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Profiling Aquatic Diffusion Process Using
Robotic Sensor Networks

Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, and Xiaobo Tan

Abstract—Water resources and aquatic ecosystems are facing increasing threats from climate change, improper waste disposal, and

oil spill incidents. It is of great interest to deploy mobile sensors to detect and monitor certain diffusion processes (e.g., chemical

pollutants) that are harmful to aquatic environments. In this paper, we propose an accuracy-aware diffusion process profiling approach

using smart aquatic mobile sensors such as robotic fish. In our approach, the robotic sensors collaboratively profile the characteristics

of a diffusion process including source location, discharged substance amount, and its evolution over time. In particular, the robotic

sensors reposition themselves to progressively improve the profiling accuracy. We formulate a novel movement scheduling problem

that aims to maximize the profiling accuracy subject to the limited sensor mobility and energy budget. We develop an efficient greedy

algorithm and a more complex near-optimal radial algorithm to solve the problem. We conduct extensive simulations based on real

data traces of GPS localization errors, robotic fish movement, and wireless communication. The results show that our approach

can accurately profile dynamic diffusion processes under tight energy budgets. Moreover, a preliminary evaluation based on the

implementation on TelosB motes validates the feasibility of deploying our profiling algorithms on mote-class robotic sensor platforms.

Index Terms—Robotic sensor networks, diffusion process, movement scheduling
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1 INTRODUCTION

WATER resources and aquatic ecosystems have been
facing various physical, chemical, and biological

threats from climate change, industrial pollution, and
improper waste disposal. For instance, the last four
decades witnessed more than a dozen major oil spills
with each releasing more than 30 million gallons of oil
[1]. Other harmful diffusion processes like chemical leaks
could also have disastrous impact on public health and
ecosystem sustainability. When such a crisis arises, an
immediate requirement is to profile the characteristics
of the diffusion process, including the location of source,
the amount of discharged substance, and how rapidly it
spreads in space and evolves over time.

Manual sampling, via boat/ship or with handhold
devices, is still a common practice in the monitoring
of aquatic diffusion processes. This approach is labor-
intensive and difficult to adapt to the dynamic evolution
of diffusion. An alternative is in situ sensing with fixed
or buoyed/moored sensors [2]. However, since buoyed
sensors cannot move around, it could take a prohibitive-
ly large number of them to capture spatially inhomoge-
neous information. The past couple of decades have seen
significant progress in developing robotic technologies
for aquatic sensing. Autonomous underwater vehicles
(AUVs) [3] and sea gliders [4] are notable examples
of such technologies. However, because of their high
cost (over 50,000 U.S. dollars per unit [5]), weight (over
100pounds), and size (1-2meters long), it is difficult to
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Fig. 1. Prototypes of autonomous robotic fish developed

by the Smart Microsystems Laboratory at Michigan State

University [6].

deploy many AUVs or sea gliders for temporally and
spatially resolved measurement of diffusion processes.

Recent advances in computing, communication, sens-
ing, and actuation technologies have made it possible to
create untethered robotic fish with onboard power, con-
trol, navigation, wireless communication, and sensing
modules, which turn these robots into mobile sensing
platforms in aquatic environments. Fig. 1(a) shows a
prototype of robotic fish swimming in an inland lake.
Fig. 1(b) shows the close-up of a robotic fish prototype,
equipped with GPS, Zigbee antenna, and a dissolved
oxygen (DO) sensor. Due to the low manufacturing
cost, these platforms can be massively deployed to form
a mobile sensor network that monitors harmful diffu-
sion processes, providing significantly higher spatial and
temporal sensing resolution than existing monitoring
methods. Moreover, a school of robotic fish can coor-
dinate their sensing and movements through wireless
communication enabled by the onboard Zigbee radio, to
adapt to the dynamics of evolving diffusion processes.

Despite the aforementioned advantages, low-cost mo-
bile sensing platforms like robotic fish introduce several
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challenges for aquatic sensing. First, due to the con-
straints on size and energy, they are typically equipped
with low-end sensors whose measurements are subject
to significant biases and noises. They must efficiently
collaborate in data processing to achieve satisfactory
accuracy in diffusion profiling. Second, practical aquatic
mobile platforms are only capable of relatively low-
speed movements. Hence the movements of sensors
must be efficiently scheduled to achieve real-time pro-
filing of the diffusion processes that may evolve rapidly
over time. Third, due to the high power consumption
of locomotion, the distance that robotic sensors move in
a profiling process should be minimized to extend the
network lifetime.

To address the above challenges, we make the follow-
ing major contributions in this paper:

• We propose a novel accuracy-aware approach for
aquatic diffusion profiling based on robotic sensor
networks. Our approach leverages the mobility of
robotic sensors to iteratively profile the spatiotem-
porally evolving diffusion process.

• We derive the analytical profiling accuracy of our
approach based on the Cramér-Rao bound (CRB).
Then we formulate a movement scheduling problem
for aquatic diffusion profiling, in which the pro-
filing accuracy is maximized under the constraints
on sensor mobility and energy budgets. We de-
velop gradient-ascent-based greedy and dynamic-
programming-based radial movement scheduling al-
gorithms to solve the problem.

• We implement the profiling and movement schedul-
ing algorithms on TelosB motes and evaluate the
system overhead. Moreover, we conduct extensive
simulations based on real data traces of GPS locli-
azation errors, robotic fish movement, and wireless
communication for evaluation. The results show
that our approach can accurately profile the dynam-
ic diffusion process and adapt to its evolution.

The rest of this paper is organized as follows. Sec-
tion 2 reviews related work. Section 3 introduces the
preliminaries and Section 4 provides an overview of
our approach. Section 5 derives the analytical profiling
accuracy metric and Section 6 formulates the movement
scheduling problem. Section 7 presents the two move-
ment scheduling algorithms. Section 8 discusses several
extensions. Section 9 presents evaluation results and
Section 10 concludes this paper.

2 RELATED WORK

Most previous work on diffusion process monitoring is
based on stationary sensor networks. Several differen-
t estimation techniques are adopted by these studies,
which include state-space filtering, statistical signal process-
ing, and geometric trilateration. The state space approach
[7], [8] uses discrete state-space equations to approximate
the partial differential equations that govern the diffu-
sion process, and then applies filtering algorithms such

as Kalman filters [7], [8] to profile the diffusion process
based on noisy measurements. In the statistical signal
processing approach, several estimation techniques such
as MLE [9], [10] and Bayesian parameter estimation
[11] are applied to deal with noisy measurements. For
instance, in [10], an MLE-based diffusion characteri-
zation algorithm is designed based on binary sensor
measurements to reduce the communication cost. In [11],
the parametric probability distribution of the diffusion
profile parameters is passed among sensors and updated
with sensor measurements by a Bayesian estimation
algorithm. The passing route is determined according to
various estimation performance metrics including CRB.
In geometric trilateration approach [12], [13], the mea-
surement of a sensor is mapped to the distance from
the sensor to the diffusion source. The source location
can then be estimated by trilateration among multiple
sensors. Such an approach incurs low computational
complexities, but suffers lower estimation accuracy com-
pared with more advanced approaches such as MLE [13].

Recently, sensor mobility has been exploited to en-
hance the adaptability and sensing capability of sensor
networks. For instance, heuristic movement scheduling
algorithms are proposed in [14] to estimate the contours
of a physical field. In [15], more complex path planning
schemes are proposed for mobile sensors to reconstruct
a spatial map of environmental phenomena that do
not follow a particular physical model. Our previous
works exploit reactive sensor mobility to improve the
detection performance of a sensor network [16], [17].
Several studies are focused on using robots to improve
the accuracy in profiling diffusion processes. As an
extension to [9], the gradient of CRB is used to schedule
the movement of a single sensor in [10]. Similarly, a
robot motion control algorithm is proposed in [18] to
maximize the determinant of the Fisher information
matrix. However, as these diffusion profiling approaches
[9], [10], [18] adopt complicated numerical optimization,
they are only applicable to a small number (e.g., 3 in [18])
of powerful robots. In contrast, we focus on developing
movement scheduling algorithms for moderate- or large-
scale mobile networks that are composed of inexpensive
robotic sensors.

3 PRELIMINARIES

3.1 Diffusion Process Model

A diffusion process in a static aquatic environment, by
which molecules spread from areas of higher concen-
tration to areas of lower concentration, follows Fick’s
law [19]. In addition to the diffusion, the spread of the
discharged substance is also affected by the advection of
solvent, e.g., the movement of water caused by the wind.
By denoting t as the time elapsed since the discharge
of substance and c as the substance concentration, the
diffusion-advection model can be described as

∂c

∂t
= Dx ·

∂2c

∂x2
+Dy ·

∂2c

∂y2
+Dz ·

∂2c

∂z2
−ux ·

∂c

∂x
−uy ·

∂c

∂y
, (1)



3

where D is the diffusion coefficient, u is the advection
speed, and the subscripts of D and u denote the di-
rections (i.e., x-, y-, and z-axis). The diffusion coeffi-
cients characterize the speed of diffusion and depend
on the species of solvent and discharge substance as
well as other environment factors such as temperature.
The advection speeds characterize the horizontal solvent
movement caused by external forces such as wind and
flow. The above Fickian diffusion-advection model has
been widely adopted to study the spreading of gaseous
substances [10] and buoyant fluid pollutants such as oil
slick on the sea [20]. For many buoyant fluid pollutants,
the two horizontal diffusion coefficients, i.e., Dx and Dy,
are identical, while the vertical diffusion coefficient, i.e.,
Dz , is insignificant. For instance, in a field experiment
[21], where diesel oil was discharged into the sea, the
estimated Dx is 2,000 cm2/s while Dz is only 10 cm2/s.
Therefore, the vertical diffusion coefficient can be safely
ignored and the diffusion can be well characterized by
a 2-dimensional process. In this paper, our study is
focused on buoyant fluid pollutants with the diffusion
coefficients Dx = Dy = D.

Suppose a total of A cm3 of substance is discharged at
location (xs, ys) and t = 0. At time t > 0, the original
diffusion source is drifted to (x0, y0) due to advection,
where x0 = xs + uxt and y0 = ys + uyt. Hereafter,
by source location we refer to the source location that
has drifted from the original position due to advection,
unless otherwise specified. Denote d(x, y) (abbreviated to
d) as the distance from any location (x, y) to the source
location, i.e., d =

√
(x− x0)2 + (y − y0)2. In the presence

of advection, the diffusion is isotropic with respect to the
drifted source location [22]. Therefore, the concentration
at (x, y) can be denoted as c(d, t). The initial condition for
Eq. (1) is an impulse source, which can be represented
by the Dirac delta function, i.e., c(d, 0) = A · δ(d). The
closed-form solution to Eq. (1) is given by [10]:

c(d, t) = α · exp
(
−β · d2

)
, d ≥ 0, t > 0, (2)

where α = A
4πDt and β = 1

4Dt . From Eq. (2), for
a given time instant t, the concentration distribution
is described by the Gaussian function that centers at
the source location. As time elapses, the concentration
distribution becomes flatter. In this paper, the diffusion
profile is defined as Θ = {x0, y0, α, β}.

We now validate Eq. (2) with real lab experiments
of Rhodamine-B diffusion. We discharge Rhodamine-B
solution in saline water, and periodically capture dif-
fusion process using a digital camera. We assume that
the grayscale of a pixel in the captured image linearly
increases with the concentration at the corresponding
physical location [23]. Therefore, the evolution of dif-
fusion process can be characterized by the expansion
of a contour given a certain threshold of grayscale in
the captured images. With the measured contour areas
along the recorded shooting times, we can estimate D by
linear regression. Our methodology of model validation
is to compare the contour area observed in images with

(a) Elapsed time t=3.5 s (b) Elapsed time t=18.1 s

Fig. 2. Observations of the diffusion process of

Rhodamine-B solution in saline water.
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Fig. 3. Observed and predicted contour area of diffusing

Rhodamine-B in saline water vs. elapsed time t.

that predicted by the model in Eq. (2). The detailed
derivations are available in [24]. Fig. 2 plots the captured
images with contours marked in white. Fig. 3 plots
the contour areas observed in images and predicted by
Eq. (2) versus t. We can see that the model in Eq. (2)
well characterizes the diffusion process of Rhodamine-
B. Although we only verify the Fickian diffusion model
in small scale, this model has also been validated using
data traces of the large-scale spreading of buoyant fluid
pollutants, e.g., the oil slick in [20].

3.2 Sensor Model

Our approach leverages mobile nodes (e.g., robotic fish
[6]) to collaboratively profile an aquatic diffusion pro-
cess. The nodes form a cluster, and a cluster head is
selected to process the measurements from cluster mem-
bers. The selection of cluster head will be discussed in
Section 7.2. Moreover, we will extend our approach to
address multiple clusters in Section 9.2. Many aquatic
mobile platforms are battery-powered and hence have
limited mobility and energy budget. For instance, the
movement speed of the robotic fish designed in [6]
was about 1.8 to 6m/min. We assume that the mobile
nodes are equipped with pollutant concentration sensors
(e.g., the Cyclops-7 series [25]) that can measure the
concentrations of crude oil, harmful algae, etc. Lastly, we
assume that the sensors are equipped with low-power
wireless interfaces (e.g., 802.15.14 Zigbee radios) and can
communicate with each other on water surface.

The measurements of most sensors are subject to
biases and additive random noises from the sensor
circuitry and the environment (e.g., wave). Specifically,
the reading of sensor i, denoted by zi, is given by
zi = c(di, t) + bi + ni, where di is the distance from
sensor i to the diffusion source, bi and ni are the bias and
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random noise for sensor i, respectively. In the presence of
constant-speed advection, the source and the sensors will
drift with the same speed and therefore they are in the
same inertial system. As a result, the concentration at the
position of sensor i is given by c(di, t). We assume that
the noise experienced by sensor i follows the zero-mean
normal distribution with variance ς2, i.e., ni ∼ N (0, ς2).
We assume that the noises, i.e., {ni|∀i}, are independent
across sensors. Such a measurement model has been
widely adopted for various chemical sensors [9], [10],
[11]. We assume that the biases and noise variance (i.e.,
{bi|∀i} and ς) are known constants. For instance, they are
often given in the sensor specification provided by the
manufacturer. Moreover, they can be measured in offline
lab experiments. Specifically, by placing a sensor in the
pollutant-free fluid media, the bias and noise variance
can be estimated by the sample mean and variance over
a number of readings [26].

In this paper, we adopt a temporal sampling scheme to
mitigate the impact of noise. When sensor i measures the
concentration, it continuously takes K samples in a short
time, and computes the average as its measurement.
Hence, the measurement zi follows the normal distri-
bution, i.e., zi ∼ N (c(di, t) + bi, σ

2), where σ2 = ς2/K .

4 OVERVIEW OF APPROACH

In this section, we provide an overview of our ap-
proach. Our objective is to profile (i.e., estimate Θ) of
an aquatic diffusion-advection process using a robotic
sensor network. Our approach is designed to meet two
key objectives. First, the noisy measurements of sensors
are jointly processed to improve the accuracy in profiling
the diffusion. Second, sensors can actively move based
on current measurements to maximize the profiling ac-
curacy subject to the energy consumption budget. With

the estimated profile Θ̃, we can learn several important
characteristics of the diffusion process of interest.1 First,
we can compute the current concentration contour maps
with Eq. (2). Second, we can estimate the elapsed time
since the start of the diffusion and the total amount of
discharged substance, with t̃ = (4Dβ̃)−1 and Ã = πα̃β̃−1.
Third, we can estimate the original source location by
x̃s = x̃0−uxt̃ and ỹs = ỹ0−uy t̃. Moreover, we can predict
the evolution of the diffusion in the future, which is often
important for emergency management in the cases of
harmful substance discharge.

We assume that the robotic sensors are initially dis-
tributed at randomly chosen positions in the deployment
region that covers the diffusion source. For instance, the
sensors can be dropped off from an unmanned aerial
vehicle or placed by an aquatic vessel randomly. Note
that random and sometimes uniform deployment of
sensors around the source location is a good strategy
when the characteristics of diffusion process have yet to
be determined. This also avoids the massive locomotion

1. For the clarity of presentation, we denote x̃ as the estimate of x.
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Fig. 4. The iterative diffusion profiling process.

energy required to spread sensors for a satisfactory
profiling accuracy when the diffusion process evolves.
We assume that all sensors know their positions (e.g.,
through GPS or an in-network localization service) and
are time-synchronized. In Section 9.3.6, we will evaluate
the impact of initial sensor deployment on the profiling
accuracy and locomotion energy consumption.

After the initial deployment, sensors begin a diffu-
sion profiling process consisting of multiple profiling
iterations. The iterative profiling process is illustrated
in Fig. 4. In a profiling iteration, sensors first simul-
taneously take concentration measurements and send
them to the cluster head. Various existing data collection
protocols [27], [28] can be used to collect the mea-
surements. The cluster head then adopts the maximum
likelihood estimation (MLE) to estimate Θ from the
noisy measurements of all sensors. With the estimat-
ed diffusion profile, the cluster head schedules sensor
movements such that the expected profiling accuracy in
the next profiling iteration is maximized, subject to the
limited sensor mobility and energy budget. Finally, the
movement schedule including moving orientations and
distances is sent to sensors to direct their movements.

Our accuracy-aware diffusion profiling approach fea-
tures the following novelties. First, it starts with little
prior knowledge about the diffusion and progressively
learns the profile of the diffusion with improved accura-
cy along the profiling iterations. As sensors resample the
concentration in each iteration, such an iterative profiling
strategy allows the network to adapt to the dynamics of
the diffusion process while reducing energy consump-
tion of robotic sensors. Moreover, although the profiling
accuracy in each iteration is affected by errors in sensor
localization and movement control, our approach only
schedules short-distance movements for sensors in each
iteration and updates their positions in the next iteration,
which avoids the accumulation of errors in sensor local-
ization and movement control. Second, we analyze the
CRB of the MLE-based diffusion profiling algorithm and
propose a novel CRB-based profiling accuracy metric,
which is used to direct the movement scheduling of
robotic sensors. Third, we propose two novel movement
scheduling algorithms, which include a gradient-ascent-
based greedy algorithm and a dynamic-programming-
based radial algorithm. The greedy algorithm only incurs
linear complexity, while the radial algorithm can find the
near-optimal movement schedule with a higher but still
polynomial complexity.
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5 PROFILING ALGORITHM AND ACCURACY

ANALYSIS

In this section, we first present our MLE-based diffusion
profiling algorithm, which estimates the diffusion pro-
file Θ in each profiling iteration. We then analyze the
theoretical profiling accuracy based on CRB. The closed-
form relationship between the profiling accuracy and the
sensors’ positions will guide the design of our accuracy-
aware sensor movement scheduling algorithms.

5.1 MLE-based Diffusion Profiling Algorithm

Suppose that a total of N aquatic sensors are deployed in
the region of interest. To simplify the analysis, we define
the bias-removed and normalized observation vector z

as z = [ z1−b1
σ , . . . , zN−bN

σ ]T. As the sensor biases and
noise variance are known, z can be easily calculated
by the cluster head based on the noisy sensor mea-

surements. By denoting H = [σ−1e−βd2

1, . . . , σ−1e−βd2

N ]T,
z follows the N -dimensional normal distribution, i.e.,
z ∼ N (αH, I), where I is an N ×N identity matrix. The
log-likelihood of an observation z given Θ is expressed
by [29]:

L(z|Θ) = −(z− αH)T(z− αH). (3)

MLE maximizes the log-likelihood given by Eq. (3).
Formally, Θ̃(z) = argmaxΘ L(z|Θ). This unconstrained
optimization problem can be solved by various numeri-
cal methods, e.g., Nelder-Mead’s algorithm [30].

5.2 Cramér-Rao Bound for Diffusion Profiling

CRB provides a theoretical lower bound on the vari-
ance of parameter estimators [29], and has been widely
adopted to guide the design of estimation algorithms [9],

[11]. This section derives the CRB of Θ̃(z). CRB is given
by the inverse of the Fisher information matrix (FIM)
[29]. For the diffusion profiling, the FIM is defined by

J = −E
[

∂
∂Θ

(
∂
∂ΘL(z|Θ)

)]
= α2 ∂HT

∂Θ
∂H
∂Θ , where the expec-

tation E[·] is taken over all possible z. The kth diagonal
element of the inverse of J (denoted by J

−1
k,k) provides

the lower bound on the variance of the kth element of
Θ̃ (denoted by Θ̃k) [29]. Formally, Var(Θ̃k) ≥ J

−1
k,k . The

number J
−1
k,k is the CRB corresponding to Θk, which is

denoted as CRB(Θk) in this paper. Although the CRB
can be easily computed via numerical methods, in order
to guide the movements of sensors, we will derive the
closed-form CRB.

Even though J is just a 4 × 4 matrix, deriving J
−1

is challenging, because the N -dimensional joint dis-
tribution function in Eq. (3) leads to high inter-node
dependence. To simplify the discussion, we set up a
Cartesian coordinate system with the origin at the source
location and let (xi, yi) denote the coordinates of sensor
i. Note that the coordinates of the diffusion source and
sensor i in the global coordinate system are (x0, y0) and
(x0 + xi, y0 + yi), respectively. The FIM is a diagonal
matrix that can be expressed by J = [J11,J12;J

T
12,J22],
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where the blocks J11, J12, and J22 are 2 × 2 matrices.
These blocks can be derived as

J11=
4α2β2

σ2

[
N∑

i=1

x2
i

e2βd
2

i

,

N∑

i=1

xiyi

e2βd
2

i

;

N∑

i=1

xiyi

e2βd
2

i

,

N∑

i=1

y2i
e2βd

2

i

]
,

J12=
2αβ

σ2

[
N∑

i=1

αd2i xi

e2βd
2

i

,

N∑

i=1

−xi

e2βd
2

i

;

N∑

i=1

αd2i yi

e2βd
2

i

,

N∑

i=1

−yi

e2βd
2

i

]
,

J22=
1

σ2

[
N∑

i=1

α2d2i
e2βd

2

i

,

N∑

i=1

−αd2i
e2βd

2

i

;

N∑

i=1

−αd2i
e2βd

2

i

,

N∑

i=1

1

e2βd
2

i

]
.

After block manipulations, J−1 is given by

J
−1 =

[
F

−1 −FJ12J
−1
22

J
−1
22 J21F

−1
J
−1
22 (I+ J21F

−1
J12)

]
,

where F = J11−J12J
−1
22 J21. We define several notations,

i.e., x̂i, ŷi, LX1
, LX2

, LY1
, and LY2

, to help the represen-
tation of CRB. First, x̂i is given by

x̂i =

∑N
j=1 xj(d

2
j − d2i )e

−2βd2

j

√∑N
m=1

∑N
n=1(d

2
m − d2n)

2e−2β(d2
m+d2

n)

. (4)

By replacing xj in Eq. (4) with yj , we can define ŷi in a
similar manner. Moreover, LX1

, LY1
are 1 × N vectors,

and LX2
, LY2

are N×1 vectors. The ith elements of them
are defined as

LX1
(i)=σ−1e−βd

2

i(xi+x̂i), LY1
(i)=σ−1e−βd

2

i(yi+ŷi),

LX2
(i)=σ−1e−βd

2

i(xi−x̂i), LY2
(i)=σ−1e−βd

2

i(yi−ŷi).
(5)

With the above notations, F can be expressed as

F = 2α2β2 ·

[
2LX1

LX2
LX1

LY2
+LY1

LX2

LX1
LY2

+LY1
LX2

2LY1
LY2

]

2×2

.

The CRBs for the estimates of x0 and y0 are given by
F

−1
1,1 = |F|−1 · F2,2 and F

−1
2,2 = |F|−1 · F1,1, respectively.

Specifically,

CRB(x0) = F
−1
1,1 =

(4α2β2)−1

LX1
LX2

−
(LX1

LY2
+LX2

LY1)
2

4LY1
LY2

, (6)

CRB(y0) = F
−1
2,2 =

(4α2β2)−1

LY1
LY2

−
(LX1

LY2
+LX2

LY1)
2

4LX1
LX2

. (7)

We now discuss how well the CRBs can characterize
the MLE-based profiling algorithm discussed in Sec-
tion 5.1. As shown in [31], the variance of a parameter es-
timated by MLE converges to its CRB when the number
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of sensors N approaches infinity. We now evaluate the
convergence under realistic settings of N . Fig. 5 shows
Var(x0) and CRB(x0) versus N , where the sensors are
randomly deployed in a 200 × 200m2 region. We can
see that Var(x0) approaches CRB(x0) as N increases.
Moreover, we evaluate the impact of sensor sampling
scheme on the convergence. Note that sensor’s signal-to-
noise ratio (SNR) increases with the number of samples
K . We can see that MLE shows better convergence for
larger K . For instance, if K = 10 and N ≥ 10, the
difference between Var(x0) and CRB(x0) is insignificant.
These results show that the CRB can well characterize
the accuracy of the MLE-based profiling algorithm under
realistic setting of network size.

5.3 Profiling Accuracy Metric

In this section, we propose a novel diffusion profiling
accuracy metric based on the CRBs derived in Sec-
tion 5.2, which will be used to guide the movements
of sensors in Section 6. Several previous works [18]
adopt the determinant of the FIM as the accuracy metric,
which jointly considers all the parameters. Such a met-
ric requires the parameters to be properly normalized
to avoid biases. However, normalizing the parameters
with different physical meanings is highly problem-
dependent. Moreover, as the closed-form determinant of
the FIM is extremely complicated, the resulted sensor
movement scheduling has to rely on the numerical meth-
ods with high computational complexities [18], which is
not suitable for robotic sensors with limited resources. In
this paper, we propose a new profiling accuracy metric,
denoted by ω, which is defined according to the sum of
reciprocals of CRB(x0) and CRB(y0). Formally,

ω=

1
CRB(x0)

+ 1
CRB(y0)

4α2β2
=(1−ǫ) (LX1

LX2
+LY1

LY2
) , (8)

where ǫ =
(LX1

LY2
+LX2

LY1)
2

4LX1
LX2

LY1
LY2

. By adopting reciprocals,

the accuracy analysis can be greatly simplified. Note
that as α and β are unknown but fixed in a particular
profiling iteration, 4α2β2 in the denominator of Eq. (8) is
a scaling factor. Therefore, optimizing 1

CRB(x0)
+ 1

CRB(y0)

is equivalent to optimizing ω. As discussed in Section 5.1,
we adopt the MLE to estimate Θ. The variance of the
MLE result converges to CRB and hence a larger ω
indicates more accurate estimation of x0 and y0. With
the metric ω, the movements of sensors will be directed
according to the accuracy of localizing the diffusion
source. In the rest of this paper, the term profiling accuracy
refers to the metric ω defined in Eq. (8). Note that our
approach can also be applied to focus on the profiling
accuracy of the elapsed time t and discharged substance
amount A, by applying the same matrix manipulations
to obtain CRB(α) and CRB(β).

5.4 Approximated Profiling Accuracy

The profiling accuracy metric ω proposed in Section 5.3
can characterize the profiling performance. However,
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its expression given by Eq. (8) is still too complex to
find efficient movement scheduling algorithms. Hence,
we derive the approximation to Eq. (8). If sensors are
randomly distributed around the diffusion source, ǫ is
close to zero. By assuming a random sensor distribution
and setting ǫ = 0, the ω can be approximated as:

ω ≈
∑N

i=1
ωi, ωi=σ−2e−2βd

2

i

(
d2i − min

j∈[1,N ],j 6=i
d2j

)
, (9)

where ωi can be regarded as the contribution of sensor i to
the overall profiling accuracy. As ωi depends on di and
the minimum distance to the source from other sensors,
Eq. (9) highly reduces the inter-node dependence com-
pared with Eq. (8). Note that the approximation error

(i.e., ω−
∑N

i=1 ωi) can be easily calculated by the cluster
head with the movement schedule.

We now evaluate the above approximation by Monte
Carlo method. We define the relative approximation error

as |ω −
∑N

i=1 ωi|/ω. In the Monte Carlo simulations,
we generate a large number of deployments over a
disc region with radius of 100m. In each deployment,
sensors are randomly distributed and we then calculate
the relative approximation error. Fig. 6 shows the cumu-
lative distribution function (CDF) and the average of the
relative approximation error given different number of
sensors. We can see that the average relative approxima-
tion error is only 10% when 20 sensors are deployed.
The approximation in this section assumes that the
deployment region is centered at the diffusion source.
In Section 9.3.5, we will evaluate the case where the
deployment region is biased from the diffusion source.

6 DIFFUSION PROCESS PROFILING USING

ROBOTIC SENSORS

In this section, we formally formulate the movement
scheduling problem. Because of the limited mobility and
energy budget of aquatic mobile sensors, the sensor
movements must be efficiently scheduled in order to
achieve the maximum profiling accuracy. As the power
consumption of sensing, computation and radio trans-
mission is significantly less than that of locomotion [6],
in this paper we only consider the locomotion energy.
Moreover, as the locomotion energy is approximately
proportional to the moving distance [32], we will use
moving distance to quantify the locomotion energy con-
sumption. To simplify the motion control of sensors, we
assume that a sensor moves straight in each profiling
iteration and the moving distance is always multiple of
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l meters, where l is referred to as step. We note that this
model is motivated by the locomotion and computation
limitation typically seen for aquatic sensor platforms.
First, the locomotion of robotic fish is typically driven
by closed-loop motion control algorithms, resulting in
constant course-correction during movement. Second,
each profiling iteration has short time duration. As a
result, the assumption of sensor’s straight movement in
an iteration does not introduce significant errors in the
movement scheduling. As the estimation and movement
are performed in an iterative manner, we will focus on
the movement scheduling in one profiling iteration. De-
note mi ∈ Z

+ and φi ∈ [0, 2π) as the number of steps and
movement orientation of sensor i in a profiling iteration,
respectively. Our objective is to maximize the expected
profiling accuracy after sensor movements, subject to the
constraints on total energy budget and sensor’s individ-
ual energy budget. The movement scheduling problem
for diffusion profiling is formally formulated as follows:

Movement Scheduling Problem. Suppose that a total of M
steps can be allocated to sensors and sensor i can move at most
Li meters in a profiling iteration. Find the allocation of steps
and movement orientations for all N sensors, i.e., {mi, φi|i ∈
[1, N ]}, such that the profiling accuracy ω (defined by Eq. (8))
after sensor movements is maximized, subject to:

N∑

i=1

mi ≤ M, (10)

mi · l ≤ Li, ∀i. (11)

Eq. (10) upper-bounds the total locomotion energy in a
profiling iteration. Eq. (11) can be used to constrain the
energy consumption of individual sensors. For instance,
Li can be specified according to the sensor’s residual
energy. Moreover, Li can also be specified to ensure
the delay of a profiling iteration. If sensors move at
a constant speed of v m/s and a profiling iteration is
required to be completed within τ seconds to achieve
the desired temporal resolution of profiling, Li can be
set to Li = v · τ . As discussed in Section 4, the cluster
head adopts MLE to estimate Θ, and then schedules the
movements of sensors such that the expected ω in the
next profiling iteration is maximized, subject to the con-
straints in Eqs. (10) and (11). An exhaustive search to the
above problem would yield an exponential complexity
with respect to N , which is O(( 2π

φ0

·

Li

l
)N ) where φ0 is the

granularity in searching for the movement orientation.
Such a complexity is prohibitively high as the problem
needs to be solved in each profiling iteration by the clus-
ter head. In the next section, we will propose an efficient
greedy algorithm and a near-optimal radial algorithm that
are feasible to mote-class sensor platforms.

7 SENSOR MOVEMENT SCHEDULING ALGO-
RITHMS

In this section, we propose an efficient greedy movement
scheduling algorithm based on gradient ascent and a

near-optimal radial algorithm based on dynamic pro-
gramming to solve the problem formulated in Section 6.
In both scheduling algorithms, sensors move simultane-
ously according to a movement schedule. In comparison
with the strategy where sensors move sequentially, our
scheme adapts to the spatiotemporally evolving process,
improving the temporal resolution of profiling.

7.1 Greedy Movement Scheduling

Gradient ascent is a widely adopted approach to find
a local maximum of a utility function. In this paper,
we propose a greedy movement scheduling algorithm
based on the gradient ascent approach. We first dis-
cuss how to determine the movement orientations for
the sensors. Since the profiling accuracy ω given by
Eq. (8) is a function of all sensors’ positions, we can
compute the gradient of ω with respect to the posi-
tion of sensor i (denoted by ∇iω), which is formally

given by ∇iω =
[

∂ω
∂xi

, ∂ω
∂yi

]T

. When all sensors except

sensor i remain stationary, the metric ω will increase
the fastest if sensor i moves in the orientation given
by ∇iω. Therefore, in the greedy movement scheduling
algorithm, we let φi = ∠(∇iω). Note that sensors will
move simultaneously when the movement schedule is
executed. We now discuss how to allocate the move-
ment steps. The magnitude of ∇iω, denoted by ‖∇iω‖,
quantifies the steepness of the metric ω when sensor
i moves in the orientation ∠(∇iω) while other sensors
remain stationary. Therefore, in the greedy algorithm, we
propose to proportionally allocate the movement steps
according to sensor’s gradient magnitude. Specifically,

mi is given by mi = min
{⌊

‖∇iω‖∑
N
i=1

‖∇iω‖
·M

⌋

,
⌊

Li

l

⌋

}

. Note

that the
⌊
Li

l

⌋
in the min operator satisfies the constraint

Eq. (11). This greedy algorithm has linear complexity,
i.e., O(N), which is preferable for the cluster head with
limited computational resource.

7.2 Radial Movement Scheduling

In this section, we propose a new movement scheduling
algorithm based on the approximations discussed in
Section 5.4. From Eq. (9), the contribution of sensor i, ωi,
depends on the minimum distance between the cluster
head and other sensors. Because of such inter-node de-
pendence, it is difficult to derive the optimal distance for
each sensor that maximizes the overall profiling accuracy
ω. It can be shown that the problem involves non-
linear and non-convex constrained optimization. Several
stochastic search algorithms, such as simulated anneal-
ing, can find near-optimal solutions. However, these
algorithms often have prohibitively high complexities. In
our algorithm, we fix the sensor closest to the estimated
source location and only schedule the movements of
other sensors in each profiling iteration. As the sensor
closest to the source receives the highest SNR, moving
other sensors will likely yield more performance gain.
Moreover, this sensor can serve as the cluster head that
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receives measurements from other sensors and computes
the movement schedule. It is hence desirable to keep it
stationary due to its higher energy consumption in com-
putation and communication. We note that the sensor
closest to the source may be different in each iteration
after sensor movements, resulting in rotation of cluster
head among sensors. By fixing the sensor closest to the
source, the distance di that maximizes the expected ωi,
denoted by d∗i , can be directly calculated by

d∗i =

√
1

2β
+ min

j∈[1,N ]
d2j , ∀i 6= argmin

j∈[1,N ]

dj . (12)

Note that as β is a time-dependent variable, d∗i also
changes with time and hence should be updated in each
profiling iteration. Eq. (12) allows us to easily determine
the movement orientation of sensor i. Specifically, if
di > d∗i , sensor i will move toward the estimated source
location; otherwise, sensor i will move in the opposite
direction. Formally, by defining δ = sgn(d∗i − di), we
can express the movement orientation of sensor i as
φi = ∠([δ · xi, δ · yi]T).

We now discuss how to allocate the movement steps.
In the rest of this section, when we refer to sensor i, we
assume sensor i is not the closest to the estimated source
location. After sensor i moves mi steps in the orientation
of φi, its contribution to the overall profiling accuracy is

ωi(mi) =
(di + δ ·mi · l)2 −minj∈[1,N ] d

2
j

σ2 · e2β(di+δ·mi·l)2 , (13)

where minj∈[1,N ] d
2
j in Eq. (13) is a constant for sensor

i, and β can be predicted based on its current estimate
to capture the temporal evolution of the diffusion, i.e.,

β = (1/β̃ + 4 · D · τ)−1. Given the radial movement
orientations described earlier, the formulated problem
is equivalent to maximizing

∑
i ωi(mi) subject to the

constraints Eqs. (10) and (11), which can be solved by
a dynamic programming algorithm as follows.

We number the sensors by 1, 2, . . . , N − 1, excluding
the sensor closest to the estimated source location. Let
Ω(i,m) be the maximum ω when the first i sensors
are allocated with m steps. The dynamic programming
recursion that computes Ω(i,m) can be expressed as
Ω(i,m) = max0≤mi≤⌊Li/l⌋ {Ω(i− 1,m−mi) + ωi(mi)}.
The initial condition of the above recursion is Ω(0,m) =
0 for m ∈ [0,M ]. According to the above equation, at the
ith iteration of the recursion, the optimal value of Ω(i,m)
is computed as the maximum value of ⌊Li/l⌋ cases
which have been computed in previous iterations of the
recursion. Specifically, for the case where sensor i moves
mi steps, the maximum profiling accuracy ω of the first
i sensors allocated with m steps can be computed as
Ω(i− 1,m−mi) + ωi(mi), where Ω(i− 1,m−mi) is the
maximum ω of the first i−1 sensors allocated with m−mi

steps. The maximum overall profiling accuracy is given
by ω∗ = maxm∈[1,M ] Ω(N − 1,m).

We now describe how to construct the movement
schedule using the above dynamic programming recur-
sion. The movement schedule of sensor i is represented

by a pair (i,mi). For each Ω(i,m), we define a move-
ment schedule S(i,m) initialized to be an empty set.
The set S(i,m) is filled incrementally in each iteration
when Ω(i,m) is computed. Specifically, in the ith iter-
ation of the recursion, if Ω(i − 1,m − mx) + ωi(mx)
gives the maximum value among all cases, we ad-
d a movement schedule (i,mx) to S(i,m). Formally,
S(i,m) = S(i − 1,m − mx) ∪ {(i,mx)}, where mx =
argmax0≤mi≤⌊vτ/l⌋ {Ω(i − 1,m−mi) + ωi(mi)}. The dy-
namic programming complexity is O

(

(N − 1)M2
)

, where
N and M are the number of sensors and allocatable
movement steps in a profiling iteration, respectively.

8 DISCUSSIONS

In this section, we discuss several issues that have not
been addressed in the previous sections.

8.1 Diffusion Process with Continuous Source

In previous sections, we assume that the diffusion pro-
cess is caused by an impulse source. We now extend
our approach to address the continuous source, where
the discharged substance is released continuously at a
certain rate. Formally, the initial condition of continu-
ous source can be expressed by the step function, i.e.,
c(0, t) = µ · 1(t). In this discussion, we assume that there
is no advection. The solution to Eq. (1) with this new ini-
tial condition can be obtained by integrating Eq. (2) over

time t [22], yielding c(d, t) = µ
4πDd · erfc

(
d

2
√
Dt

)
, where

erfc(x) = 1√
π

∫∞
x exp(−y2) dy. However, the closed-form

4 × 4 FIM for x0, y0, t and µ is too complicated to
derive the decomposition of the CRB-based profiling
accuracy metric (i.e., ω) into the sum of contributions
of individual sensors. We note that the decomposition
is the key property that allows us to apply dynamic
programming to schedule the sensor movements. To
make the problem tractable, we only consider the FIM
of the source location, which is a 2 × 2 diagonal matrix
given by J = [J11, J21; J21, J22], where

J11=

∑N

i=1
f2(di)x

2

i

(4πDσ/µ)2
, J21=

∑N

i=1
f2(di)xiyi

(4πDσ/µ)2
, J22=

∑N

i=1
f2(di)y

2

i

(4πDσ/µ)2
,

and f(di) = d−2i ((πDt)−
1

2 exp(
−d2

i

4Dt )+erfc( di

2
√
Dt

)d−1i ). We

define an 1 × N vector denoted by LX where the ith

element of LX is given by LX(i) = f(di)xiσ
−1. We define

another 1×N vector denoted by LY by replacing xi in
LX with yi. The CRB(x0) and CRB(y0), which are given
by J

−1
1,1 and J

−1
2,2, can be derived as

CRB(x0)=
(µ/4πD)2

LXL
T
X−

(LXL
T
Y
)2

LY L
T
Y

,CRB(y0)=
(µ/4πD)2

LY L
T
Y−

(LY L
T
X
)2

LXL
T
X

.

Similar to Eq. (8), we define the profiling accuracy metric
ω based on the reciprocals of CRBs:

ω =
(µ/4πD)2

CRB(x0)
+

(µ/4πD)2

CRB(y0)
= (1− ǫ)

(
LXL

T
X + LY L

T
Y

)
,
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where ǫ =
(LXL

T
Y )2

LXL
T
X
LY L

T
Y

. Extensive Monte Carlo simula-

tions following the methodology discussed in Section 5.4
show that, if sensors are randomly distributed, ǫ is close
to zero. Due to space limitation, the results of the Monte
Carlo simulations are omitted here and can be found in
[24]. As a result, the profiling accuracy metric can be
approximately decomposed as follows:

ω ≈ LXL
T
X +LY L

T
Y =

∑N

i=1
ωi, ωi = σ−2f2(di). (14)

The greedy algorithm proposed in Section 7.1 can be
applied as long as the closed-form formula of the pro-
filing accuracy is available. Moreover, based on the
decomposition in Eq. (14), the radial algorithm can be
extended to address the case of continuous source in the
absence of advection. In the presence of advection, there
is no closed-form solution to Eq. (1) with continuous
source [12]. Hence, the movement scheduling problem
still remains an open issue under such a case.

8.2 Adaptability to Changeable Noise Level

We now discuss the adaptability of the MLE-based pro-
filing algorithm and the sensor movement scheduling
algorithms to the changeable noise level. First, it is easy
to verify that the likelihood given by Eq. (3) is inverse-
ly proportional to σ2. Hence, the MLE-based profiling
algorithm can be carried out without the knowledge of
σ2. Second, according to Eqs. (5) and (8), the profiling
accuracy ω is inversely proportional to σ2. This also
holds for the case of continuous source discussed in
Section 8.1. This observation implies that the profiling ac-
curacy decreases with the noise level, which is consistent
with the intuition. Moreover, the movement scheduling
algorithms that aim to maximize ω can be carried out
without the knowledge of σ2 as well. In summary, the
algorithms proposed in this paper do not require the
value of σ2. As a result, the algorithms can be applied
regardless the noise level, and the network can adapt to
changeable noises in highly dynamic (e.g., wavy) water
environment. The value of σ2 is required only when
the network needs to output the quantified profiling
performance, i.e., ω.

9 PERFORMANCE EVALUATION

9.1 Evaluation Methodology

We evaluate our approach through a combination of
hardware experiments and extensive trace-driven sim-
ulations. Specifically,

• We implement the MLE, greedy and radial algorithms
on TelosB mote platform and evaluate their com-
putational overhead. The results are presented in
Section 9.2, and provide insight into the feasibility
of adopting the proposed profiling algorithms on
mote-class robotic sensor platforms.

• We evaluate the proposed profiling algorithms in
extensive simulations based on real data traces and

present the results in Section 9.3, which proceeds as
follows.

a) Section 9.3.1 presents how we collect the three sets
of data traces, which include GPS localization er-
rors, robotic fish movement, and on-water Zigbee
wireless communication.

b) Section 9.3.2 presents the simulation settings and
methodology.

c) Section 9.3.3 to Section 9.3.7 present the simula-
tion results where we analyze the impact of sev-
eral important factors on the profiling accuracy.

9.2 Overhead on Sensor Hardware

We have implemented the MLE and the two movement
scheduling algorithms in TinyOS 2.1.1 on TelosB plat-
form [33] equipped with an 8MHz processor. We note
that these algorithms are executed on the cluster head.
We ported the C implementation of the Nelder-Mead
algorithm [30] in GNU Scientific Library (GSL) [34] to
TinyOS to solve the optimization problem in MLE (see
Section 5.1). The porting is non-trivial because dynamic
memory allocation and function pointer are extensively
used in GSL while these features are not available in
TinyOS. Our implementation of MLE requires 19KB
ROM and 1KB RAM. When 10 sensors are to be sched-
uled, the two movement scheduling algorithms require
1 and 8.8KB RAM, respectively. Fig. 7 plots the average
execution time of the MLE, greedy and radial algorithms
versus the number of sensors. We note that the com-
plexity of MLE is O(N). For both movement scheduling
algorithms, the execution time linearly increases with N ,
which is consistent with our complexity analysis. The
radial algorithm takes about 100 seconds to compute
the movement schedule in a profiling iteration when
N = 20. This overhead is reasonable compared with the
movement delay of low-speed mobile sensors. The greedy
algorithm is significantly faster, and hence provides an
efficient solution when the timeliness is more important
than profiling accuracy. For the radial algorithm, 30%
execution time is spent on computing a look-up table
consisting of each sensor i’s contribution, i.e., ωi(mi)
in Eq. (13), given all possible values of mi. There are
several ways to further reduce the computational over-
head. First, our current implementation employs exten-
sive floating-point computation. Our previous experi-
ence shows that fixed-point arithmetic is significantly
more efficient on TelosB motes. Moreover, we can also
adopt more powerful sensor platforms as cluster head in
the network. For instance, the projected execution time
on Imote2 [33] equipped with a 416MHz processor is
within 2 seconds for computing the movement schedule
for 20 sensors.

We note that the complexity of radial algorithm is
O(N3), which can jeopardize the timeliness of periodical
profiling when more sensors are deployed. To reduce
the computation delay, in this paper we adopt a simple
clustering method by randomly assigning N nodes to
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p clusters. The average of the profiling results of all
clusters is yielded as the final result. The complexity for
a cluster reduces to O(N3/p3). Due to space limitation,
the details of the clustering method and its performance
analysis are omitted here and can be found in [24].
Fig. 8 plots the execution time and profiling accuracy
of the radial approach when the network is divided into
p clusters. The left Y-axis is the ratio of execution time
for p clusters with respect to the case of a single cluster.
We can see that both the execution time and profiling
accuracy decrease with p. This is because simply aver-
aging results from all clusters does not fully account for
the inter-cluster dependence in the accuracy of dynamic
programming. Nevertheless, the radial algorithm of 2
and 3 clusters still outperforms the greedy algorithm of
a single cluster in terms of profiling accuracy.

9.3 Trace-Driven Simulations

9.3.1 Trace Collection

We collect three sets of data traces, which include GPS
localization errors, robotic fish movement, and on-water
Zigbee wireless communication. First, the data traces of
GPS error are collected using two Linx GPS modules
[35] in outdoor open space. We extract the GPS error
by comparing the distance measured by GPS modules
with the groundtruth distance. The average GPS error
is 2.29meters. Second, the data traces of movement
control are collected with a robotic fish developed in
our lab [6] (see Fig. 1). The movement of robotic fish is
driven by a servo motor that is controlled by continuous
pulse-width modulation waves. By setting the fish tail
beating amplitude and frequency to 23◦ and 0.9Hz, the
movement speed is 2.5m/min. We then have the fish
swim along a fixed direction in an experimental water
tank, and derive the real speed by dividing the moving
distance by elapsed time. Third, the data traces of Zig-
bee communication are collected with two IRIS motes2

[33] by measuring the packet reception rate (PRR) of a
single link on the wavy water surface of Lake Lansing,
Michigan, on a windy day. We note that the PRR in
such wavy water environment is more dynamic than that
in calm water environment, due to multipathing [36].
Specifically, we place the two motes about 12 centimeters

2. The next generation of our robotic fish platform adopts the same
RF230 radio chip equipped on IRIS.

above the water surface, and measure the PRR versus
their distance. The results are plotted in Fig. 9. We note
that the two IRIS motes achieve an average PRR of
0.8, when they are 37meters apart. According to our
experience, the communication range of IRIS on water
surface drops by about 50% compared to that on land.

9.3.2 Simulation Settings and Methodologies

We conduct extensive simulations based on collected
data traces to evaluate the effectiveness of our approach.
The simulation programs are written in Matlab. As
discussed in Section 3.2, the effect of constant-speed
advection is canceled because the sensors and source
location are in the same inertial system. Therefore, we
only simulate the diffusion process without advection.
The diffusion source is at the origin of the coordinate
system, i.e., x0 = y0 = 0. The sensors are randomly
deployed in the square region of 200 × 200m2 centered
at the origin. The reading of a sensor is set to be
the sum of the concentration calculated from Eq. (2),
the bias bi, and a random number sampled from the
normal distribution N (0, ς2). Without loss of generality,
we assume that the bias bi is zero in the simulations.
As discussed in Section 3.2, in each profiling iteration,
a sensor samples K readings and outputs the average
of them as the measurement. The amount of discharged
substance is set to be A = 0.7 × 106 cm3 (i.e., 0.7m3)
unless otherwise specified. The diffusion coefficient is set
to be D = 5,000 cm2/s. Note that the settings of A and D
are comparable to the real field experiments reported in
[21] where 2 to 5m3 of diesel oil were discharged into the
sea and the estimated diffusion coefficient ranged from
2,000 cm2/s to 7,000 cm2/s. The noise standard deviation
is set to be ς = 1 cm3/m2, i.e., 1 cm3 discharged substance
per unit area.3 To easily compare various movement
scheduling algorithms, we let the first profiling iteration
always start at t = 1800 s, i.e., half an hour after the
discharge. At t = 1800 s, the average received SNR
is around 10/1. The rationale of this setting is that
moving sensors too early (i.e., at low SNRs) leads to little

3. As we adopt a 2-dimensional model to characterize the diffusion
process, the physical unit of concentration is cm3/m2. As observed in
the field experiments [21], diesel oil can penetrate down to several me-
ters from the water surface. As a result, the equivalent ς that accounts
for the depth dimension ranges from 0.1 cm3/m3 to 1 cm3/m3. Our
setting is consistent with the noise standard derivation of the crude oil
sensor Cyclops-7 [25], which is 0.1 cm3/m3.
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Fig. 10. Movement trajectories of 20 sensors
in the first 15 profiling iterations.
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improvement on profiling accuracy, resulting in waste of
energy. In practice, various approaches can be applied
to initiate the profiling process, e.g., by comparing the
average measurement to a threshold that ensures good
SNRs. Other settings include step length l = 0.5m,
profiling iteration duration τ = 60 s, sensor movement
speed v = 2.5m/min and number of sampling K = 2,
unless otherwise specified.

We now discuss how the real data traces are used
in the simulations. We compare the performance of
the greedy and radial algorithms with and without the
data traces of movement and localization errors. If the
movement/localization traces are used, the movement
speed of a robotic sensor in the simulation is set to
be the real speed that is randomly selected from the
movement data traces, and the position reading sent
to the cluster head is corrupted by a localization error
that is randomly selected from the GPS error traces. The
simulation results with movement/localization traces
presented in Section 9.3.3 to 9.3.6 are labeled with the
prefix “trace-driven”. In Section 9.3.7, to evaluate the
communication overhead of our approach, the PRR of
a link in the simulation is set to be the distance-based
interpolation of real PRR measurements shown in Fig. 9.

We compare our approach with two additional base-
line algorithms in the evaluation. The first baseline (re-
ferred to as SNR-based) schedules the movements based
on the SNRs received by sensors. The SNR received by
sensor i (denoted by SNRi) is defined as c(di, t)/σ, where
di and t can be computed from the estimated profile

Θ̃. In the SNR-based scheduling algorithm, the sensors
always move toward the estimated source location to
increase the received SNRs. The movement steps are
proportionally allocated according to sensors’ SNRs. The
rationale behind this heuristic is that the accuracy of
MLE increases with SNR. The second baseline (referred
to as annealing) is based on the simulated annealing. For
given movement orientations {φi|∀i}, it uses the brutal-
force search to find the optimal step allocation under
the constraints in Eqs. (10) and (11). It then employs
a simulated annealing algorithm to search for the opti-
mal movement orientations. However, it has exponential
complexity with respect to the number of sensors.

9.3.3 Sensor Movement Trajectories

We first visually compare the sensor movement tra-
jectories computed by the greedy and radial movement
scheduling algorithms. A total of 20 sensors are de-
ployed. Fig. 10 shows the movement trajectories of sen-
sors in the first 15 profiling iterations. For a particular
sensor, the circle denotes its initial position, the segments
represent its movement trajectory of 15 profiling itera-
tions, and the arrow indicates its movement orientation
in the 15th iteration. The sensor with no segments re-
mains stationary during all 15 profiling iterations. We
can see that, with the greedy algorithm, several sensors
(e.g., sensor 15, 16, and 17) have bent trajectories. This
is because the movement orientation of each sensor is to
maximize the gradient ascent of ω, hence not necessarily
to be aligned along the iterations. In the radial algorithm,
sensors’ trajectories are more straight. This is because the
movement orientation is along the direction determined
by the current sensor position and the estimated source
location that is close to the true source location. More-
over, we find that the radial algorithm outperforms the
greedy algorithm in terms of profiling accuracy after the
first 15 iterations. In the greedy algorithm, the orientation
assignment and movement step allocation are based on
the gradient derived from the current positions of sen-
sors. Besides, the greedy algorithm does not account for
the interdependence of sensors in providing the overall
profiling accuracy. As a result, its solution may not lead
to the maximum ω after the sensor movements and the
temporal evolution of diffusion.

9.3.4 Profiling Accuracy

In the second set of simulations, we evaluate the accura-
cy in estimating the diffusion profile Θ. Total 10 sensors
are deployed and our evaluation lasts for 15 profiling
iterations. Fig. 11 plots the profiling accuracy ω (defined
in Eq. (8)) based on the estimated diffusion profile Θ̃. The
curve labeled with “stationary” is the result if all sensors
always remain stationary. Nevertheless, we can see that
the profiling accuracy improves over time because of the
temporal evolution of the diffusion. For both greedy and
radial, the curves with and without simulated movement
control and localization errors almost overlap with each
other. As our iterative approach has no accumulated
error, small movement control and localization errors
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have little impact on our approach. The radial algorithm
outperforms the greedy and SNR-based algorithms by 16%
and 50% in terms of ω at the 15th profiling iteration,
respectively. And the accuracy performance of the radial
algorithm is very close to the annealing algorithm that
can find the near-optimal solution. However, we note
that in each iteration of the annealing algorithm, a new
look-up table needs to be computed due to changed
movement orientations. Hence its execution time highly
depends on the number of iterations that can be very
large. Therefore, the annealing algorithm is infeasible on
mote-class platforms.

Fig. 12 plots the average of Var(x̃0) and Var(ỹ0) in
each profiling iteration under various settings of the
discharged substance amount A. In order to evaluate the
variances in each profiling iteration, the sensors perform
many rounds of MLE, where each round yields a pair
of (x̃0, ỹ0). The Var(x̃0) and Var(ỹ0) are calculated from
all rounds. From Fig. 12, we find that the variances
may increase (for the SNR-based scheduling algorithm) or
fluctuate (for other approaches) after several iterations.
This is because the variances are time-dependent due
to the involving of α and β in CRB(x0) and CRB(y0).
Moreover, we can see that the variances decrease with A.
As sensors receive higher SNRs in the case of higher A,
our result consists with the intuition that the estimation
error decreases with SNR. Compared with the SNR-
based algorithm, the radial algorithm reduces the vari-
ance in estimating diffusion source location by 36% for
A = 0.7× 106 cm3. Compared with the greedy algorithm,
the reductions are 12% and 18% for A = 0.7 × 106 and
1.4× 106 cm3, respectively.

The MLE algorithm also estimates the initial substance
amount A and elapsed time t. Therefore, we additionally
evaluate the performance of our movement scheduling
algorithms on profiling A and t. Fig. 13 plots t̃ versus

the groundtruth time. We can see that the elapsed time
can be accurately estimated. For instance, the relative
error of t̃ for radial algorithm is only 1.0%. Fig. 14
plots the relative error of Ã, which is calculated as

|(Ã − A)/A|. We can see that both the radial and greedy
algorithms give comparable profiling performance with
the annealing algorithm. The relative error is less than
1.4%. Moreover, the result shows that the greedy algo-
rithm achieves a slightly better profiling performance
than the radial algorithm. As discussed in Section 5.3,
the accuracy metric adopted in this paper is defined
to characterize the accuracy of localizing the diffusion
source. Therefore, it is possible that radical algorithm
yields larger error than greedy algorithm in profiling A.

9.3.5 Sampling Scheme, Source Bias, Network Density

We characterize the profiling error after 15 iterations
by the average of Var(x̃0) and Var(ỹ0). Except for the
evaluations on network density, a total of 10 sensors are
deployed. In the temporal sampling scheme presented in
Section 3.2, a sensor yields the average of K continuous
samples as the measurement to reduce noise variance.
Fig. 15 plots the profiling error versus K . We can see
that the profiling error decreases with K . The relative
reductions of profiling error by the radial algorithm with
respect to the greedy and SNR-based algorithms are about
18% and 30%, respectively, when K ranges from 2 to 20.

The approximations discussed in Section 5.3 assume
that the sensors are randomly deployed around the
diffusion source. In this set of simulations, we evaluate
the impact of source location bias on profiling accuracy.
Specifically, the diffusion source appears at (δ, 0), where
δ is referred to as the source location bias. Fig. 16 plots
the profiling error versus δ. To jointly account for the
impact of random sensor deployment, for each setting
of δ, we deploy a number of networks and show the
error bars. We find that the radial algorithm is robust to
the source location bias. Moreover, we note that the radial
algorithm is consistently better than other algorithms.

Fig. 17 plots the profiling error versus the number of
sensors. When more sensors are deployed, the profiling
error can be reduced. The radial algorithm is consistently
better than the other algorithms. For all algorithms,
the profiling error is reduced by about 40% when the
number of sensors increases from 10 to 15. Moreover,
the relative reduction of profiling error decreases with
the number of sensors.
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9.3.6 Impact of Sensor Deployment

In this section, we evaluate the impact of initial sensor
deployment on the profiling accuracy and energy con-
sumption in locomotion. We fix each di and randomly
deploy sensors in one, two adjacent, three and four
quadrants of the plane originated at the source location,
resulting in four sensor deployments. We compute the
upper bound of ω, in which sensors’ angles with re-
spect to the source location are exhaustively searched
to maximize the profiling accuracy. Note that the sensor
deployment with maximized profiling accuracy is still an
open issue. Fig. 18 plots the upper bound of ω as well
as the profiling accuracy of four sensor deployments. We
can see that the profiling accuracy of the four-quadrant
deployment is the closest to the upper bound. Fig. 18
also plots the minimum total distance that the sensors
in a deployment have to move to achieve the upper
bound ω. We can observe that if sensors are not deployed
around the source location, spreading sensors first can
significantly improve the profiling accuracy. However, if
sensors have limited energy for locomotion, it is more
beneficial to deploy sensors around the source to avoid
energy-consuming spreading movements.

9.3.7 Communication Overhead

In each profiling iteration, the communication overhead
is mainly affected by the packet loss caused by the
unreliable on-water wireless communication. Hence, we
employ the total number of transmissions in collect-
ing all sensor measurements as the evaluation metric.
Specifically, we choose the shortest distance path as
the routing path from a sensor to the cluster head,
where the distance metric of each hop is PRR−1, i.e.,
the expected number of (re-)transmissions on the hop.
The PRR is set to be the distance-based interpolation
of real measurements shown in Fig. 9. When a node
transmits packet to the next hop, the packet is delivered
with a success probability equal to the PRR. The node re-
transmits the packet up to 10 times before it is dropped.
In the simulations, 30 sensors are randomly deployed.
The packet to the cluster head includes sensor ID, current
position and measurement. The packet to sensor contains
the movement schedule that includes movement orien-
tation and distance. Our simulation results show that
the number of (re-)transmissions in a profiling iteration
has a mean of 158 and a standard deviation of 28. Even
if all these transmissions happen sequentially, the delay
will be within seconds, because transmitting a TinyOS
packet only takes about 10ms on typical mote-class
platforms. This result shows that our approach has low
communication overhead under realistic settings.

10 CONCLUSION AND FUTURE WORK

In this paper we propose an accuracy-aware profiling
approach for aquatic diffusion processes using robotic
sensor networks. Our approach features an iterative pro-
filing process where the sensors reposition themselves

to progressively improve the profiling accuracy along
the iterations. We develop two movement scheduling
algorithms, including an efficient greedy algorithm and
a near-optimal radial algorithm. We implement our al-
gorithms on TelosB motes and evaluate their overhead.
We also conduct extensive simulations based on real
traces of GPS localization errors, robotic fish movement,
and wireless communication. Our results show that our
approach can accurately profile dynamic diffusion pro-
cesses with low overhead.

The movement scheduling approach described in this
paper is targeted at robotic sensors with limited sens-
ing and motion capabilities in relatively calm water
environment. We are developing the next generation
of our robotic fish platforms that are capable of more
complex sensing and motion control. In our future work,
we will investigate distributed control algorithms that
allow such robotic sensors to autonomously plan their
motion paths, which reduce the overhead of cross-sensor
coordination in collaborative sensing tasks.
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motion planning under nonholonomic constraints for parameter
estimation of distributed systems,” International Journal of Intelli-
gent Systems Technologies and Applications, vol. 3, pp. 277–295, 2007.

[19] N. March and M. Tosi, Introduction to Liquid State Physics. World
Scientific Publishing, 2002.

[20] S. Murray, “Turbulent diffusion of oil in the ocean,” Limnology and
Oceanography, vol. 17, no. 5, pp. 651–660, 1972.

[21] A. Elliott, “Shear diffusion and the spread of oil in the surface
layers of the north sea,” Ocean Dynamics, vol. 39, no. 3, pp. 113–
137, 1986.

[22] J. Crank, The mathematics of diffusion. Oxford Univ. Press, 1983.
[23] E. Tsotsas and A. Mujumdar, “Modern drying technology, vol. 2,

experimental techniques,” 2009.
[24] Y. Wang, R. Tan, G. Xing, J. Wang, and X. Tan, “Accuracy-

aware aquatic diffusion process profiling using robotic sensor
networks,” CSE Dept., Michigan State University, Tech. Rep., 2011.

[25] Turner Designs Inc., “Cyclops-7 user’s manual.” [Online].
Available: http://www.turnerdesigns.com/

[26] S. Alag, K. Goebel, and A. Agogino, “A methodology for intelli-
gent sensor validation and fusion used in tracking and avoidance
of objects for automated vehicles,” in American Control Conference.
IEEE, 1995, pp. 3647–3653.

[27] G. Werner-Allen, S. Dawson-Haggerty, and M. Welsh, “Lance:
optimizing high-resolution signal collection in wireless sensor
networks,” in The 6th ACM Conference on Embedded Networked
Sensor Systems (SenSys), 2008, pp. 169–182.

[28] C. Liang, J. Liu, L. Luo, A. Terzis, and F. Zhao, “Racnet: a high-
fidelity data center sensing network,” in The 7th ACM Conference
on Embedded Networked Sensor Systems (SenSys), 2009, pp. 15–28.

[29] R. Duda, P. Hart, and D. Stork, Pattern Classification. Wiley, 2001.
[30] J. Nelder and R. Mead, “A simplex method for function mini-

mization,” The Computer Journal, vol. 7, no. 4, p. 308, 1965.
[31] B. Hoadley, “Asymptotic properties of maximum likelihood esti-

mators for the independent not identically distributed case,” The
Annals of Mathematical Statistics, vol. 42, no. 6, pp. 1977–1991, 1971.

[32] D. Barrett, M. Triantafyllou, D. Yue, M. Grosenbaugh, and
M. Wolfgang, “Drag reduction in fish-like locomotion,” Journal
of Fluid Mechanics, vol. 392, no. 1, pp. 183–212, 1999.

[33] Memsic Corp., “TelosB, IRIS, Imote2 datasheets.”
[34] “GSL-GNU scientific library,” 2011. [Online]. Available: http:

//www.gnu.org/software/gsl
[35] Linx Technologies, “Linx GPS receiver module data guide.”
[36] P. Corke, T. Wark, R. Jurdak, W. Hu, P. Valencia, and D. Moore,

“Environmental wireless sensor networks,” Proceedings of the
IEEE, vol. 98, no. 11, pp. 1903–1917, 2010.

Yu Wang received the B.S. degree in electronic
and information science from Nanjing University,
Nanjing, China, in 2010. Since 2010, he has
been working toward the Ph.D. degree in the
Department of Computer Science and Engineer-
ing, Michigan State University, East Lansing. His
research interests include collaborative sensing
and information processing in wireless sensor
networks.

Rui Tan Rui Tan received the B.S. and M.S.
degrees in automation from Shanghai Jiao Tong
University, Shanghai, China, in 2004 and 2007,
respectively, and the Ph.D. degree in computer
science from City University of Hong Kong, Hong
Kong SAR, in 2010. He worked as a postdoctoral
Research Associate at Michigan State Universi-
ty, East Lansing, USA, from 2010 to 2012. He
is currently a Research Scientist at Advanced
Digital Sciences Center, a Singapore-based re-
search center established by the University of

Illinois at Urbana-Champaign. His research interests include collabora-
tive signal and information processing, interdisciplinary applications of
sensor networks, and pervasive and mobile computing systems.

Guoliang Xing received the B.S. degree in elec-
trical engineering and M.S. degree in computer
science from Xian Jiao Tong University, Xian,
China, in 1998 and 2001, respectively, and the
M.S. and D.Sc. degrees in computer science and
engi-neering from Washington University in St.
Louis, St. Louis, MO, in 2003 and 2006, respec-
tively. He is an Assistant Professor with the De-
partment of Computer Science and Engineering,
Michigan State University, East Lansing. From
2006 to 2008, he was an Assistant Professor of

computer science with City University of Hong Kong, Hong Kong. His
research interests include wireless sensor networks, mobile systems,
and cyber-physical systems. Dr. Xing was an NSF CAREER Award
recipient in 2010. He received the Best Paper Award at the 18th IEEE
International Conference on Network Protocols (ICNP) in 2010. He is an
Associate Editor of ACM Transactions on Sensor Networks and IEEE
Transactions on Wireless Communications.

Jianxun Wang received the B.S. degree in
Automation Engineering (Honors School) from
Harbin Institute of Technology, Harbin, China, in
2009. Since 2009, he has been working toward
the Ph.D. degree in the Department of Electri-
cal and Computer Engineering, Michigan State
University, East Lansing. His research interests
include the modeling of robotic fish and their
collaborative control strategies.

Xiaobo Tan received the B.E. and M.E. degrees
in automatic control from Tsinghua University,
Beijing, China, in 1995 and 1998, respectively,
and the Ph.D. degree in electrical and computer
engineering from the University of Maryland,
College Park, in 2002. He joined the faculty
of the Department of Electrical and Computer
Engineering at Michigan State University (MSU)
in 2004, where he is currently an Associate
Professor. His current research interests include
biomimetic robotic fish, mobile sensing in aquat-

ic environments, collaborative control of autonomous systems, elec-
troactive polymer sensors and actuators, and modeling and control
of smart materials. Dr. Tan is an Associate Editor of Automatica and
a Technical Editor of IEEE/ASME Transactions on Mechatronics. He
served as the Program Chair for the 15th International Conference on
Advanced Robotics (ICAR) in 2011. He received the NSF CAREER
Award in 2006, the 2008 ASME DSCD Best Mechatronics Paper Award
in 2009, and the Teacher-Scholar Award from MSU in 2010.


