require empirical tuning of numerous parameters, making
these methods difficult to adapt to different regions or tem-
porally changing environments. Another important cate-
gory of picking algorithms is based on autoregressive (AR)
models [26]. These methods pick the time instance to max-
imize the dissimilarity of two AR models for signals before
and after the picked time instance. AR-based algorithms
need few user settings and are the most accurate and robust
P-phase picking algorithms to date. However, since both AR
models must be constructed for each time instance, they in-
cur high computational complexity and memory usage.

Various in-network signal processing approaches have been
proposed for different applications in data-intensive WSNs.
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Figure 1: The seismic signals received by three sen-
sors when an earthquake happens on Mount St. He-
lens. The vertical lines represent the P-phases.

For instance, in [18], the structural damage localization task
is decentralized by pushing the feature extraction algorithms
to distributed vibration sensors. VanGo [17] can calibrate
the parameters of the software filters running on low-end
sensors, such that uninterested high-frequency sensor data
are not transmitted. However, the simple filters included
in VanGo, e.g., gating, cannot meet the stringent accuracy
requirements of earthquake timing.

3. PROBLEM STATEMENT AND APPROACH

OVERVIEW
3.1 Design Objectives

The P-phase is the first arrival time of a P-wave of a seis-
mic signal. Fig. 1 shows the seismic signals received by three
sensors deployed on Mount St. Helens [27] along with the
manually picked P-phases. It can be seen that the sensors
receive different P-phases due to different signal propaga-
tion delays. P-phase variations provide critical informa-
tion for volcano monitoring applications such as earthquake
hypocenter estimation and seismic tomography [20]. The
task of picking the P-phases of spatially distributed sensors
is referred to as wolcanic earthquake timing. When the net-
work is dense and P-wave velocities are high, the differences
between sensors’ P-phases can be small, e.g., at most one
second in Fig. 1. This imposes stringent accuracy require-
ments on volcanic earthquake timing. In this paper, we aim
to develop a holistic and energy-efficient approach to ac-
curate volcanic earthquake timing in resource-constrained
WSNs. Our approach is designed to meet the following two
key objectives. First, picked P-phases must achieve satis-
factory precision and maximize the accuracy of earthquake
hypocenter estimation that takes P-phases as inputs. Sec-
ond, to achieve expected network lifetime, the volume of
seismic data transmission in each timing process must meet
a specified energy budget.

3.2 System Model

Hierarchical network architecture. We adopt a hier-
archical network architecture that consists of sensors with
limited resources and coordinators with more processing ca-
pability and higher battery capacity. Each sensor continu-
ously samples and buffers the signal in its memory, which
is consistent with the design of previous volcano monitoring
WSNs [27, 31]. A considerable number of inexpensive sen-
sors can be deployed over the volcano to provide a high level
of coverage, and work with a small number of coordinators
to achieve accurate P-phase picking. The adoption of this
architecture is motivated by the fact that P-phase picking

Table 1: Specification of WSN platforms [3]

Node MCU RAM Active Sleep
frequency capacity power power
(MHz)  (KB)  (mA)  (uA)
MSP430-based 8-18 2-16 1.12-3.98 0.5-1.8
ATmega-based 6-16 1-8 3.12-11.0  4.2-40
Imote2 13-416 32000 >31 390
BTnode 8 180 12 3000
Preon32 8-72 64 3.7-28.3 1300
SunSPOT 180 512 24 520

¢ Only MCU’s power is considered. The active powers of
MSP430-/ATmega-based nodes are under the condition of 8MHz
and Vg = 3V.

b 73% WSN platforms are based on MSP430 and ATmega MCUs
[3]. As MSP430 is more energy-efficient, we adopt TelosB as sen-
sor in this paper.

¢ As Imote2 has the highest processing capability and lowest sleep
power among the high-end platforms, we adopt Imote2 as coordi-
nator. Sleep power is an important parameter because the nodes
sleep most of the time in the absence of earthquake (cf. Sec-
tion 8.3.1).

algorithms are computation-intensive and hence cannot be
executed by mote-class sensors. According to Table 1, the
autoregressive Akaike Information Criterion (AR-AIC) pick-
ing algorithm [26], which needs at least 52 KB RAM, can
be executed on only a few powerful WSN platforms such
as Imote series, BTnode, Preon32, and SunSPOT. However,
the power consumption of these nodes can be up to dozens
of times higher than that of mote-class platforms based on
MSP430 and ATmega processors. According to our numeri-
cal study in Section 8.3.1, the hierarchical network architec-
ture can reduce the per-node energy consumption by 68%,
compared with a network composed of only powerful nodes.
The hierarchical architecture thus not only allows us to in-
crease the coverage over a volcano, but also extends the
network lifetime. Such a hierarchical architecture has also
been adopted in other WSN systems [15]. In this paper, we
adopt TelosB as the sensor and Imote2 as the coordinator.

Sensor clustering. The network is organized into one or
multiple clusters. Each cluster consists of a number of sen-
sors and a coordinator as the cluster head. Our approach can
be integrated with various existing clustering algorithms [8].
In Section 8.3.2, we will discuss two clustering schemes and
the setting of cluster size through simulations. The rest of
this paper is focused on the design of the in-network signal
processing algorithms in a single cluster. As data trans-
missions only happen between cluster head and associated
member sensors, exhaustive data collection from the whole
network can be avoided.

Synchronization and earthquake onset time. All sen-
sors are time-synchronized by on-node GPS modules [27] or
an in-network synchronization service [31]. We assume that
the network can detect the occurrence and onset time of
earthquake. The earthquake onset time is a coarsely esti-
mated time instance, typically to second precision, at which
the earthquake process starts. The STA/LTA [14, 31] or
Bayesian [28] methods can be used to detect the earthquake
onset time. In particular, the Bayesian earthquake detection
approach [28] developed in our previous work is based on in-
network signal processing and decision fusion, in which local
decisions of sensors are fused and onset time is estimated at
the coordinator, and sent back to each sensor. Using the
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earthquake onset time, sensors can largely narrow the range
of searching for the P-phases.

3.3 Approach Overview

We propose a suite of algorithms running at the coordi-
nator and associated sensors, which will work together to
achieve the objectives discussed in Section 3.1. The oper-
ation flow of these algorithms is illustrated in Fig. 2. (1)
When an earthquake is detected, each sensor chooses a seg-
ment of seismic signal around the detected earthquake on-
set time and applies a wavelet transform to the signal. The
wavelet transform sparsifies the signal representation, re-
ducing the volume of data transmission. (2) Based on the
transformed signal, each sensor estimates the signal spar-
sity and executes a lightweight picking algorithm to find a
preliminary P-phase. Each sensor then sends the estimated
signal sparsity and the preliminary P-phase to the coordi-
nator. (3) The coordinator selects a subset of sensors such
that the expected error of earthquake hypocenter estima-
tion, computed from the preliminary P-phases, is minimized
subject to a given upper bound on communication overhead.
The communication overhead can be exactly predicted from
the signal sparsities of the selected sensors. (4) The selected
sensors then employ compressive sampling (CS) [12] to com-
press the seismic signals and transmit to the coordinator.
(5) Finally, the coordinator reconstructs the seismic signals
and executes high-accuracy P-phase picking algorithms and
possibly other advanced seismic signal analyses. In our im-
plementation, the coordinator adopts the AR-AIC picking
algorithm [26], which is widely used in seismology, although
other algorithms might be used instead.

The key novelty of this paper is the efficient integration
of various algorithms into a holistic approach to achieve ac-
curate volcanic earthquake timing in resource-constrained
WSNs. Our approach has the following three advantages.
First, by sensor selection, the earthquake timing process has
upper-bounded communication overhead. The system de-
signer can set this bound to meet various practical system
constraints such as bandwidth limitation, energy budget,
and real-time requirement. Second, our approach signifi-
cantly reduces the computation and communication over-
head of the sensors. By employing CS algorithms based on
a binary random matrix, the signal compression at sensors
only involves the computation of sums. Moreover, the coor-
dinator can determine the volume of compressed signal prior
to compression, enabling efficient sensor selection and data
transmission scheduling before sensors compress signals. As
a result, the unselected sensors can avoid compression com-
putation. Third, our approach allows the coordinator to

integrate a variety of centralized seismic signal analysis al-
gorithms on the reconstructed signals, such as Fourier and
polarization analyses. The coordinator can send estimated
P-phases to the base station for advanced, joint hypocenter
estimation across all clusters. Moreover, it can transmit the
reconstructed signals to the base station for offline analysis.

4. SEISMIC PRE-PROCESSING AT SENSORS

In this section, we first study the sparsity of seismic signals
received by sensors. We then present a lightweight prelimi-
nary P-phase picking algorithm that is executed at sensors.

4.1 Sparsity of Volcanic Seismic Signal

In this paper, we adopt the common definition of sparsity
in signal processing [12]. Let n denote signal length. Sup-
pose VU is an orthonormal basis ¥ = [¢14)2 -+ - 1h,] € R™*"
where 1; is the i*® column of W. A signal s € R™*! in the
time domain is expanded with basis ¥ as s = ¥Ux, where
x € R™ ! is the coefficient sequence of s. The signal s is
k-sparse if the number of non-zeros in x is less than or equal
to k. The sparsity of signal s, denoted by p, is defined as
p = k/n. Inpractice, x typically contains small values rather
than zeros. Considering x () obtained by keeping only the £
largest coefficients of x and setting others to zero, the corre-
sponding signal sy is s(x) = ¥x(x). The signal s is k-sparse
lis

W is smaller than a threshold,
Lo

where || - ||¢, represents the f2-norm. In this paper, the
threshold is set to be 5% unless otherwise specified.

For each sensor, we choose a signal segment for 16 seconds,
where 10 seconds before and 6 seconds after the earthquake
onset time. Hence, n = 16 - fs, where fs represents the
seismic sampling rate. This setting of signal length is the
minimum requirement of the AR-AIC picker [26] running at
the coordinator. As the difference between the P-phases re-
ceived by sensors is typically shorter than two seconds [31],
this setting also ensures that all sensors’ P-phases are in-
cluded. The first columns of Figs. 3 and 4 show the chosen
signals at Node01 and NodelO deployed on Mount St. He-
lens in the OASIS project [27], where f, is 100 Hz. Vertical
dashed lines represent the earthquake onset time detected
by a Bayesian approach [28] and vertical red lines represent
the P-phases picked by the AR-AIC picker [26]. It is clear
that the P-phases are covered by the chosen signals.

if the relative error

4.1.1 Sparsity in Wavelet Domain

The time-domain seismic signal is often not sparse. For
instance, for the signal shown in Fig. 4(d), the sparsity
is 0.57. In this paper, we adopt discrete wavelet trans-
form (DWT) with Daubechies basis to reduce signal spar-
sity, which produces reduced wireless data transmission. As
DWT preserves time-domain characteristics, it is preferable
for P-phase analysis. Moreover, the downsampling scheme of
DWT allows us to develop an efficient preliminary P-phase
picking algorithm in Section 4.2. The second columns of
Figs. 3 and 4 show the 4-level DWT coefficients of Node01
and NodelO for two earthquakes. The vertical dotted lines
represent edges between two adjacent frequency subbands
in the wavelet domain. Setting the level of the DWT will be
discussed in Section 4.2. Our analysis shows that the spar-
sity in the wavelet domain is significantly lower than that
in the time domain. For instance, for the four data traces
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Figure 4: Earthquake02 during 00:23:58 to 00:24:14 on November 3, 2009. (a)-(c): Node01; (d)-(f): Nodelo.

shown in Figs. 3 and 4, the sparsity can be reduced by up
to 75% using the wavelet domain.

4.1.2 Diverse Sparsity

We make the following important observations from the
case study shown in Figs. 3 and 4. First, for the same earth-
quake, sensors receive data with different signal-to-noise ra-
tios (SNRs), leading to different significance of P-phases.
For instance, in EarthquakeOl shown in Fig. 3, Node0O1l has
a higher SNR and a more significant P-phase than NodelO.
As the seismic signal attenuates with propagation distance,
sensors far away from the earthquake source receive weak
signals, lower SNRs, and less pronounced P-phases. Second,
due to highly variable event magnitude and source location,
the SNR and significance of P-phase are dynamic and un-
predictable. For instance, as opposed to Earthquake0l, in
Earthquake02 (Fig. 4), Nodel0 receives a much higher SNR
than Node01l. Third, the sparsity depends on SNR and the
position of P-phase. For instance, since NodeOl receives a
higher SNR than NodelO in EarthquakeOl, the sparsity of
Node01 is lower than NodelO. However, although Nodel0O
receives very high SNR in Earthquake02, its sparsity is com-
parable to that of Node0Ol. This is because NodelO receives
P-phase much earlier than Node01, resulting in more non-
zeros in the wavelet domain. We evaluated extensively the
sparsity of transformed signals based on the data traces re-
ceived by 12 nodes for 30 earthquakes in the OASIS project
[27]. Fig. 5 shows sparsity versus the threshold of relative
lIs=s (k) llegy

Tlls for determining sparsity. This result vali-
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Figure 5: The sparsity (with 90% confidence inter-
val) of 360 seismic data traces received by 12 sensors.

dates our hypothesis of diverse sparsity. For instance, if the
threshold is set to 5%, the sparsity ranges from 0.16 to 0.63.
The above observations of dynamic, unpredictable and di-
verse sparsity provide important guidelines for designing vol-
canic earthquake timing algorithms for resource-constrained
WSNs. First, due to the diversity of signal sparsity, it is
desirable to collect only the most sparse seismic signals to
meet a specified node energy budget keeping with the real-
time requirement of data transmission. Second, as the spar-
sity is dynamic and unpredictable, sensors need to compute
sparsity on demand when an earthquake is detected. The
sparsity can then be used to predict the volume of data
transmission if the coordinator requests the signal.

4.2 Preliminary P-Phase Picking at Sensors

In this section, we present a lightweight and efficient pre-
liminary P-phase picking algorithm that runs on the sensors.
Due to the downsampling scheme, the lowest frequency sub-
band in the wavelet domain is a zoomed-out version of the



low-pass filtered signal. Hereafter, this subband is referred
to as the thumbnail of the original signal in the time domain.
The last columns of Figs. 3 and 4 show the thumbnails of
the corresponding original signal in the first column. The
thumbnails apparently preserve the shapes of the arriving
P-waves. If the seismic sampling rate is fs and the level of
DWT is [, the lowest frequency subband of the wavelet do-
main is [0 Hz, Q{tﬁ Hz]. By setting [ such that Jﬁ > 5Hz,
the thumbnail can preserve the shape of the P-wave, which
typically has a frequency lower than 5Hz [28]. In our ap-
proach, the preliminary P-phase is picked from the thumb-
nail to reduce the computational complexity. However, as
the time resolution of the thumbnail reduces to (1000-2")/ fs
milliseconds, the P-phase picking error caused by the down-
sampling will be (500 - 2')/fs milliseconds. For the cases
shown in Figs. 3 and 4, the number of data points that a
sensor needs to process is reduced from 1600 to 100, and the
error caused by downsampling is 80 milliseconds. This res-
olution is satisfactory for the preliminary P-phase picking.

Our lightweight preliminary P-phase picking algorithm is
as follows. For a candidate P-phase p, the sensor computes
the signal energies (i.e., the sample variances) of the thumb-
nail signals with length of two seconds before and after p.
The preliminary P-phase, denoted by p, is given by

signal energy after p

p:2l>< argmax — —.
pethumbnail Signal energy before p

(1)
Note that the scaling factor 2/ maps the pick in the thumb-
nail to the original time domain. The complexity of the
above algorithm is O(n/2'). In contrast, existing advanced
picking algorithms have significantly higher complexity, e.g.,
O(n?) for AR-AIC picker [26]. By maximizing the signal
energy ratio in Eq. (1), the preliminary P-phase divides the
thumbnail signal into two segments with significantly dif-
ferent signal energies. In the last columns of Figs. 3 and
4, the vertical red lines represent the preliminary P-phases.
We can see that the preliminary P-phase picker accurately
extracts the P-phases from the thumbnails. In Section 8,
we will conduct extensive evaluation of the accuracy of the
preliminary picker.

S. SENSOR SELECTION FOR EARTHQUAKE

TIMING

In this section, we present the sensor selection algorithm
that aims to maximize the accuracy of earthquake hypocen-
ter estimation subject to a given upper bound on communi-
cation overhead. Earthquake hypocenter estimation, which
takes sensors’ P-phases as inputs, is the base of many ad-
vanced volcano monitoring applications such as seismic to-
mography [20]. The sensor selection best directs the limited
network resources, e.g., bandwidth and energy, to acquire
the sensor data for accurate earthquake timing.

5.1 Impact of Timing on Hypocenter Estima-
tion

As the propagation speed of P-wave varies with the depth
in earth, the earthquake hypocenter estimation is a non-
linear inversion problem involving residual reduction cou-
pled with seismic ray tracing [20]. Suppose a set of sensors,
denoted by S, belongs to the cluster under consideration.
Let z; and z, denote the 3-dimensional Cartesian coordi-
nates of sensor ¢ and the earthquake source, p; and p, de-

note the P-phase picked by sensor ¢ and the earthquake time
origin of the source, and v denote a list of P-wave speeds
at different depths. We assume that {z;|¢ € S} and v are
known, which can be obtained by inquiring the GPS mod-
ule on sensors [27] and from existing tomographic studies
[20], respectively. The z, and p, are the unknowns to be
estimated from the P-phases {p;|i € S}. We have

Pi — Do = T(2i,Z0|V) + €, Vi€ S (2)

where 7(2;,20|Vv) is the P-wave travel time from the source
to sensor ¢ given the velocity model v, and ¢; is the random
error experienced by sensor i. We employ the ray tracing al-
gorithm in the RSEIS R package [21] to calculate 7(z;, zo|V).
We assume that €; follows zero-mean normal distribution
with variance ¢2. The variance ¢2 captures the error of the
P-phase picked from the seismic signal with respect to the
true P-phase. As will be shown later, the hypocenter estima-
tion algorithm and its accuracy analysis are independent of
2. Hence, the variance ¢Z can be unknown to the network.
The unknown p, can be canceled out by subtracting Eq. (2)
with ¢ = r from the same equation with ¢ € S\ {r}, yielding
P = 7(2i,20|V) — T(Zr, Z0|V) + €, where sensor r is the ref-
erence node, 1 € S\ {r}, p; = pi —pr, €; = €; — €. Note that
€; follows zero-mean normal distribution with variance 2¢2.
We adopt maximum-likelihood (ML) approach to estimate
z,. The ML estimate of z,, denoted by z,, is given by:

Zo=argmin Y (p} — 7(2i,20|V) + T(2r, 20[v))* . (3)
7o ieS\{r}

We now analyze the accuracy of Z,. As there is no closed-
form formula for 7(zs,2.|Vv), to make the analysis tractable,
we let 7(2zi,20|V) = ||2; — Zol||¢, /v, Where v represents the

average P-wave speed. Define g; = 222 . _Zi“Z%o
g P 8 = Mar—zoley  Tei-—zolsy

and let G denote the matrix composed of {g;|Vi € S\ {r}}
as columns. By extending the result in [13], the Fisher infor-
mation matrix, denoted by J, is given by J = ﬁGGT €
R3*3, where the diagonal elements of J~! are the theoreti-
cal lower bounds for the variances of the coordinates in z,. A

widely adopted error metric is tr(J 1) = 2v%¢%tr ((GGT) 71) .

As 2v%¢? is a scaling factor in tr(J~'), we define the error

metric as
£ = tr ((GGT)ﬂ). (4)

Note that £ depends on the true but unknown source loca-
tion z,. In our approach, we replace z, in Eq. (4) with its
ML estimate z, to calculate the error metric.

The theoretical error metric given by Eq. (4) is the same
for different P-phase pickers that yield zero-mean errors with
respect to the true P-phase. As will be shown in Section 8,
the preliminary P-phase picker has zero-mean error with re-
spect to the AR-AIC picker that has near zero-mean error
(100 ms with respect to the manual picks [26]). Hence, the
error metric calculated from the preliminary P-phases is a
good estimate of the error metric calculated from the P-
phases picked by AR-AIC at the coordinator.

5.2 Dynamic Sensor Selection Problem

Our study in Section 4 shows that sensors have diverse
signal sparsity. As a result, the volume of data transmission
varies significantly across different sensors. The coordina-
tor requests the compressed signals from a subset of sensors



to minimize hypocenter estimation error subject to a given
upper bound on communication cost. We make the follow-
ing assumptions. First, the volume of compressed signal is
given by m(p;), where p; is the sparsity of sensor 7. The
expression of m(p;) will be given in Section 6. Second, the
communication cost of a data unit from sensor ¢ to the co-
ordinator is ¢;, which is referred to as unit communication
cost. The sensor selection problem is formulated as follows:

Sensor Selection Problem. When an earthquake is de-
tected, given the sparsity of all sensors {p:|Vi} and the unit
communication costs {c¢;|Vi}, find a subset of sensors S such
that the error metric € given by Eq. (4) is minimized, subject

to Y cgci-m(pi) < C.

In the above problem, C is the upper bound on the total
communication cost in each earthquake timing process. By
properly setting the unit communication costs, the upper
bound C can represent different costs, e.g., the number of
transmitted packets, the energy consumed in an earthquake
timing process, or the latency of the data collection. More-
over, ¢; can incorporate the residual battery energy such
that the solution can balance sensors’ energy consumption
for multiple rounds of earthquake timing. For instance, by
defining ¢; as the reciprocal of sensor i’s residual energy, the
most informative sensors with more residual energies and
less transmission volume will be selected.

In our approach, the coordinator first solves Eq. (3) using
the Nelder-Mead algorithm [23]. For any candidate sensor
subset, we consistently use z, to compute £. As £ is a non-
linear and non-convex function, it is difficult to solve the
sensor selection problem in polynomial complexity. In our
implementation (cf. Section 8.1.1), the execution time of the
Nelder-Mead algorithm on Imote2 is around 4 seconds. A
brute-force search takes 0.08 and 8.2 seconds when the clus-
ter size is 10 and 16, respectively. Note that our numerical
study in Section 8.3.2 shows that the gain of hypocenter esti-
mation performance rapidly diminishes after the cluster size
is greater than 15. Therefore, the computation overhead of
the brute-force search is acceptable without sacrificing too
much hypocenter estimation accuracy due to the setting of
cluster size. In Section 5.3, we propose an approximate sen-
sor selection algorithm that can scale with the cluster size
but will sacrifice hypocenter estimation accuracy.

If the coordinator is equipped with a seismometer to sam-
ple the seismic signal, it can be always selected to improve
the hypocenter estimation accuracy. Moreover, the P-phase
picked from the coordinator’s signal can be used as a refer-
ence to identify wrong preliminary P-phases sent from the
sensors as well as wrong P-phases picked from the recon-
structed signals at the coordinator.

5.3 Approximate Sensor Selection Algorithm

In this section, we propose a new heuristic metric that
allows us to develop an efficient sensor selection algorithm.
The metric is defined as

y=y— 1 (5)

i€S (pl — Po — 7-(21'720|V))27

where S is the subset of selected sensors anq Po is the ML
estimate of p,. Specifically, p, = w, where N
is the number of sensors in the cluster. The denominator in
Eq. (5) is the squared error in P-phase. The sensor selection
problem is to select a subset of sensors S to maximiz V sub-

ject to the constraint ). ¢ ci - m(p;) < C. This problem is
a 0-1 knapsack problem, which can be solved optimally in
pseudo-polynomial time. Eq. (5) is a specialization of the
heuristic metric adopted in Lance [29] that defines the total
value of selected sensors as the sum of the values of individ-
ual sensors. A key difference is that Lance does not consider
signal compression. The evaluation results in Section 8.2.2
show that the solution given by this approximate algorithm
approaches to the optimal solution described in Section 5.2
when the constraint C' becomes larger.

6. COMPRESSIVE SAMPLING FOR EARTH-

QUAKE TIMING

This section presents our approach of compressing and
collecting the seismic signals from the selected sensors based
on compressive sampling (CS) [12]. We first briefly review
the CS theory. Let y € R™ ! denote the compressed sig-
nal and A € R™*" denote the random projection matrix,
where m < n. The compression is expressed as y = Ax,
where x is a vector of wavelet coefficients of the original
signal. Note that the typical use of CS is to apply the com-
bined transform and random projection (i.e., AT™!) to the
time-domain signal s. However, in our approach, these two
steps are separated to efficiently estimate the preliminary
P-phase in the lowest subband of x and the sparsity. These
two numbers are important inputs to the sensor selection al-
gorithms. If x is k-sparse and A complies with the restricted
isometry property (RIP) of order k, the original signal s can
be exactly reconstructed from y [12]. The wavelet trans-
form of the reconstructed signal, denoted by X, is given by
X = argmin, [[x[|, subject toy = Ax. The above optimiza-
tion can be solved by various algorithms such as the iterative
hard thresholding method [11]. With X, the reconstructed
seismic signal is given by ¥X.

We now discuss the design of CS for earthquake timing.
We adopt the binary random projection matrix [9] that is
promising for the implementation on resource-constrained
sensors. Specifically, only the positions of ‘1’s need to be
stored and the multiplication Ax is simply the sum of the
elements of x at these positions. The binary random matrix
complies with RIP of order k if m > h-k-log(n/k), where h is
an unknown constant [9]. From the results shown in Fig. 5,
the sparsity p of volcanic seismic signal typically ranges from
0.1 to 0.6. Hence, log(n/k) = log(1/p) ranges from log(1.67)
to log(10). We define n = log(10) - h. If m > n - p - n, the
RIP condition must be satisfied. Therefore, we let

m(p) =mn-p-n. (6)

Many studies have reported that n = 4 is a safe setting
that ensures satisfactory reconstruction [12]. However, as
the sparsity p estimated in Section 4.1 does not follow the
strict definition of sparsity (i.e., the ratio of non-zeros), the
setting of 7 = 4 might be overly conservative for earthquake
timing, which may result in excessive data transmission. In
Section 8, we evaluate in detail the impact of 1 on the quality
of seismic signal reconstruction as well as the P-phase pick-
ing. The results show that the setting of n = 1.5 can lead
to a good trade-off between the volume of data transmission
and the P-phase picking error introduced by reconstruction.
In practice, the setting of 17 can also be determined based on
the seismic data obtained in offline earthquake shaking table
experiments. We note that the CS-compressed signal can be



further compressed by other data compression algorithms if
more computation resource is available.

7. DISCUSSION

The approach presented in this paper can be applied to
a broader class of sensor network applications where sen-
sors sample the physical phenomena at high frequencies and
extract signal features from the samples. Many signal fea-
ture extraction algorithms are not affordable for resource-
constrained sensors because of either the large volume of
data or high complexity of the algorithms. Therefore, it is
desirable to select a subset of most contributory sensors to
transmit their compressed data to a more powerful node for
feature extraction.

To apply our approach, a lightweight algorithm should be
available to compute a coarse estimate of the feature, and
a closed-form expression or heuristic metric is then used to
predict the quality of upper-layer application based on the
coarsely estimated features. In particular, our approach can
be applied to structural damage localization [18] and most
applications based on time difference of arrival (TDOA). As
the P-phase picking addressed in this paper is a critical com-
ponent in a class of TDOA-based applications such as acous-
tic event localization, our approach can be easily applied to
these applications. We now briefly discuss how to extend our
approach to the structural damage localization based on the
natural frequencies received by distributed vibration sensors
[18]. The natural frequency identification algorithm involves
high-order curve fitting, and hence can be computationally
prohibitive for low-end sensors due to the lack of floating
point arithmetic support. To apply our approach, low-end
sensors can use simple peak detectors [10] to coarsely esti-
mate the natural frequencies, and the coordinator can use
the Damage Localization Assurance Criterion [18] to guide
the sensor selection.

8. PERFORMANCE EVALUATION

In this section, we conduct testbed experiments and ex-
tensive simulations based on real data traces collected by
12 nodes on Mount St. Helens in the OASIS project [27].
Our system implementation and testbed experiments verify
the feasibility of the proposed signal processing algorithms
on low-end sensor platforms. The trace-driven simulations
extensively evaluate the performance of our approach. We
finally conduct two numerical studies to evaluate the energy
efficiency of the hierarchical network architecture and the
impact of sensor clustering on earthquake timing.

8.1 Testbed Experiments

8.1.1 System Implementation

Sensors: Our system implementation is based on TelosB
motes. Similar mote-class sensor platforms were also used
in previous volcano monitoring systems [30, 31, 29, 28§].
We implement all the four seismic processing algorithms,
i.e., DWT, sparsity estimation, preliminary P-phase picker
and CS in TinyOS 2.1. We conducted extensive code opti-
mization on all the signal processing algorithms. First, we
adopt fixed point arithmetic, which can speed up the dec-
imal computation up to 10 fold on TelosB with respect to
default floating point arithmetic. Second, we maintain a
single input/output data buffer for the four pipelined algo-
rithms and wire the output of each algorithm back to the
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buffer. This pipeline implementation significantly reduces
RAM usage. Our current implementation of CS uses pre-
defined binary random matrices for sensors, which avoids
the overhead of online matrix generation each timing pro-
cess. In future work, we will explore efficient methods to
generate the same binary random matrix on sensor and co-
ordinator without incurring high communication costs. A
possible solution is to use a common seed to generate the
same projection matrix on both the sensor and coordinator.
To improve the realism of the experiments, we reserve 320
KB on the mote’s flash and load it with real seismic data
trace collected by the OASIS system [27]. A mote acquires
100 seismic samples from flash every second, which is consis-
tent with the sampling rate in OASIS. Our implementation
uses 21 KB ROM and 8 KB RAM.

Coordinator: We use a laptop computer to simulate the
coordinator and implement all its algorithms in ANSI C.
The ANSI C implementation can be easily ported to em-
bedded computing platforms such as Imote2. To evaluate
the computational overhead of these algorithms, we cross-
compile the programs and run them in the SimIt-ARM 3.0
[5], which simulates the XScale processor on Imote2.

8.1.2  Experiment Results

We evaluate the computation and storage overhead of the
algorithms running on sensors in a testbed of 12 TelosB
motes, loaded with the real data traces sampled by 12 nodes
of the OASIS system [27] in an earthquake. Fig. 6 shows the
execution times of various signal processing algorithms at
different sensors during an earthquake event. It is clear that
the end-to-end execution time does not exceed 3 seconds,
which introduces moderate workload and energy consump-
tion to the sensors. Moreover, our implementation of CS is
very efficient and most computation overhead is due to the
DWT. The variation of execution time is mainly caused by
sparsity estimation and CS. In the sparsity estimation algo-
rithm, the wavelet coefficients are sorted using quick sort,
which has a variable execution time. As seismic signals at
sensors have different sparsities, sensors have different num-
bers of rows in the project matrix A, leading to a vari-
able execution time of CS. Nonetheless, as the variation is
less than one second, the computation overhead is relatively
evenly distributed among the sensors.

8.2 Trace-Driven Simulations

Our simulations use a data set collected by 12 Imote2-
based nodes on Mount St. Helens in the OASIS project
[27], which spans 5.5 months and comprises 30 significant
earthquakes. In this section, we simulate a cluster of 12
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sensors, which exactly correspond to the 12 nodes in the
OASIS project [27]. Note that the cluster size of 12 is a rea-
sonable setting that will be evaluated in Section 8.3.2. For
each earthquake, we use a Bayesian approach [28] to detect
the onset time based on 10 minutes of data traces. In our
simulations, we also use the locations of OASIS nodes and a
velocity model v (cf. Section 5.1) obtained in a tomographic
study of Mount St. Helens [20].

8.2.1 Accuracy of P-phase Picking

We first evaluate the accuracy of the preliminary P-phase
picker described in Section 4.2. The error is defined as the
absolute difference between the preliminary P-phase and the
P-phase picked by the AR-AIC picker [26] on the original
seismic signal. Fig. 7 shows the distribution of preliminary
picking error based on 100 sensor data traces. The mean er-
ror is 8.5 milliseconds. Therefore, the preliminary P-phase
picker can be approximated as a zero-mean error picker with
respect to the AR-AIC picker. The standard deviation is
about 400 milliseconds. To evaluate the effectiveness of the
preliminary picker, we also calculate the error of the earth-
quake onset time with respect to the P-phase picked by the
AR-AIC picker. The mean and standard deviation of the er-
ror of earthquake onset time are 280 and 1310 milliseconds,
respectively. Therefore, compared with the earthquake on-
set time, the results of the preliminary picker are more con-
centrated on the true P-phases.

The coefficient 7 in Eq. (6) is an important coefficient
for CS. We now evaluate the impact of n on the quality of
seismic signal reconstruction as well as the P-phase picking
at the coordinator. The relative reconstruction error is cal-
culated as |[S — sl|¢,/||s|le, where s and § are the original
and reconstructed signals. The picking error is calculated
as the difference between the P-phases picked by the AR-
AIC picker on s and S. Fig. 8 shows the standard deviation
of picking error as well as the relative reconstruction error
versus the coefficient 1 based on 100 data traces. We can
see that the standard deviation of picking error dramatically
drops when 7 increases from 0.75 to 1.5 and becomes flat af-
ter 1.5. Therefore, n = 1.5 is a proper setting to achieve the
satisfactory gain of P-phase picking accuracy to the data
transmission volume. When n > 1.5, the mean picking er-
ror is within [—15ms, 15 ms]. Therefore, it is shorter than
1.5 sampling periods given that the sampling rate is 100 Hz.
This time error can be translated to an error distance of
75 to 120 meters based on the P-wave speed (5 to 8km/s).
As the precision for distance in volcano models (e.g., v in

6
o 4F ' Origim;l signal . ' I I —
g 2+ Reconstructed signal
£ 0 -\
e 2|
E 4+ p = 0.2875, m = 690 7]
:g C 1 1 1 1 1 1 7
0 0.5 1 1.5 2 2.5 3 3.5 4
Time (3), 07:06:40 to 07:06:44 Oct 22, 2009
4 T T T T T T T
3+ Original signal =~ « b
FG-; % B Reconstrugcted signal — 7
< 3r p = 0.175,m = 420 ]
-4 1 1 1 (I 1 1 1
0 0.5 1 1, 2, 2.5 3 3.5 4
Time (s), 07:35:24 to 07:25:28 Dec 06, 2009
3
o 2F ' Originz{l signal . ' ' ' I
S LlE Reconstructed signal
2 0 wesmpapvy
I
g 2+ p = 0.2625, m = 630
j L I I I I 1 1
0 0.5 35 4

1 1.5 2 2.5 3
Time (s), 12:39:33 to 12:39:37 Nov 04, 2009

Figure 10: Original and reconstructed signals with
picks. Vertical dashed/solid lines represent the picks
by AR-AIC algorithm on the original /reconstructed
signals.

Section 5.1) is typically in the order of kilometers [20], the
error of 15ms is small and can be safely approximated as
zero-mean error. With n = 1.5, Fig. 10 shows the origi-
nal and reconstructed signals received by a sensor for three
earthquakes. It is apparent that the signals are accurately
reconstructed and P-phases are well preserved.

8.2.2 Effectiveness of Sensor Selection

In our simulations, each sensor directly communicates with
the coordinator. Each packet carries total ten 4-byte data
points. Therefore, by setting the unit communication cost
¢i = 1/10, the upper bound of communication cost C' charac-
terizes the number of packet transmissions that are allowed
in an earthquake timing process. Fig. 9 plots the error met-
ric £ (given by Eq. (4)) of the optimal (cf. Section 5.2)
and approximate (cf. Section 5.3) sensor selections versus
C in an earthquake. The figure also illustrates the number
of selected sensors in the optimal solution. Note that the
number of selected sensors in the approximate solution is
at most one more than that of the optimal solution. From
the figure, we can see that if more packet transmissions are
allowed, the coordinator will select more sensors to collect
data from them. Consistent with intuition, the error metric
decreases with the number of packet transmissions. When
C € [170,250], a total of four sensors are selected. How-
ever, the selected four sensors can be different. When more
packets are allowed, sensors with higher p’s, though more
contributory to hypocenter estimation, will be selected. We
can see that the error metric for the optimal solution be-
comes flat when more packets are allowed. This result can
be exploited to reduce the communication cost without sac-
rificing too much hypocenter estimation accuracy. When C'
is lower than 300, the approximate solution has much worse
performance than the optimal solution. However, the ap-
proximate solution approaches the optimal solution when C'
is greater than 500.

8.2.3 Impact of Random Packet Loss

As volcano monitoring WSNs are deployed in harsh envi-
ronments, sensors are subject to unreliable communication
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links [27]. We evaluate the impact of random packet loss
on our earthquake timing approach. In the simulations, we
assume that each link from sensor to coordinator has the
same packet reception ratio (PRR). The coordinator can de-
tect lost packets from the sequence numbers in the received
packets. When the coordinator reconstructs the signal, it
only uses the rows in the projection matrix A that corre-
spond to the received data points. Therefore, the effect of
packet loss is similar to choosing a smaller m in CS. We
compare our CS-based approach with a baseline that imple-
ments a lossy compression scheme. The baseline transmits
the largest coefficients together with their indexes in the
wavelet domain. The number of transmitted coefficients is
chosen to make sure that the baseline produces the same
number of packets as our approach. The curves in Fig. 11
plot the relative reconstruction errors of our CS-based ap-
proach and the baseline versus PRR. When no packet loss
happens, the baseline outperforms our approach. This re-
sult is consistent with previous studies on CS [16]. When
the PRR is lower than 90%, our approach outperforms the
baseline. It has been observed in previous deployments [30,
27] that the PRR varies with time due to changing environ-
ment and can be lower than 90%. Therefore, we can switch
between the baseline and CS according to recent PRRs (e.g.,
measured in the per-second earthquake onset time detection
[28]). The histograms in Fig. 11 plot the average P-phase
picking error of our CS-based approach. We can see that the
reconstruction is resilient to packet loss when the PRR is no
lower than 80%. Error correction mechanisms such as For-
ward Error Correction can be integrated with the baseline
to improve its resilience to packet loss. However, they can
increase both computation and communication overhead. A
comprehensive comparison that accounts for error correction
mechanisms is left for our future work.

8.2.4 Compression Efficiency

‘We now compare our CS-based approach with several base-
lines in terms of compression ratio and execution time. In
addition to the lossy baseline approach used in Section 8.2.3,
we adopt the following three lossless baseline algorithms: (1)
SLZW [25], a lossless compression algorithm designed for
WSNs; (2) ALFC [19], a real-time predictive lossless com-
pression algorithm developed for OASIS [27]; (3) Lempel-
Ziv coding (LZ77), a widely employed scheme used in tra-
ditional data-collection-based volcano monitoring systems.
Compression ratio is defined as the ratio of compressed size
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Figure 13: Hypocenter estimation results for an
earthquake at 16:56:47 Nov 03 2009: (a) The per-
centage of transmitted data versus the allowed num-
ber of packets C; (b) Hypocenter estimation error
versus C under various PRRs.

to the original size. Fig. 12 plots the compression ratios and
relative execution times of various approaches. The rela-
tive execution time is calculated with respect to LZ77. Our
approach and the lossy baseline approach have compara-
ble compression efficiency. Our approach saves more than
10% data transmission volume compared with the lossless
baselines. It is faster than LZ77 but slower than SLZW and
ALFC. However, none of the lossless baseline algorithms can
predict the exact volume of compressed signal prior to com-
pression. Therefore, they do not allow effective scheduling
of data transmission.

8.2.5 Earthquake Hypocenter Estimation

As the data transmission scheduling is guided by the ac-
curacy of hypocenter estimation, the final set of simulations
evaluate the impact of our timing approach on the hypocen-
ter estimation. We first use the P-phases picked by AR-AIC
on the original signals of all 12 sensors to localize the earth-
quake source. This source location is regarded here to be
the groundtruth location. We then localize the earthquake
source based on the P-phases obtained in our timing ap-
proach. The hypocenter estimation error is the Euclidean
distance from the groundtruth location. Fig. 13(a) plots the
percentage of transmitted data in our timing approach with
respect to the total volume of raw data at sensors. The
number over each bar is the number of selected sensors. We
observe that when C ranges from 180 to 360, only 12% to
25% of the sensor data are transmitted. Fig. 13(b) plots
the corresponding hypocenter estimation errors under dif-
ferent PRRs. Note that when C = 180, the hypocenter
estimation error is around 9km (not shown in Fig. 13(b)).
Consistent with intuition, the hypocenter estimation error
decreases with C' and PRR. From the two figures, by setting
C' = 220, the hypocenter estimation error is below 1km, a
common result in volcano seismology [20], at the expense of
only 16% data transmission.

8.3 Impact of Network Architecture and Clus-
tering

In order to choose the right hardware platform and net-

work organization, a sensor network designer must care-

fully consider the trade-offs between many factors, including

hardware availability, energy consumption, sensing coverage,



system delay, and etc. In this work, we adopt a hierarchical
network architecture where mote-class sensors sample fine-
grained signals and powerful coordinators run computation-
intensive seismological algorithms. However, one may argue
that a network composed of only powerful nodes such as
Imote2 is more desirable in data-intensive applications like
volcano monitoring. In contrast to mote-class nodes, these
nodes can collect and directly process the seismic signals for
various advanced monitoring tasks, reducing the energy cost
of communication with the cluster heads. In this section, we
quantitatively study the impact of network architecture and
sensor clustering on the energy efficiency and performance
of earthquake timing under realistic settings.

8.3.1 Energy Efficiency under Different Network Ar-
chitectures

This numerical study compares the per-node energy con-
sumption under the hierarchical and mon-hierarchical net-
work architectures discussed in Section 3.1. In the non-
hierarchical network, a cluster is composed of only high-end
sensors and each sensor runs the AR-AIC algorithm. In the
hierarchical network, we consider our CS-based approach
proposed and a centralized approach. To simplify the anal-
ysis, we assume a 1-hop star topology centered at the coor-
dinator. For our approach, we assume all sensors are always
selected. For the centralized approach, each sensor trans-
mits a segment of raw seismic signal (cf. Section 4.1) to the
coordinator. Since earthquakes are usually rare events, the
network must perform earthquake detection most of the time
in order to capture these events. We should thus also model
the energy consumed in earthquake detection. Assume each
sensor detects earthquake every second using some detec-
tion algorithm. The sensors send detection results to the
cluster head, which then fuses the results to make the final
detection decision, subsequently sends the earthquake onset
time back to the sensors in case of positive decision. This is
a common detection approach adopted in previous volcano
monitoring systems [31, 28]. Due to space limitation, the de-
tails of the energy consumption modeling are omitted here
and can be found in [22]. We compare the energies consumed
in computation and communication by a sensor per day un-
der the two network architectures. Fig. 14 shows the map
and contours of the ratio of energies under the hierarchical
(CS-based approach) and non-hierarchical networks. Note
that the execution time of the detection algorithm on TelosB
(i.e., X-axis of Fig. 14) varies, depending on the detection
algorithm. For instance, the STA/LTA-based and Bayesian
detection algorithms require around 10ms and 100 ms on
TelosB [28], respectively. The execution time on Imote2 is
scaled accordingly. From Fig. 14, we observe that the hier-
archical network consumes much less energy in computation
and communication than the non-hierarchical network un-
der a range of settings. This is true because, primarily, when
the sensors sleep most of the time in the absence of earth-
quake, the sleep power of Imote2 is at least 18 times of that
of TelosB [6, 4].! After the current draw of the sensor circuit
is taken into consideration [27], the sensor’s projected life-
times over two D-cell batteries are about 6 and 2 months, re-

"We assume that the sensors can sleep with the help of Di-
rect Memory Access controller in signal sampling [24]. The
results become more favorable to the hierarchical architec-
ture if the sensors stay in idle state instead of sleep, because
the energy ratio increases from 18 to at least 20 [6, 4].
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energy consumed by a estimation error metric
sensor in the hierarchi- & versus cluster size
cal (CS-based) and non- under two clustering
hierarchical networks. schemes.

spectively, under the hierarchical (CS-based approach) and
non-hierarchical architectures, if a STA/LTA-based earth-
quake detection algorithm is adopted and 100 positive de-
tection decisions are made by the detection algorithm per
day. Moreover, our CS-based approach can increase lifetime
by 7% and 12% compared with the centralized approach if
100 and 200 positive detection decisions are made per day,
respectively. Note that the network will make more than
200 positive detection decisions per day if its false alarm
rate is no lower than 3%, which is common for earthquake
detection algorithms [28].

8.3.2 Impact of Sensor Clustering

This numerical study evaluates the impact of sensor clus-
tering on earthquake timing. A hundred sensors are ran-
domly deployed over a 6 x 6km? square region. We as-
sume that the earthquake occurs at 10 km beneath the cen-
ter of the region. We consider the following two clustering
schemes. (1) Geographic clustering: A cluster head is ran-
domly selected from the network and the sensors that are
geographically closest to it are its members. This approach
is similar to a class of sensor clustering algorithms based
on sensor locations [8]. (2) Random clustering: Sensors are
randomly selected from the network to form a cluster. Al-
though this scheme is not practical, it gives the upper bound
on the hypocenter estimation accuracy because sensors are
most scattered. Fig. 15 shows the hypocenter estimation
error metric (given by Eq. (4)) of a cluster averaged over
many runs versus the cluster size under the two schemes.
We observe that, for both schemes, the hypocenter estima-
tion error has a sharp drop initially and then becomes flat
when the cluster size increases. This result implies that
adding a sensor becomes less beneficial for a larger cluster.
From the figure, a setting of around 15 for cluster size is
preferable. Although this numerical study is based on sim-
plified assumptions, it provides insights into the impact of
sensor clustering on earthquake hypocenter estimation. In
practice, similar numerical studies, which integrate available
geographical information such as the volcano surface alti-
tude data, can be conducted to guide the sensor clustering
as well as the setting of cluster size.

9. CONCLUSION AND FUTURE WORK

This paper presents a holistic and energy-efficient approach
to accurate volcanic earthquake timing in WSNs. We de-
velop a suite of in-network seismic signal processing algo-



rithms that collaboratively pick the arrival times of seismic
primary waves received by sensors. A dynamic sensor se-
lection problem is formulated to maximize the performance
of earthquake hypocenter estimation subject to a given up-
per bound on communication overhead. We further develop
the signal compression and reconstruction algorithms based
on compressive sampling theory. Testbed experiments and
extensive simulations based on real data traces collected on
an active volcano demonstrate the effectiveness of our ap-
proach.

In this paper, we use an XScale processor simulator on a
laptop to simulate the coordinator (cf. Section 8.1.1). In
our future work, we plan to use Imote2 to extensively eval-
uate the computation and communication overhead of coor-
dinator’s algorithms, which allows us to accurately study
the trade-off between energy consumption of coordinator
and lifetime extension of sensors. The results can guide the
choices of batteries for both coordinator and sensors. More-
over, we plan to deploy and further evaluate our approach
in a real volcano monitoring WSN system [7].
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