
1

Supplementary File
Zhenyu Yan, Rui Tan, Senior Member, IEEE, Yang Li, Member, IEEE, and Jun Huang, Member, IEEE

F

This document includes the supplemental materials for
the paper titled “Wearables Clock Synchronization Using
Skin Electric Potentials”.

APPENDIX A
NETWORK TIME PROTOCOL AND ITS PERFOR-
MANCE

A.1 NTP Principle and Packet Timestamping
Many clock synchronization approaches adopt the principle
of NTP, which is illustrated in Fig. 1(a). A synchronization
session consists of the transmissions of a request packet and a
reply packet. The t1 and t4 are the slave’s clock values when
the request and reply packets are transmitted and received
by the slave node, respectively. The t2 and t3 are the mas-
ter’s clock values when the request and reply packets are
received and transmitted by the master node, respectively.
Thus, the round-trip time (RTT) is RTT = (t4−t1)−(t3−t2).
Based on a symmetric link assumption that assumes identical
times for transmitting the two packets, the offset between
the slave’s and the master’s clocks, denoted by δNTP , is
estimated as δNTP = t4 −

(
t3 + RTT

2

)
. Then, this offset

is used to adjust the slave’s clock to achieve clock syn-
chronization. Under the above principle, non-identical times
for transmitting the two packets will result in an error in
estimating the clock offset. The estimation error is half of
the difference between the times for transmitting the two
packets.

We use Fig. 1(b) and the terminology in [1] to explain
how the timestamps (e.g., t3 and t4) are obtained in NTP
and existing WSN clock synchronization approaches. The
send time and the receive time are the times used by the OS
to pass a packet between the synchronization program and
the MAC layer at the sender and receiver, respectively. They
depend on OS overhead. The access time is the time for the
sender’s MAC layer to wait for a prescribed time slot in
time-division multiple access (TDMA) or a clear channel
in carrier-sense multiple access with collision avoidance
(CSMA/CA). It often bears the highest uncertainty and can

• Z. Yan and R. Tan are with School of Computer Science and Engineering,
Nanyang Technological University, Singapore, 639798.
E-mail: {zyan006,tanrui}@ntu.edu.sg

• Y. Li is with Additive Manufacturing Institute, College of Mechatronics
& Control Engineering, Shenzhen University, Shenzhen, China 518060.
This work was completed while Yang Li was with Advanced Digital
Sciences Center, Illinois at Singapore. E-mail: yli@szu.edu.cn

• J. Huang is with Center for Energy Efficient Computing and Applications,
Peking University, Beijing, 100871. E-mail: jun.huang@pku.edu.cn

master clock

slave clock

re
q
u
es

t rep
ly

(a) NTP principle.

send access Tx

Rx receive

time

propagation

FTSP

FTSP

NTP/TouchSync
timestamp timestamp

timestamp

NTP/TouchSync
timestamp

(b) Packet timestamping for synchroniza-
tion.

Fig. 1. NTP principle and packet timestamping.

0
10
20
30
40
50
60
70
80
90

100

0 50 100 150 200

O
cc

ur
re

nc
e

One-way delay (ms)

slave to master
master to slave

(a)

0
10
20
30
40
50
60
70
80

-50 0 50 100 150 200

O
cc

ur
re

nc
e

Clock offset estimation error (ms)

(b)

Fig. 2. Performance of NTP over a BLE connection.

be up to 500 ms [1]. The transmission (Tx) and reception
(Rx) times are the physical layer processing delays at the
sender and receiver, respectively. The propagation time equals
the distance between the two nodes divided by the speed of
light, which is generally below 1µs.

As illustrated in Fig. 1(b), NTP timestamps the packet
when the packet is passed to or received from the OS.
Thus, the packet transmission time used by NTP is sub-
jected to the uncertain OS overhead and MAC. Therefore, as
measured in Section A.2, NTP over a Bluetooth connection
can yield nearly 200 ms clock offset estimation errors. To
remove these uncertainties, FTSP uses MAC-layer access
to obtain the times when the beginning of the packet is
transmitted/received by the radio chip. As the propagation
time is generally below 1µs, FTSP simply estimates the
clock offset as the difference between the two hardware-
level timestamps. Thus, the two-way scheme in Fig. 1(a)
becomes non-essential for FTSP.

A.2 Performance of NTP over BLE Connection

As our objective is to devise a new clock synchronization
approach that uses application-layer timestamping as NTP
does, this section measures the performance of NTP to



2

provide a baseline. We implement the NTP principle de-
scribed in Section A.1 on Flora, a wearable platform. Our
setup includes a Flora node and a Raspberry Pi single-
board computer that perform the NTP slave and master,
respectively. They are connected via Bluetooth Low Energy
(BLE). More details of the Flora setup can be found in
Section xx of the paper. Fig. 2(a) shows the distributions of
the one-way application-layer communication delays over
110 NTP sessions. The slave-to-master delays are mostly
within [40, 50] ms, with a median of 42 ms and a maximum
of 376 ms (not shown in the figure). As specified by the BLE
standard, the master device pulls data from a slave period-
ically. The period, called connection interval, is determined
by the master. The slave needs to wait for a pull request
to transmit a packet to the master. In the Raspberry Pi’s
BLE driver (BlueZ), the connection interval is set to 67.5 ms
by default. As the arrival time of a packet from the slave’s
OS is uniformly distributed over the connection interval, the
expected access time is 67.5/2 = 33.75 ms. This is consistent
with our measured median delay of 42 ms, which is about
8 ms longer because of other delays (e.g., send and receive
times). The exceptionally long delays (e.g., 376 ms) observed
in our measurements could be caused by transient wireless
interference and OS delays. For the master-to-slave link,
the delays are mostly within [0, 10] ms, with a median of
8 ms and a maximum of 153 ms. A BLE slave can skip a
number of pull requests, which is specified by the slave
latency parameter, and sleep to save energy. Under BlueZ’s
default setting of zero for slave latency, the slave keeps
awake and listening, yielding short master-to-slave delays.

The asymmetric slave-to-master and master-to-slave de-
lays will cause significant errors in the NTP’s clock offset es-
timation. At the end of each synchronization session, the RPi
computes this error as δNTP − δGT , where δNTP and δGT

are NTP’s estimate and the ground-truth offset, respectively.
Fig. 2(b) shows the distribution of the errors. We observe
that 28% of the errors are larger than 25 ms. The largest
error in the 110 NTP sessions is 183 ms. Such an error profile
does not well meet the ms accuracy requirements of many
applications [2], [3], [4]. Though it is possible to calibrate
the average error to zero by using prior information (e.g.,
the settings of the connection interval and slave latency),
the calibration is tedious, nonuniversal, and incapable of
reducing noise variance.

APPENDIX B
TOUCHSYNC PSEUDOCODE

The pseudocode programs running at the TouchSync slave
and master are presented in Algorithm 1 and 2, respectively.

APPENDIX C
COMPUTATION OVERHEAD

To understand the overhead of TouchSync, we deploy
our TinyOS and Arduino implementations to Zolertia’s Z1
motes and Floras, respectively. The Z1 mote is equipped

1. Line 15 deals with a situation where the SEP signal is too weak.
The detailed explanation can be found in Section 6 of the paper.

2. Line 10 deals with a situation where the SEP signal is too weak.
The detailed explanation can be found in Section 6 of the paper.

Algorithm 1 Slave’s pseudocode for a synchronization pro-
cess

1: Global variables: t1, t4, δ’s solution space ∆ = ∅, session
index k = 0

2:
3: command start sync session() do
4: k = k + 1
5: t1 = read_system_clock()
6: send message request = { } to master
7: end command
8:
9: event reply1 received from master do

10: t4 = read_system_clock()
11: if SEP signal strength is good:
12: wait till SEP data covering t1 and t4 are available
13: run SEP signal processing pipeline in Section 5.2
14: else:
15: generate internal periodic signal1

16: endif
17: compute φ1 and φ4
18: end event
19:
20: event reply2 received from master do
21: compute θq and θp using Eqs. (1) and (2).
22: RTT = (t4 − t1)− (reply2.t3 − reply2.t2)
23: solve Eq. (7), ∆′ denotes the set of all possible solu-

tions for δ
24: if k == 1: ∆ = ∆′; else: ∆ = ∆ ∩∆′; endif
25: if ∆ has only one element δ: use δ to adjust clock;
26: else: start sync session() // start a new synchroniza-

tion session
27: end event

Algorithm 2 Master’s pseudocode for a synchronization
process

1: event request received from slave do
2: t2 = read_system_clock()
3: ... // execute other compute tasks
4: t3 = read_system_clock()
5: send message reply1 = { } to slave
6: if SEP signal strength is good:
7: wait till SEP data covering t1 and t4 are available
8: run SEP signal processing pipeline in Section 5.2
9: else:

10: generate internal periodic signal2

11: endif
12: compute φ2 and φ3
13: send message reply2 = {t2, t3, φ2, φ3} to slave
14: end event

with an MSP430 MCU (1 MHz, 8 KB RAM) and a CC2420
802.15.4 radio. Both implementations sample SEP at 333 Hz.
On Z1, we configure the length of the circular buffer defined
in touchsync.h to be 512. Thus, this circular buffer can
store 1.5 seconds of SEP data. This is sufficient, because the
time periods [t2, t3] and [t1, t4] that should be covered by
the SEP signal segments to be retrieved from the circular
buffer and processed by the master and slave are generally
a few ms and below 100 ms, respectively. On Flora, we



3

Fig. 4. Home floor plan with test points marked.

configure the circular buffer length to be 400 and redefine
its data type such that TouchSync can fit into Flora’s limited
RAM space of 2.5 KB. Table 1 tabulates the memory usage of
TouchSync and the computation time of different processing
tasks. On Z1, a total of 421 ms processing time is needed for
a synchronization session. The BPF uses a major portion
of the processing time. Flora cannot adopt BPF because
of RAM shortage. It uses MRF instead, which consumes
much less RAM and processing time. Z1 and Flora are two
representative resource-constrained platforms. The success-
ful implementations of TouchSync on them suggest that
TouchSync can also be readily implemented on other more
resourceful platforms.

TABLE 1
Storage and compute overhead of TouchSync.

Platform Memory use (KB) Processing time (ms)
ROM RAM BPF/MRF ZCD PLL IAS

Z1 10 5 364 9 48 1
Flora 17 1.9* 1.3 3 15 0.8

* Estimated based on buffer lengths.

APPENDIX D
FLOOR PLANS OF EVALUATION

=

L1

L2

L3

L4

L5

L6

L9

Fig. 3. Laboratory floor plan with test points marked.

Fig. 3 and Fig. 4 show the floor plans of laboratory and
home, respectively. We arbitrarily select nine test points for
each room, marked by “Lx” and “Hx” in figures.

REFERENCES

[1] M. Maróti, B. Kusy, G. Simon, and Á. Lédeczi, “The flooding time
synchronization protocol,” in SenSys, 2004.

[2] M. Dinescu, J. Mazza, A. Kujanski, B. Gaza, and M. Sagan,
“Synchronizing wireless earphones,” Apr. 7 2015, US Patent
9,002,044. [Online]. Available: https://www.google.com/patents/
US9002044

[3] K. Lorincz, B.-r. Chen, G. Challen, A. Chowdhury, S. Patel, P. Bon-
ato, and M. Welsh, “Mercury: a wearable sensor network platform
for high-fidelity motion analysis,” in SenSys, 2009.

[4] F. Mokaya, R. Lucas, H. Noh, and P. Zhang, “Burnout: a wearable
system for unobtrusive skeletal muscle fatigue estimation,” in
IPSN, 2016.


