
Fusion-based Volcanic Earthquake Detection and Timing in Wireless
Sensor Networks

RUI TAN, Michigan State University

GUOLIANG XING, Michigan State University

JINZHU CHEN, Michigan State University

WEN-ZHAN SONG, Georgia State University

RENJIE HUANG, Washington State University

Volcano monitoring is of great interest to public safety and scientific explorations. However, traditional vol-
canic instrumentation such as broadband seismometers are expensive, power-hungry, bulky, and difficult
to install. Wireless sensor networks (WSNs) offer the potential to monitor volcanoes at unprecedented spa-
tial and temporal scales. However, current volcanic WSN systems often yield poor monitoring quality due
to the limited sensing capability of low-cost sensors and unpredictable dynamics of volcanic activities. In
this paper, we propose a novel quality-driven approach to achieving real-time, distributed, and long-lived
volcanic earthquake detection and timing. By employing novel in-network collaborative signal processing
algorithms, our approach can meet stringent requirements on sensing quality (low false alarm/missing rate,
short detection delay, and precise earthquake onset time) at low power consumption. We have implemented
our algorithms in TinyOS and conducted extensive evaluation on a testbed of 24 TelosB motes as well as
simulations based on real data traces collected during 5.5 months on an active volcano. We show that our
approach yields near-zero false alarm/missing rate, less than one second of detection delay, and millisec-
ond precision earthquake onset time while achieving up to 6-fold energy reduction over the current data
collection approach.

Categories and Subject Descriptors: C.3 [Special-purpose and Application-based Systems]: Signal pro-
cessing systems

General Terms: Design, Measurement, Performance

Additional Key Words and Phrases: Volcano monitoring, earthquake detection, data fusion, wireless sensor
network

1. INTRODUCTION

In the last two decades, volcanic eruptions have led to a death toll of over 30,000 and
damage of billions of dollars [Educational Broadcasting Corp. 2010]. The recent erup-
tions of Volcano Eyjafjallajökull in Iceland caused the disruption of air traffic across
Europe [BBCNews 2010]. Traditional volcanomonitoring systems often employ broad-
band seismometers which, although can yield high-fidelity seismic monitoring signals,
are expensive, power-hungry, bulky, and difficult to install. These limitations have
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largely prevented them from wide deployment, even for many threatening volcanoes.
For instance, Mount St. Helens, an active volcano in northwestern U.S., is currently
monitored by less than 10 stations [Song et al. 2009] providing limited coverage and
coarse-grain monitoring.
The advances of wireless sensor networks (WSNs) have made it possible to greatly

improve volcanic monitoring quality through numerous low-cost sensors. Moreover,
WSNs enable fast ad hoc system deployment that is largely impossible in the past.
Recent pilot deployments on several active volcanoes [Song et al. 2009; Werner-Allen
et al. 2005; Werner-Allen et al. 2006a] have demonstrated the feasibility and scientific
value of WSNs to volcano monitoring. However, the current efforts of these projects are
mostly focused on communication and networking issues such as reliable data deliv-
ery, time synchronization, and network management. In order to accurately detect and
localize earthquakes, sensory data are transmitted to the base station for centralized
processing. However, due to the sheer amount of raw data gathered at high sampling
rates, such a data collection approach leads to excessive energy consumption and re-
duced system lifetime. Moreover, it has poor timeliness due to the limited bandwidth of
low-cost sensors. For instance, as shown in [Werner-Allen et al. 2006a], collecting one
minute of seismic data over a multi-hop link can take up to six minutes. Although data
transmission can be reduced by event-triggered data collection approaches [Werner-
Allen et al. 2006a], the existing earthquake detection algorithms [Endo and Murray
1991] are heuristic in nature and often lead to excessive event misses. For instance,
only about 5% of seismic events were successfully detected in a recent WSN deploy-
ment at Volcań Reventador in northern Ecuador [Werner-Allen et al. 2006a].
In this paper, we push state of the art to real-time, distributed, and long-lived vol-

cano monitoring systems with assured sensing performance. In particular, we aim to
completely avoid raw data transmission by developing advanced in-network signal pro-
cessing algorithms for volcanic earthquake detection and timing. To this end, the fol-
lowing challenges must be addressed. First, volcanic earthquake is a sophisticated
physical process featured by highly dynamic magnitude and variable source location.
These unpredictable dynamics must be properly dealt with in the sensing algorithms.
Second, compared with traditional expensive monitoring instruments, low-cost wire-
less sensors often have limited sensing capability such as low signal-to-noise ratio and
narrow responsive frequency band. Therefore, they must efficiently collaborate in sig-
nal processing to achieve the stringent sensing quality requirements. Third, the com-
putation as well as inter-node communication overhead must be reduced to improve
timeliness and extend system lifetime.
We make the following major contributions in this paper:

—We develop a novel quality-driven approach to detecting volcanic earthquakes based
on collaborative signal processing algorithms. Our fundamental methodology is to
drive the system design based on user’s requirements on system sensing quality
while reducing sensors’ energy consumption.

—We develop new sensing algorithms based on the extensive analysis of real data
traces collected on Mount St. Helens [Song et al. 2009]. First, we propose a Bayesian
detection algorithm based on a novel joint statistical model of seismic signal energy
and frequency spectrum. Second, we develop a near-optimal sensor selection algo-
rithm that chooses the minimum subset of informative sensors to yield system de-
tection results. The above two algorithms enable the system to achieve satisfactory
sensing quality in the presence of unpredictable dynamics of volcanic earthquakes.
Moreover, they only generate light traffic from sensors to the base station and com-
pletely avoid the transmission of raw data.
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—We develop a two-phase earthquake onset time estimation approach. Specifically,
in the first phase, the base station identifies individual earthquakes and estimates
their coarse onset times by correlating the periodical detection results. In the sec-
ond phase, each sensor locally executes an existing P-phase picking algorithm [Slee-
man and Van Eck 1999] and outputs onset time estimates with millisecond precision.
By taking advantage of accurate occurrence detection results, such a two-phase ap-
proach avoids both the raw data transmissions and unnecessary executions of the
computation-intensive P-phase picker at sensors.

—We have implemented our algorithms on a testbed of 24 TelosB motes. We conduct
testbed experiments and extensive simulations based on real data traces collected by
12 nodes on Mount St. Helens [Song et al. 2009] that contain more than 128 signif-
icant earthquake events. Experimental results show that our approach yields near-
zero false alarm/missing rate, less than one second of detection delay, and millisecond
precision earthquake onset time while achieving up to 6-fold energy reduction over
the current data collection approach. Moreover, our approach allows a system to con-
figure its sensing quality under different energy budgets.

The rest of this paper is organized as follows. Section 2 reviews related work. Sec-
tion 3 provides an overview of our approach. Section 4 presents the earthquake de-
tection algorithm run by sensors locally. Section 5 develops a near-optimal sensor se-
lection algorithm. Section 6 discusses earthquake onset time estimation. Section 7
presents implementation details and Section 8 evaluates our approach. Section 9 con-
cludes this paper.

2. RELATED WORK

In 2004, four MICA2 motes were deployed on Volcań Tungurahua in central Ecuador
[Werner-Allen et al. 2005], which is the first mote-based volcano monitoring system.
The system lived for three days and successfully collected the data of at least 9 large
explosions. In 2005, the same group deployed 16 Tmote nodes equipped with seis-
mic and acoustic sensors at Volcań Reventador in northern Ecuador for three weeks
[Werner-Allen et al. 2006a; Werner-Allen et al. 2006b]. The main objective of the above
two deployments is to collect high-resolution/fidelity sensor data for domain scientists.
A simple event-triggered data collection approach based on the STA/LTA (short-term
average over long-term average) [Endo and Murray 1991] earthquake detection algo-
rithm is developed to reduce data transmission. However, this heuristic approach can-
not yield provable and satisfactory detection performance. For instance, although the
systems had zero false alarm rate, they suffered very low detection probabilities (about
5%) [Werner-Allen et al. 2006a]. Moreover, collected data are processed in a centralized
fashion leading to significant bandwidth requirement and energy consumption.
In the Optimized Autonomous Space In-situ Sensorweb (OASIS) project [Song et al.

2009], 15 iMote2-based nodes has been aerially deployed into Mount St. Helens since
July 2009. In that project, significant research efforts have been put into improving
system longevity, network efficiency and performance issues. The design has success-
fully delivered a long-term sustainable sensor network in challenging environment,
and long-period (e.g., several months) valuable real-world high-fidelity volcanic sensor
dataset for our research. To our best knowledge, the issue of real-time quality-ensured
in-network earthquake detection and timing have not been addressed, although the
heuristic STA/LTA earthquake detection algorithm was adopted for data prioritization
in their design.
There exist a vast of well-established tools and techniques for processing sensor data

in seismology community [Endo and Murray 1991; Sleeman and Van Eck 1999; Aki
and Richards 2002]. However, most of them are designed to centrally process seismic
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signals collected from traditional seismological stations. Specifically, seismic data must
be logged at the stations and then transmitted or manually fetched to a base station
for centralized processing [Werner-Allen et al. 2006a; Werner-Allen et al. 2006b].
Distributed signal detection and data fusion in multi-sensor systems have been ex-

tensively studied in last decades [Varshney 1996; Chair and Varshney 1986; Tsitsiklis
1993]. These studies were focused on devising the optimal decision and fusion strate-
gies that maximize the system performance of a given network. Recent studies on data
fusion in WSNs have considered the specific properties of WSNs such as sensors’ spa-
tial distribution [Niu and Varshney 2005], limited sensing/communication capability
[Clouqueur et al. 2004; Niu et al. 2006], and sensor failure [Tay et al. 2008]. Our pre-
vious works [Xing et al. 2009; Tan et al. 2009] investigate the fundamental limits of
spatiotemporal coverage performance of fusion-based WSNs. In practice, various data
fusion schemes have been employed in surveillance WSNs [He et al. 2004; Li et al.
2002] to improve system sensing performance. However, these systems often adopted
simple detection heuristics without provable sensing quality. In contrast, we aim to
develop quality-driven in-network signal processing algorithms to detect and time the
highly dynamic volcanic earthquakes.

3. APPROACH OVERVIEW

In this section, we provide an overview of our approach to detecting and timing volcanic
earthquakes in WSNs on active volcanoes. Our approach is designed to meet three key
objectives of volcano monitoring. First, the system sensing quality must satisfy the
Neyman-Pearson (NP) requirement [Duda et al. 2001] including upper-bounded false
alarm rate and lower-bounded detection probability. For instance, seismologists may
request that no more than 1% of detection reports are false alarms and the system can
successfully detect at least 90% earthquake events. Second, to meet the requirements
from advanced volcano monitoring applications (e.g., earthquake source localization
and seismic tomography), the per-node earthquake onset time estimation must achieve
the precision in the order of sensor’s sampling period. Third, the computation and
communication overhead of sensors must be reduced to improve timeliness and extend
system lifetime.
We assume that the network comprises a base station and a number of sensors dis-

tributed on the volcano. In this paper, we assume that all sensors are of seismic modal-
ity, which is consistent with several first-generation volcano monitoring WSNs [Song
et al. 2009; Werner-Allen et al. 2006a]. Our approach comprises a group of detection
algorithms that run at sensors and the base station, respectively. They work together
to achieve the requirements on sensing quality. The algorithm framework of our ap-
proach is shown in Figure 1. Each sensor detects earthquake event every detection
period based on seismic frequency spectrum. To handle the earthquake dynamics such
as highly dynamic magnitude and variable source location, each sensor maintains sep-
arate statistical models of frequency spectrum for different scales of seismic signal
energy received by sensor. Our study shows that the frequency-based detector typi-
cally has better detection performance when the sensor receives higher signal energy.
Therefore, in our approach, the base station first selects a minimum subset of informa-
tive sensors based on the signal energies received by sensors while satisfying system
sensing quality requirements. The selected sensors then compute seismic frequency
spectrum using fast Fourier transform (FFT) and make local detection decisions which
are then transmitted to the base station for fusion. In addition to the detection of earth-
quake occurrences, it is desirable to obtain the node-level earthquake onset times,
which can be used by the volcanologists for advanced seismic processing tasks such
as earthquake source localization and seismic tomography. In our approach, the base
station first identifies an individual earthquake and estimates a coarse onset time.
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Fig. 1. Algorithm framework of volcanic earthquake detection and onset time estimation. Solid line repre-
sents data flow; dotted line represents control flow; white blocks are the components at a sensor; shadowed
blocks are the components at the base station. The components signal amplitude, FFT, mutli-scale bayesian
detector will be presented in Section 4; the components sensor selection, decision fusion will be presented in
Section 5; the components sys-level onset time estimation and P-phase picker will be presented in Section 6.

The coarse onset time is then fed back to sensors, which will pick the P-phase (i.e., the
arrival time of wavefront) from buffered raw seismic data using existing algorithms,
e.g., [Sleeman and Van Eck 1999].
Our approach has the following advantages. First, different from existing heuris-

tic earthquake detection algorithms such as STA/LTA, our model-driven approach can
meet various sensing quality requirements including bounded false alarm rate and
detection probability. Second, by employing novel in-network data fusion schemes, our
approach incurs low communication overhead. Specifically, in each detection period,
only signal energy represented by an integer needs to be sent to the base station. Only
when the system sensing quality meets user’s requirement, local decisions made by
sensors are transmitted to the base station. Third, the sensor selection algorithm al-
lows a network to achieve desired trade-off between system sensing quality and com-
putational overhead at sensors. In particular, based on the requirement on energy-
efficiency, only a minimum number of sensors are selected to execute the computation-
intensive FFT.

4. LOCAL EARTHQUAKE DETECTION AT SENSORS

In this section, we design a local earthquake detection algorithm that runs at sensors
locally. In order to achieve satisfactory sensing performance, the following questions
must be addressed. First, what information does a sensor need to sample? Due to the
resource limitation of low-cost sensors, the amount of sampled information must be
reduced while critical features of earthquake should be conserved. Second, how to rep-
resent the sampled information using a sensing model? The overhead of computing and
storing the model should be affordable for low-cost sensors. Third, how to accurately
detect earthquakes based on the sensing model and real-time measurements? In the
following, we first present a case study of sensors’ measurements in earthquakes and
then address the above questions.

4.1. A Case Study of Earthquake Sensing

Detecting volcanic earthquakes using low-cost accelerometers in WSN is challenging
due to the dynamics of earthquake, e.g., significantly variable magnitude and source
location. Moreover, as seismic signal attenuates with the propagation distance, the
sensors far away from the earthquake source receive weak signals and hence have
lower detectabilities. Such a phenomenon is referred to as the locality of earthquake
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Fig. 2. Seismic signal energy.
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Fig. 3. Frequency spectrum of Node1.
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Fig. 4. Frequency spectrum of Node9.

in this paper. In this section, we illustrate the locality of earthquake using a case study,
which motivates us to propose a novel sensing model for volcanic earthquake detection.
The case study is based on the seismic data traces collected by 12 nodes in the OA-

SIS project on Mount St. Helens [Song et al. 2009]. We examine micro-scale signal
energy and frequency spectrum which are two basic statistics computed from sensors’
raw data. Figures 2(a) and 2(b) plot the signal energy received by Node1 and Node9 in
two earthquake events, respectively. From the figures, we can see that Node9 receives
higher signal energy than Node1 in Event 1, while Node1 receives significantly higher
signal energy than Node9 in Event 2. This example shows that the signal energy re-
ceived by a sensor varies significantly due to the change of the earthquake source
location as well as its magnitude. Therefore, simple threshold detection approaches
based on signal energy [Niu and Varshney 2005; Clouqueur et al. 2004; Tan et al.
2010a] would not address the dynamics of volcanic earthquakes. Figures 3(a) and 3(b)
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plot the frequency spectrum of Node1 in the two events, respectively. As the signal
energy of Event 1 is much stronger than that of Event 2 (about 100 times), Node1 has
significantly different frequency spectra in the two events. Specifically, the received
seismic energy is mainly distributed within [0Hz, 5Hz] in Event 1 and [5Hz, 10Hz]
in Event 2. Figures 4(a) and 4(b) plot the frequency spectrum of Node9. We can see
that Node9 has insignificant frequency feature in Event 2 due to very weak signals.
Moreover, from Figures 3(a) and 4(a), we can see that Node1 and Node9 have different
frequency spectra in the absence of earthquake. We can make two important observa-
tions from this case study for constructing earthquake sensing model. First, in order
to achieve satisfactory sensing quality, signal energy and frequency spectrum must be
jointly considered for detecting earthquakes. Second, the frequency spectra for differ-
ent scales of signal energy sensed by a sensor vary considerably and hence require
different mathematical representations.

4.2. Feature Extraction

To capture the significant temporal dynamics of earthquake, sensors have to perform
detections at a short period, e.g., per second. In the following, we discuss efficient sam-
pling schemes to obtain both frequency spectrum and signal energy. The seismic waves
emitted by an earthquake can be classified as the primary wave (P-wave) and shear
wave (S-wave). The P-wave propagates faster than S-wave and its frequency is typi-
cally from 1Hz to 10Hz, while the slower S-wave often has a frequency of lower than
1Hz [Aki and Richards 2002]. Different from the high-cost broadband seismometers
that are traditionally used by the seismological community, low-cost accelerometers in
WSNs, e.g., 1221J-002 from Silicon Designs [Song et al. 2009], are only responsive to
P-wave. As a result, the seismic energy measured by these accelerometers in the pres-
ence of earthquake is mainly distributed within [1Hz, 10Hz]. As shown in Section 4.1,
frequency spectrum is expected to be a robust feature for detecting earthquakes us-
ing low-cost accelerometers. Suppose the sampling rate is f Hz. By applying FFT to
the raw seismic data received during one second, a sensor obtains the frequency spec-
trum that ranges from 0Hz to f/2Hz. Each component of the spectrum represents the
percentage of signal energy that is located in the corresponding frequency.
The sampling rate of accelerometers can be high (up to 400Hz). In order to reduce

the computation overhead of sensors, we construct feature vector from the frequency
spectrum as follows. The frequency spectrum is evenly divided into n bins. Let x de-
note the feature vector at a sensor. The ith component of the feature vector, i.e., x[i], is
the sum of spectrum components in the ith bin. Hence, x[i] is the percentage of signal

energy that is distributed in ( i·f2n Hz, (i+1)·f
2n Hz], where i = 0, 1, . . . , n− 1. As the dimen-

sion of feature vector, i.e., n, determines the computation complexity of the training
and detection algorithms at sensors, n should be chosen to achieve satisfactory trade-
off between detection accuracy and computation overhead.
In addition to frequency spectrum, signal energy received by sensors is also an im-

portant feature that quantifies the earthquake magnitude. The signal energy at a sen-
sor is often estimated by the mean square of seismic intensities during a detection
period [Sheng and Hu 2005]. To be consistent with the frequency analysis, we let the
detection period be one second in this work. Let yi denote the ith seismic intensity and
e denote the signal energy. For a sampling rate of f Hz, the signal energy is computed

by e = 1
f

∑f
i=1(yi− ȳ)2, where ȳ is the mean of seismic intensities in a detection period.

4.3. A Multi-scale Sensing Model

We now propose a multi-scale Bayesian model that jointly accounts for signal en-
ergy and frequency spectrum received by a sensor to deal with the dynamics and lo-
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cality of earthquakes that are discussed in Section 4.1. In the multi-scale Bayesian
model, the range of signal energy is divided into K consecutive sub-ranges, denoted
by {Rp|p ∈ [1,K]}. Each sensor maintains K + 1 n-dimensional normal distributions,
which are denoted by {Np|p ∈ [0,K]}. Note that n is the dimension of the frequency
feature vector. The distribution N0 represents the model of frequency feature vector
in the absence of earthquake and {Np|p ∈ [1,K]} correspond to the cases when earth-

quake happens and the received signal energy falls into the pth energy range, i.e.,
e ∈ Rp. Each normal distribution Np is characterized by its mean vector and covari-
ance matrix, which are denoted by mp and Cp. Specifically, mp[i] = E[x[i]|e ∈ Rp]

and Cp[i, j] = cov(x[i]|e ∈ Rp,x[j]|e ∈ Rp), where x[i] is the ith component of the fre-
quency feature vector. With the above model, the frequency spectra for different scales
of signal energy are characterized by separate normal distributions that carry sensing
quality information. Such a model allows us to precisely describe sensors’ performance
in the presence of earthquake dynamics and locality.
We now discuss how to divide the signal energy range. The range of signal intensity

measured by a sensor depends on its bit-depth and calibration. Therefore, for different
sensor products, the range of signal intensity varies significantly. However, through
proper normalization to signal intensity, we can develop a universal scale scheme
for signal energy. In this work, we employ a base-10 logarithmic scale to represent
the signal energy range, which is consistent with many widely adopted earthquake
magnitude scales such as the Richter magnitude scale [Gutenberg and Richter 1936].
Specifically, we let p = ⌊log10 e⌋ where e is the received signal energy. Therefore, the
pth energy scale range, Rp, is [10p, 10p+1) and p is referred to as energy scale hereafter.
For example, the signal energy ranges from 10 to 106 for the data traces collected in
the OASIS project [Song et al. 2009] and therefore the energy scale is from 1 to 6.
We now empirically assess the normal distribution assumption for the frequency

feature using two datasets chosen from the data traces collected in the OASIS project
[Song et al. 2009]. The two datasets comprise the frequency features when no earth-
quake happens and the earthquake energy scale p is 2, respectively. We then com-
pute the squared Mahalanobis distance of each frequency feature x, which is given by
(x − m)TC−1(x − m). If x follows the n-dimensional normal distribution, its squared
Mahalanobis distance follows the χ2

n distribution. Therefore, we calculate the quantile-
quantile (Q-Q) plot of the squared Mahalanobis distance versus the χ2

n distribution.
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both cases where no earthquake happens (i.e., noise) and the earthquake energy scale is 2 (i.e., p = 2), more
than 92.5% data points match the expected distribution.
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Figure 5 shows the Q-Q plots for the two datasets where the dimension is set to be
10. For both two datasets, more than 92.5% data points (on the left side of the dashed
line) reside close to the diagonal line, which shows that most of the frequency features
match the normal distribution. Less than 7.5% data points rest above the diagonal line,
which indicates that the true distributions have long tails. In summary, the normal dis-
tribution is a good approximate distribution for describing the statistical behavior of
the frequency feature.
In order to build the multi-scale Bayesian model, we need to compute the mean vec-

tor mp and covariance matrix Cp using enough samples. As both mean and covariance
can be updated efficiently with incremental algorithms when a new sample is avail-
able, the model learning can be performed on each sensor locally at low cost. Specif-
ically, a sensor learns its sensing model as follows. When no earthquake occurs, the
sensor updates the distribution N0 using the current extracted frequency feature vec-
tor; otherwise, it first computes the energy scale p and then updates the corresponding
distribution Np. This model learning process can be conducted offline with data traces.
Alternatively, it can be conducted online with the ground truth information from high-
quality sensors. Seismological monitoring infrastructures already deployed on active
volcanoes can be used to generate ground truth for training newly deployed low-cost
sensors. As these infrastructures are often power-hungry, they can be turned off when
the training completes. Moreover, they can be turned on periodically to re-train the
sensors to capture the changed signal characteristics and volcano activity pattern.

4.4. Local Bayesian Detector

Based on the multi-scale Bayesian model presented in Section 4.3, we design a
Bayesian detector for each sensor to achieve optimal local detection performance. The
detector makes a decision based on both the energy scale p and frequency feature
vector x. The local decisions of sensors are then fused at base station to improve sys-
tem sensing quality, which will be discussed in Section 5. A sensor makes a decision
between the hypotheses that there is earthquake or not (denoted by Hp and H0, re-
spectively):

H0 : x ∼ N (m0,C0); Hp : x ∼ N (mp,Cp).

Let I denote the local decision made by the sensor. Specifically, if the sensor accepts
the null hypothesis H0, I = 0; otherwise, I = 1. The detection performance is usually
characterized by two metrics, namely, false alarm rate (denoted by PF ) and detection
probability (denoted by PD). PF is the probability that the sensor decides I = 1 when
the ground truth is H0. PD is the probability that the sensor decides I = 1 when
the ground truth is Hp. Among many existing decision criteria, the minimum error
rate criterion is the most widely adopted one that jointly accounts for false alarms
and misses. Moreover, in contrast to other complicated decision criteria, the minimum
error rate criterion has a closed-form decision function, which can largely reduce the
computation overhead at sensors. Given the frequency feature x, the decision functions
for minimum error rate are

gi(x) = lnP(Hi)−
1

2
ln |Ci| −

1

2

(

(x−mi)
T
C

−1
i (x−mi)

)

,

for i ∈ {0, p}, where P(Hi) is the prior probability of the ground truth Hi and |Ci|
represents the determinant of Ci [Duda et al. 2001]. The local detection decision I is
made by

g0(x)
I=0

≷
I=1

gp(x).

ACM Transactions on Sensor Networks, Vol. V, No. N, Article , Publication date: January YYYY.



:10 R. Tan et al.

However, the matrix computations are too expensive for low-cost sensors when the di-
mension is high (e.g., up to 10). In our approach, if sensors are trained in an online
fashion as discussed in Section 4.3, each sensor transmits the mean vectors and co-
variance matrices to the base station, which computes the determinant and inverse of
the covariance matrices and then transmits them back to sensors.
Under the above decision rule, the false alarm rate and detection probability of the

sensor are given by

PF =

∫

R
φ(x|m0,C0)dx, PD =

∫

R
φ(x|mp,Cp)dx,

where R = {x|g0(x) < gp(x)} and φ(x|mi,Ci) is the probability distribution function
(PDF) of the normal distribution N (mi,Ci). Specifically,

φ(x|mi,Ci) =
1

(2π)
n

2 |Ci|
1

2

exp

(

−
(x−mi)

T
C

−1
i (x−mi)

2

)

,

where n is the dimension of x. We note that each pair of (H0, Hp) where p ∈ [1,K] gives
a pair of (PF , PD). However, it is usually difficult to obtain the closed-form expression
of the integral region R for computing PF and PD. In our approach, the base station
computes the PF and PD for each pair of (H0, Hp) through Monte Carlo simulation.
The PF ’s and PD ’s for each sensor are stored at the base station, which will be used to
select the most informative sensors to detect earthquakes as discussed in Section 5.
The prior probabilities (i.e., P(Hi)) can be estimated based on historical earthquake

records. When the prior probabilities are unknown, we can use the minimax error rate
criterion [Duda et al. 2001], of which the error rate does not change with the prior prob-
abilities. The minimax decision functions are gi(x) = − 1

2

(

(x−mi)
T
C

−1
i (x −mi)

)

+ δi,
where the constants δi make PF = PD. It is difficult to obtain the analytical δi. In
practice, the base station can numerically search for the δi that ensures PF = PD.
Moreover, the search can be sped up by leveraging the monotonic relationship between
PF and PD.

5. DYNAMIC SENSOR SELECTION FOR DECISION FUSION

As discussed in Section 4.4, sensors can yield local detection decisions by a Bayesian
detector. However, the accuracy of these decisions may be poor due to the limited sens-
ing capability of low-cost sensors. Therefore, a system-wide detection consensus is of-
ten desired for high-fidelity volcano monitoring. In our approach, the base station gen-
erates system detection decision by fusing the local decisions from sensors. As sensors
yield different sensing performances due to the dynamics and locality of volcanic earth-
quake as discussed in Section 4, it is desirable for the base station to select a subset
of sensors with the best signal qualities to achieve maximum system detection perfor-
mance. Moreover, the sensor selection avoids unnecessary expensive feature extraction
at the sensors with low signal qualities. In this section, we first introduce the decision
fusion model and analyze its performance. We then formulate the sensor selection as
an optimization problem and develop a near-optimal solution.

5.1. Decision Fusion Model

As one of basic data fusion schemes [Varshney 1996], decision fusion is preferable for
WSNs due to its low communication cost [Clouqueur et al. 2004]. We use a widely
adopted decision fusion model called equal gain combining (EGC) [Niu and Varshney
2005; Clouqueur et al. 2004; Tan et al. 2010a] that fuses sensors’ local decisions with
equal weight. Suppose there are n sensors taking part in the fusion and let Ii denote
the local decision of sensor i. The EGC compares the test statistic Λ =

∑n
i=1 Ii against
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a threshold denoted by η. If Λ exceeds η, the base station decides that an earthquake
has occurred; otherwise, it makes a negative decision.
We now analyze the system detection performance of the EGC fusion model. We

denote αi and βi as the false alarm rate and detection probability of sensor i. As dis-
cussed in Section 4.4, sensor i has a pair of (αi, βi) for each energy scale p, where
p ∈ [1,K]. In the absence of earthquake, the local decision of sensor i, Ii|H0, follows the
Bernoulli distribution with αi as success probability. As sensors have different false
alarm rates, the test statistic Λ|H0 follows a generalized Binomial distribution. The
probability mass function (PMF) of Λ|H0 is given by

P(Λ = λ|H0) =
∑

‖S‖=λ,∀S

∏

i∈S

αi

∏

j∈SC

(1− αj), (1)

where S is any subset of sensors with size of λ and SC represents the complement of
S. Hence, the cumulative distribution function (CDF), denoted by FΛ|H0

(x), is given by

FΛ|H0
(x) =

∑⌊x⌋
λ=0 P(Λ = λ|H0). Therefore, the system false alarm rate can be computed

as PF = 1 − FΛ|H0
(η). Similarly, the system detection probability can be computed

as PD = 1 − FΛ|H1
(η). Note that replacing αi in (1) with βi yields the PMF of Λ|H1.

However, computing the CDF of Λ has a complexity of O(2n) and hence is infeasible
when the number of fused sensors is large.
We now propose approximate formulae for the system detection performance of the

EGC fusionmodel when the number of fused sensors is large. As sensors independently
make local decisions, the mean and variance of Λ|H0 are given by

E[Λ|H0] =

n
∑

i=1

E[Ii|H0] =

n
∑

i=1

αi, Var[Λ|H0] =

n
∑

i=1

Var[Ii|H0] =

n
∑

i=1

αi − α2
i .

Lyapunov’s central limit theorem (CLT) [Ash and Doléans-Dade 1999] is a CLT vari-
ant for independent but non-identically distributed variables. We have proved the
Lyapunov condition for a sequence of Bernoulli random variables in [Tan et al.
2010a]. Therefore, according to Lyapunov’s CLT, Λ|H0 follows the normal distri-
bution when n is large, i.e., Λ|H0 ∼ N

(
∑n

i=1 αi,
∑n

i=1 αi − α2
i

)

. Similarly, Λ|H1 ∼

N
(
∑n

i=1 βi,
∑n

i=1 βi − β2
i

)

. Hence, the system false alarm rate and detection probabil-
ity are given by

PF ≃ Q

(

η −
∑n

i=1 αi
√
∑n

i=1 αi − α2
i

)

, PD ≃ Q

(

η −
∑n

i=1 βi
√
∑n

i=1 βi − β2
i

)

, (2)

where Q(·) is the Q-function of the standard normal distribution, i.e., Q(x) =
1√
2π

∫∞
x e−t2/2dt.

5.2. Dynamic Sensor Selection Problem

The case study in Sectin 4.1 shows that a sensor exhibits different frequency pat-
terns for different energy scales. Moreover, sensors receive significantly different en-
ergy scales due to the locality of earthquake. Our objective is to select a subset of sen-
sors with the best signal quality to maximize system detection performance. We first
examine the sensing performance diversity of sensors based on data traces collected in
OASIS [Song et al. 2009]. The result motivates us to formulate a dynamic sensor selec-
tion problem to achieve satisfactory trade-off between system detection performance
and computation overhead at sensors. For each sensor, we compute the Bhattacharyya
distance [Duda et al. 2001], which is a widely adopted detectability measure, between
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Fig. 6. Bhattacharyya distance and corresponding detection error rate versus energy scale. The results
show the standard deviation over 12 sensors.
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Fig. 7. Dynamics of energy scale received by sensors.

the pth distribution Np and the noise distribution N0 within its multi-scale Bayesian
model. Figure 6 plots the error bars of Bhattacharyya distance and the corresponding
detection error rate versus the energy scale p. We can see that the frequency-based de-
tector has better performance when a sensor receives higher signal energy. Moreover,
sensors show significant performance variation for the same energy scale. Figure 7
plots the maximum energy scale measured by sensors in 40 earthquake events.
We canmake two important observations fromFigures 6 and 7. First, for a particular

event, sensors have different detection performances due to different received energy
scales. As a result, sensors with poor sensing performances should be excluded from
the system decision fusion. Moreover, if a sensor has sufficient sensing performance
for system decision fusion, it must make local decisions by costly FFT to extract fre-
quency features. Therefore, it is desirable to select the minimum subset of informative
sensors to fuse their decisions. Second, each sensor has unpredictable signal energy
pattern due to the stochastic nature of earthquake magnitude and source location. Al-
though the optimal sensor selection can be pre-computed for all possible combinations
of sensors’ energy scales, both the time and storage complexities are exponential, i.e.,
O(KN ), where K is the number of energy scales and N is the total number of sensors.
Therefore, the sensors that have the best sensing performances must be dynamically
selected in each detection period.
We now formally formulate the sensor selection problem. We aim to select the min-

imum number of sensors being involved in the feature extraction and decision fusion
processes, subject to bounded system detection performance. In our scheme, the se-
lected sensors only send binary local detection decisions to the base station. Hence,
compared with the energy consumed in the feature extraction by the costly FFT, the
communication cost is small. Therefore, the problem formulation in this paper is only
focused on minimizing the number of selected sensors. We adopt the Neyman-Pearson
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(NP) criterion [Duda et al. 2001] for characterizing system detection performance, i.e.,
we allow users to specify the upper and lower bounds on system false alarm rate and
detection probability, respectively. NP criterion is useful when the two types of er-
rors, i.e., false alarms and misses, need separate considerations. From the NP lemma
[Varshney 1996], there exists a fundamental trade-off between the two metrics for any
detection system, i.e., higher detection probability is always achieved at the price of
higher false alarm rate. Depending on the characteristics of volcanoes to be monitored,
seismologists may have different requirements on false alarm rate and detection prob-
ability. For instance, for an active volcano with frequent tiny earthquakes, it is desir-
able to reduce false alarms to avoid excessive sensor energy consumption and prolong
system lifetime. On the other hand, for a dormant volcano, it is more critical to detect
every important earthquake event while a higher false alarm rate can be tolerated.
Note that our approach can be extended to address other performance metrics such as
error rate that jointly accounts for false alarms and misses. Due to space limitation,
the extension is omitted and can be found in [Tan et al. 2010b]. Based on the fusion
model in Section 5.1, the sensor selection problem is formally formulated as follows:

PROBLEM 1. Given the local false alarm rates and detection probabilities of all
sensors, i.e., {αi, βi|i ∈ [1, N ]}, to find a subset of sensors, S, and the decision fusion
threshold at the base station, η, such that ‖S‖ is minimized, subject to that the system
false alarm rate is upper-bounded by α and the system detection probability is lower-
bounded by β.

The brutal-force solution, i.e., iterating all possible subsets of sensors, has an ex-
ponential complexity of O(2N ). As the dynamic sensor selection is conducted every
detection period (one second in our system), such a complexity would impede the sys-
tem timeliness. In the rest of this section, we first reduce the complexity of Problem 1
with approximations and then develop a near-optimal sensor selection algorithm with
polynomial complexity.

5.3. Near-optimal Solution

We adopt a divide-and-conquer strategy to solve Problem 1. The sub-problem of Prob-
lem 1 is to select n sensors out of the total N sensors such that the system detection
performance is optimized. By iterating n from 1 to N , Problem 1 is solved once the
optimal solution of the sub-problem satisfies the detection performance requirement.
The brutal-force search for the optimal solution of the sub-problem has a complexity

of O
(

(

N
n

)

)

. The following analysis suggests a near-optimal solution with polynomial

complexity.
We first analyze the condition for the NP criterion. We assume that n is large enough

such that the detection performance approximations made in Section 5.1 are accurate.
We will discuss how to deal with the inaccuracy caused by small n in Section 5.4.
According to the NP lemma [Varshney 1996], PD is maximized when PF is set to its
upper bound. Therefore, by letting PF = α, the detection threshold at the base station
is

η =
n
∑

i=1

αi +Q−1(α) ·

√

√

√

√

n
∑

i=1

αi − α2
i , (3)
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where Q−1(·) is the inverse function of Q(·). Hence, the system detection probability is
PD = Q(f), where

f =
Q−1(α)

√
∑n

i=1 αi − α2
i +

∑n
i=1(αi − βi)

√

∑n
i=1 βi − β2

i

. (4)

As Q(·) is a decreasing function, PD is maximized if f is minimized. Therefore, the
sub-problem is equivalent to minimizing f .
However, the function f has a complex non-linear relationship with each sensor’s

detection performance represented by αi and βi. We now propose a linear approxima-
tion to f . The false alarm rate and miss rate of sensor i is given by αi and 1 − βi,
respectively. Therefore, the error rate of sensor i is αi+1−βi

2 and the average error rate

over all sensors is 1
n ·
∑n

i=1
αi+1−βi

2 . Hence, if n is fixed,
∑n

i=1(αi − βi) is a metric for
quantifying the system detection performance. The advantage of using this metric is
that it is a linear combination of sensors’ local performance metrics, which enables
us to develop efficient sensor selection algorithms. We now investigate the monotonic
relationship between the function f and

∑n
i=1(αi − βi). We conduct Monte Carlo simu-

lation to evaluate the probability that f increases with
∑n

i=1(αi − βi). For each trial of
the Monte Carlo simulation, two points are randomly and uniformly sampled from the
2n-dimensional space {αi, βi|i ∈ [1, n], αi ∈ (0, 1), βi ∈ (0, 1)} to evaluate the increasing
relationship between f and

∑n
i=1(αi−βi). After a large number of trials, the probability

for the increasing relationship is shown in Fig. 8. We can see that the increasing rela-
tionship holds with a probability of at least 90% when the number of sensors exceeds
3. Therefore, in practice, we can find the near-optimal solution to the sub-problem by
selecting n sensors with minimized

∑n
i=1(αi−βi), which can be easily solved by sorting

sensors ascendingly according to the value of (αi − βi).

5.4. Dynamic Sensor Selection Algorithm

In this section, we develop a dynamic sensor selection algorithm to solve Problem 1
based on the analysis in Section 5.3. Before presenting the algorithm, we first discuss
how to handle the inaccuracy of the normal approximations made in Section 5.1. Re-
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Fig. 9. Error of PF due to approximation (99.5% confidence level).
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Table I. An example of sensor detection performance look-up table (K = 5).

Sensor ID 1 · · · N
Energy scale pi 1 2 · · · K · · · 1 2 · · · K
(αi , βi) (%) (6.9, 96.8) (5.9, 98.1) · · · (0.008, 99.9) · · · (7.3, 95.3) (4.8, 97.8) · · · (0.0036, 99.9)

Algorithm 1 Dynamic sensor selection algorithm

Input: (1) sensor detection performance look-up table
(2) energy scales measured by sensors, {pi|i ∈ [1, N ]}
(3) system detection performance requirements {α, β}

Output: minimum subset S, detection threshold η
1: query the look-up table using {pi|i ∈ [1, N ]} to find {αi, βi|i ∈ [1, N ]}
2: sort sensors according to (αi − βi) ascendingly
3: for n = 1 to N do
4: if n < ns then
5: for all subset S with size of n do
6: compute the PMF of Λ using (1)
7: if exists η such that system PF ≤ α and PD ≥ β then
8: return S and η
9: end if
10: end for
11: else
12: S = { top n sensors }
13: compute f with S using (4)
14: if Q(f) ≥ β then
15: compute η with S using (3)
16: return S and η
17: end if
18: end if
19: end for
20: exit with no solution

garding the divide-and-conquer strategy proposed in Section 5.3, when n is small, we
compute the PMF of Λ (given by (1)) and then search for the optimal detection thresh-
old. A question is when we should switch to the normal approximations. We propose
a numerical approach to determine the switching point for n, denoted by ns. We in-
vestigate the impact of n on the accuracy of system false alarm rate. Specifically, we
first compute the detection threshold η using (3) with randomly generated local false
alarm rates, i.e., αi. We then compute the true PF with the threshold η using (1). Fig-
ure 9 plots the error between the requested PF (i.e., α) and the true PF . For instance,
if α = 0.05 and n = 15, the maximum error of PF is about 0.05 and hence the true PF

is within [α − 0.05, α+ 0.05]. The figure also shows that if more stringent requirement
is imposed, i.e., smaller α, the error decreases accordingly. We can evaluate the impact
of n on the accuracy of detection probability as well. With such an approach, we can
choose the switching point ns to achieve desired accuracy.
We now present the dynamic sensor selection algorithm to solve Problem 1. As dis-

cussed in Section 4.4, in the training phase, the base station computes and stores
sensors’ false alarm rates and detection probabilities, which can be organized into a
look-up table. For instance, Table I shows the look-up table constructed for the 12
sensors deployed in the OASIS project [Song et al. 2009]. With the sensor detection
performance look-up table, we develop the dynamic sensor selection algorithm, which
is listed in Algorithm 1. With the solution given by Algorithm 1, the base station will
request the selected sensors to perform FFT and make their local decisions. Finally,
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the base station compares the sum of local decisions against the detection threshold η
to make a system detection decision. In the absence of earthquake, Algorithm 1 would
exit with no solution (Line 20). As a result, no sensor will be selected and hence the
frequency feature extraction by the costly FFT can be avoided.

6. EARTHQUAKE ONSET TIME ESTIMATION

In addition to the accurate detection of earthquake occurrences, another import re-
quirement of volcano monitoring is to identify individual earthquakes as well as es-
timate their onset times and durations [Werner-Allen et al. 2006a; Aki and Richards
2002; Sleeman and Van Eck 1999]. In particular, the fine-grained per-node earthquake
onset times are critical for advanced volcano monitoring applications, such as earth-
quake source localization and seismic tomography. Traditionally, the volcanologists of-
ten manually pick the per-node onset times from the collected raw seismic data, which
is an extremely labor-intensive process. In this paper, we aim to develop an in-network
earthquake onset time estimation approach. The automatically picked onset times sig-
nificantly narrow the manual search regions for more accurate onset times. Moreover,
only a small amount of raw seismic data around the automatically picked onset times
need to be sent to the base station when further manual picks are still needed. In this
section, we develop a two-phase approach to estimating earthquake onset time with
millisecond precision. Specifically, in the first phase, the base station correlates the
per-second detection results yielded by the decision fusion process to identify the on-
set time and duration of individual earthquakes, which is referred to as system-level
onset time estimation. In the second phase, given the system-level onset time, each
sensor locally executes an existing P-phase picking algorithm [Sleeman and Van Eck
1999] and outputs onset time estimate with improved accuracy, which is referred to as
node-level onset time estimation. Note that in seismology, P-phase refers to the arrival
time of P-wave front. By taking advantage of accurate occurrence detection results, the
computation-intensive P-phase picker is executed at sensors only when an earthquake
is detected with high confidence (i.e., low false alarm rate and high detection probabil-
ity). Moreover, the system-level onset time estimation narrows the range of time, over
which the sensors have to run the P-phase picker to achieve node-level fine-grained
onset time estimation.

6.1. System-level Onset Time Estimation

In this section, we discuss how to temporally correlate the per-second detection results
yielded by the decision fusion process to identify individual earthquake events that are
described by the earthquake onset time and duration. Although the system detection
performance can be improved by fusing sensors’ local detection results, the possibilities
of false alarms and misses cannot be completely eliminated. In particular, theymust be
properly dealt with in order to precisely estimate the onset time of earthquake events.
Figure 10(a) shows the per-second decision sequence yielded by the decision fusion
process. A key observation from real measurements is that a true earthquake event
often generates clustered detection results and hence isolated positive or negative de-
cisions are likely false alarms and misses. Based on this observation, we propose to use
mathematical morphology [Soille 2003] to identify individual events in the presence of
random detection errors. Mathematical morphology is a widely adopted tool to identify
geometrical structures in image processing.
In the morphological processing, by applying the opening operator [Soille 2003] on

the decision sequence, multiple continuous false alarms can be eliminated if the num-
ber of these false alarms is less than the operator diameter. Moreover, by applying
the closing operator [Soille 2003], multiple continuous misses can be restored as suc-
cessful detections if the number of these misses is less than the operator diameter.
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Fig. 10. Morphological processing of an earthquake event that occurred onMt. St. Helens, October 31, 2009.

We have implemented the two morphological operators and applied the combination
of them to the per-second decision sequence. In this work, the diameter of the opening
operator is set to be 3. Under such a setting, we ignore any detected event that lasts
for shorter than 3 seconds. As shown in Figure 10(b), several isolated false alarms be-
fore the earthquake event are eliminated by the opening operator. The diameter of the
closing operator should be set according to the earthquake recurrence interval [Aki and
Richards 2002] of the volcano. In this work, we set 11 and the closing operator shows
satisfactory performance. As shown in Figure 10(c), the closing operator can join the
fragmented positive decisions to yield a single earthquake event. Given the morpho-
logically processed detection decisions, it is easy to determine the earthquake onset
time and duration.

6.2. Node-level Onset Time Estimation

The granularity of the system-level onset time estimation is equal to the detection
period, which is one second in our system. However, localizing earthquake source re-
quires the onset times estimated by spatially distributed nodes with millisecond pre-
cision [Aki and Richards 2002]. We now discuss our approach to node-level onset time
estimation with improved accuracy. Once the morphological filter presented in Sec-
tion 6.1 yields a system-level onset time estimate, the base station notifies the sensors
to perform node-level onset time estimation by running the automatic P-phase picking
algorithm proposed in [Sleeman and Van Eck 1999]. Given a coarse estimate of earth-
quake onset time, the algorithm constructs two regression models for the buffered
seismic data before and after the coarse onset time, respectively. The algorithm then
picks a millisecond onset time that has maximum likelihood to match the regression
models. It is important to note that the algorithm relies on correct onset time estimate
with the granularity of one second, which is guaranteed by the other modules in our
approach.

7. IMPLEMENTATION

We have implemented the proposed detection algorithms in TinyOS 2.1.0 on TelosB
platform and conducted testbed experiments in laboratory. In the future work, we plan
to deploy our implementation on the OASIS system [Song et al. 2009] that is currently
monitoringMount St. Helens. Our implementation uses 45.3KB ROM and 9.5KB RAM
when a sensor buffers 8 seconds of raw data for earthquake onset time estimation.
Several important implementation details are presented as follows.
Data acquisition: To improve the realism of testbed experiments, we create a vol-
ume of 320KB on mote’s flash and load it with the seismic data traces collected in
OASIS [Song et al. 2009]. We implement a nesC module that provides the standard
ReadStream interface to read seismic data from flash to simulate data acquisition
in real deployments. A node acquires 100 seismic intensities every detection period.
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When the detection period is set to be one second, the sampling rate is consistent with
previous deployments [Song et al. 2009; Werner-Allen et al. 2006a].
Seismic processing: We use the KissFFT [Borgerding 2010] library to compute the
frequency spectrum of seismic signals. In particular, we use the fixed-point FFT rou-
tines that are suitable for the 16-bit processor on TelosB mote. We modified the P-
phase picking software developed in [Sleeman and Van Eck 1999] to run in TinyOS.
The picker requires 6.5KB ROM and 12.5KB RAM. In this work, we only evaluated
the performance of the P-phase picker in TinyOS simulator (i.e., TOSSIM) [Levis et al.
2003].
Networking: Sensors are organized into a multi-hop tree rooted at the base station.
In order to achieve timeliness, sensors are scheduled in a TDMA fashion. Specifically, a
sensor reserves 250ms for the FFT and Bayesian detector in each detection period. The
remaining time is divided into a number of slots, which are distributed among sensors
for transmitting energy scales and local decisions. In order to reduce transmissions, the
packets are aggregated along the routing path to the base station. For instance, when
a non-leaf node has received all the energy scales from its children, it aggregates them
together with its own into a single packet before forwarding. In our implementation,
an energy scale entry is 1 byte where node ID uses 5 bits and energy scale uses 3 bits.
Moreover, to improve reliability, a sensor buffers energy scale or decision packets from
its children for at most 8 detection periods. When a sensor has received all packets
from its children for the current detection period, it sends out the aggregated packets
for the current and previous detection periods. The sensor selection and decision fusion
algorithms presented in Section 5 are implemented in Java on a desktop computer
that serves as the base station. The sensor selection algorithm typically takes 10ms to
20ms, and hence has little impact on the timeliness of earthquake detection.

8. PERFORMANCE EVALUATION

We conduct testbed experiments and extensive simulations based on real data traces
collected by 12 nodes in the OASIS project [Song et al. 2009]. The data set used in our
evaluation spans 5.5 months (from October 1, 2009 to March 15, 2010) and comprises
128 manually selected segments. Each segment lasts for 10 minutes and contains one
or more earthquake events. In Section 8.1, we present the experimental results on
energy usage and communication performance using a testbed of 24 TelosB motes. In
Section 8.2, we present the simulation results on earthquake detection and onset time
estimation in TOSSIM.

8.1. Testbed Experiments

8.1.1. Methodology. The multi-scale Gaussian model of each sensor is trained offline
using randomly selected 64 data segments. The ground truth information regarding
the presence of earthquake event is generated by the STA/LTA algorithm using the
data traces of Node 01 in the deployment. The STA/LTA threshold is set to be 2, which
is suggested by the volcanologists at U.S. Geological Survey [Song et al. 2009]. We note
that the STA/LTA algorithm can yield detection errors.
In this section, our approach is referred to as decision fusion with sensor selection

(DFSS). We compare our approach with the following three baseline approaches. (1)
In the data collection approach, each node transmits compressed raw data to the base
station. We adopt incremental encoding to compress raw data, which can achieve 4-
fold data volume reduction for 32-bit seismic signal in the absence of earthquake. Note
that the OASIS system [Song et al. 2009] currently adopts data collection and analyzes
collected data offline at servers. (2) In the STA/LTA approach, each node makes local
detection decision by the STA/LTA algorithm [Endo and Murray 1991]. A node sends
its detection result to the base station only when the decision is positive. If more than
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30% nodes make positive decisions, the base station makes a positive system detec-
tion decision. Note that these settings are consistent with the detection approach in
[Werner-Allen et al. 2006a]. (3) In the Chair-Varshney approach, each node performs
FFT andmakes a local detection decision every detection period. The base station fuses
the local decisions by the Chair-Varshney’s rule [Chair and Varshney 1986] that is the

optimal decision fusion model. Specifically, the test statistic is Λ =
∑n

i=1 log
βi(1−αi)
αi(1−βi)

·Ii,

where Ii is the local detection decision of sensor i. As the Chair-Varshney’s rule inher-
ently accounts for the diversity of sensors’ sensing qualities by weighting their local
decisions, it is unnecessary to perform sensor selection. However, the Chair-Varshney’s
rule has no closed-form formula for its detection performance. Hence, we use a brutal-
force approach to compute the CDF of Λ and find the detection threshold that satisfies
detection performance requirements. Note that the brutal-force algorithm runs at the
base station. The following experiments are conducted in two network topologies: an
one-hop network composed of 12 TelosB motes and a 3-hop network composed of 24
TelosB motes. The one-hop topology allows us to evaluate the basic performance of
various approaches without the impact of topology-dependent factors such as extra
computation and communication overhead caused by packet aggregation in multi-hop
networks. As real deployments [Song et al. 2009; Werner-Allen et al. 2006a] typically
adopt multi-hop tree topology, we also aim to evaluate the impact of multi-hop tree
topology on the proposed approach. In the 3-hop tree network experiment, we will
evaluate the communication performance of our approach under various timeliness
requirements. Note that the setting of hop count in our evaluation is comparable with
the settings in several real deployments, e.g., six hops in [Werner-Allen et al. 2006a]
and five hops in [Song et al. 2009]. We also note that, compared with traditional data
collection approaches, the advantages of our fusion-based approach are likely more
evident on larger networks.

8.1.2. Timeliness and Energy Consumption. In this section, 12 TelosB motes are organized
into an one-hop network and each one corresponds to a node in OASIS [Song et al.
2009]. We first evaluate the timeliness of our approach. As discussed in Section 6.2,
accurate per-second detection is a prerequisite of the millisecond onset time estima-
tion. Hence, one second is the delay bound in each detection period. The average time
of each component of the system is as follows: computing an energy scale for one sec-
ond of seismic data take 6.7ms; transmitting a TinyOSmessage with default size takes
9ms; FFT and the local Bayesian detector take 164.7ms. Therefore, our approach can
achieve satisfactory timeliness on low-cost sensors with limited computational capa-
bility.
We now evaluate the energy consumption of various approaches. We measure the

execution time of seismic processing and count the transmitted and received packets.
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Fig. 11. Energy consumption of Node 11.
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The energy consumption is then estimated based on the measured current usage of
processor and transceiver [Moteiv Corp. 2004]. Figure 11 shows the energy consump-
tion trace of Node 11 for 10 minutes. There is a significant earthquake event from the
245th to 265th second. As the byte length of encoded raw data increases in the pres-
ence of event, data collection has a spike during the earthquake. Chair-Varshney con-
sumes more energy than DFSS but less than data collection. STA/LTA consumes the
least energy. However, STA/LTA has a false alarm at around the 460th second. Fig-
ure 12 shows the corresponding breakdown of energy consumption. We can see that
data collection consumes a large amount of energy in transmitting raw data. As Chair-
Varshney performs FFT on every node all the time, it consumes a significant amount
of energy in seismic processing. STA/LTA consumes a little energy in executing the
STA/LTA algorithm on the seismic data. Moreover, as only positive local detection de-
cisions are transmitted, STA/LTA significantly reduces the energy consumed in data
transmission. However, as discussed in Section 2, the heuristic STA/LTA algorithm
cannot yield provable detection performance. In practice, the STA/LTA algorithm is
best used to trigger data collection. Therefore, the STA/LTA algorithm often adopts
conservative settings (e.g., low threshold) in order not to miss any earthquake event
even though a lot of false alarms will be raised. Suppose two carbon-zinc AA batteries
are used, which have a total of 4680 J of energy storage [AllAboutBatteries.com 2011].
The projected lifetime of a node is 19 days and 3.9 months for data collection and our
approach, respectively.

8.1.3. Communication Performance. We now evaluate the communication performance
of our approach in a 3-hop network composed of 24 TelosB motes. We adopt the naive
forwarding as the baseline approach, where an intermediate node forwards a received
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Fig. 13. Reception ratio of energy scale information at the base station in a 3-hop network.
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packet immediately without aggregation. Figure 13 plots the reception ratio of energy
scale information at the base station versus detection period. Due to limited wireless
bandwidth, we observe low reception ratios when the detection period is shorter than
600ms. However, our approach can reach a reception ratio of 93.5% when the detection
period is one second, which is consistent with the setting in real deployments [Song
et al. 2009; Werner-Allen et al. 2006a]. In contrast, naive forwarding only achieves a
reception ratio of 77%.

8.2. Trace-driven Simulations

In addition to the testbed experiments, we also conduct simulations in TOSSIM [Levis
et al. 2003] based on real data traces. The trace-driven simulations allow us to exten-
sively evaluate the detection and timing performance under a wide range of settings.
Our evaluation is mainly focused on two aspects. First, we examines the detection per-
formance of various approaches in a long period of time (based on the data traces that
span 5.5 months) and evaluate the configurability of our approach with respect to sys-
tem sensing qualities such as false alarm rate. Second, we evaluate the performance
of our two-phase earthquake onset time estimation approach.

8.2.1. Detection Performance and Configurability. Figure 14 plots the false alarm rate of
the per-second system detection results without morphological processing versus the
requested false alarm rate. Note that the false alarm rate is calculated by the ratio of
the number of positive per-second system decisions to the number of detection periods
when no earthquake happens. We can see that when the requested PF is greater than
5%, the measured PF of our approach flats out, as Algorithm 1 can find a solution with
minimum size of two sensors mostly. Moreover, as all sensors are always involved in
the fusion process, Chair-Varshney has poor configurability as shown in Figure 14.
Figure 15 plots the number of selected sensors versus the requested false alarm rate.

The error bar shows one standard deviation over 139 earthquake events. When lower
performance requirement is imposed (i.e., greater α), fewer sensors will be selected,
which means less energy consumption. This result shows that our approach yields
interesting trade-off between energy consumption and detection performance.
Figure 16 plots the number of false alarms and misses of earthquake events af-

ter the morphological processing. Note that the earthquake event is described by the
onset time and duration. We can conclude that our approach generates fewer detec-
tion errors than STA/LTA and has comparable detection performance with Chair-
Varshney. However, as shown in Figures 11 and 12, Chair-Varshney consumes signif-
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Fig. 16. Number of detection errors after morphological processing. The test data lasts for 19 hours and
includes 139 earthquake events.

icantly more energy. When the detection performance requirement is extremely high
(e.g., β = 1 − 10−4), the sensor selection algorithm exits with no solution and hence
no detection is made as discussed in Section 5.4. As a result, the system misses more
events as shown in Figure 16(b). Therefore, in practice, the requirement on detection
probability should be set in the achievable range to avoid the saturation.

8.2.2. Onset Time Estimation Performance. In this section, we evaluate the performance
of our two-phase onset time estimation approach. In the simulations, when the base
station yields a system-level earthquake onset time, the raw seismic data that are
10 seconds before and 6 seconds after the system-level onset time are fed into the P-
phase picking algorithm [Sleeman and Van Eck 1999] at each sensor. Figure 17 shows
the node-level onset times (represented by vertical lines) estimated by four sensors
in a typical earthquake event. The Y-axis of the figures represents the slant distance
from the vent. The event shows a suddenly strong shake at its start and the sensor
closest to the vent (i.e., Node 04) receives the signal before others. This indicates that
the event is a typical explosive earthquake at the vent.
We manually check the node-level earthquake onset time estimation results of 112

earthquakes that are detected by our DFSS approach (after excluding false alarms).
For each earthquake, we first manually pick the onset times of all sensors from their
seismic waves. If the difference between the output of the P-phase picking algorithm
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Fig. 17. An example of node-level onset time estimation. System-level onset time is at the 3th second.

[Sleeman and Van Eck 1999] and the manual pick is less than one second, the onset
time estimate is regarded to be a good estimate. Our analysis shows that 68.8% of
node-level onset time estimates are good estimates. We summarize the reasons for the
remaining 31.2% inaccurate node-level onset time estimates as follows. First, ideally,
only a subset of sensors receiving prominent earthquake signals should perform the
node-level onset time estimation. However, all sensors in the simulations are required
to perform the estimation when an earthquake is detected. As a result, the sensors
receiving insignificant earthquake signals yield inaccurate onset time estimates. As
the P-phase picking algorithm [Sleeman and Van Eck 1999] operates in time domain,
the sensor selection approach described in Section 5, which selects sensors with promi-
nent features in frequency domain, cannot be readily applied to select the sensors for
node-level onset time estimation. In our future work, we will explore efficient sensor
selection approaches for node-level onset time estimation. Second, the dataset used in
our simulations does not contain the complete data due to packet losses and commu-
nication errors in data collection, which undermines the performance of the P-phase
picking algorithm. In a real deployment, this issue can be avoided since each sensor
locally performs the P-phase picking algorithm on the buffered data. In summary, the
simulation results demonstrate the feasibility of the proposed two-phase onset time
estimation approach. We note that the performance of the two-phase onset time esti-
mation approach can be improved by leveraging more accurate P-phase picking algo-
rithms when they are available.
Finally, we manually choose 63 earthquake events and evaluate the node-level on-

set time estimation results. Figure 18 plots the average delay of P-phase arrival with
respect to Node 01 which is a sensor on the middle of the volcano. We can see from
the figure that, on average, the sensors on the middle of the volcano first receive the
P-wave before the sensors that are close to or far away from the vent. The time differ-
ence is within 180 milliseconds. Moreover, the sensors that have equal distance to the
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Fig. 18. Delay of P-phase arrival (with respect to Node 01) versus distance to the vent. The results are the
average over 63 earthquake events.
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vent (i.e., Node 01, 05, 12 and 14) have consistent P-phase arrivals. The above results
are consistent with the findings from an earlier study [Werner-Allen et al. 2006a] in
which the coarse onset times were identified manually to assist the P-phase picking
algorithm.

9. CONCLUSION

WSNs have been increasingly deployed for monitoring active volcanoes. This paper
presents a quality-driven approach to detecting and timing highly dynamic volcanic
earthquakes based on in-network collaborative signal processing. In particular, we
aim to reduce sensors’ energy consumption subject to sensing quality requirements.
Our approach is evaluated through testbed experiments and extensive simulations
based on real data traces collected on Mount St. Helens. The results show that our
approach can significantly reduce energy consumption compared with state-of-the-art
approaches while providing assured system sensing quality.
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