
Application-Layer Clock Synchronization for Wearables Using
Skin Electric Potentials Induced by Powerline Radiation

Zhenyu Yan
School of Computer Science and Engineering

Nanyang Technological University
Singapore

zyan006@ntu.edu.sg

Yang Li
Advanced Digital Sciences Center

Illinois at Singapore
Singapore

yang.li@adsc.com.sg

Rui Tan∗
School of Computer Science and Engineering

Nanyang Technological University
Singapore

tanrui@ntu.edu.sg

Jun Huang
Center for Energy Efficient Computing and Applications

Peking University
Haidian, Beijing, China
jun.huang@pku.edu.cn

ABSTRACT
Design of clock synchronization for networked nodes faces a fun-
damental trade-off between synchronization accuracy and univer-
sality for heterogeneous platforms, because a high synchronization
accuracy generally requires platform-dependent hardware-level
network packet timestamping. This paper presents TouchSync, a
new indoor clock synchronization approach for wearables that
achieves millisecond accuracy while preserving universality in that
it uses standard system calls only, such as reading system clock,
sampling sensors, and sending/receiving network messages. The
design of TouchSync is driven by a key finding from our extensive
measurements that the skin electric potentials (SEPs) induced by
powerline radiation are salient, periodic, and synchronous on a
same wearer and even across different wearers. TouchSync inte-
grates the SEP signal into the universal principle of Network Time
Protocol and solves an integer ambiguity problem by fusing the am-
biguous results in multiple synchronization rounds to conclude an
accurate clock offset between two synchronizing wearables. With
our shared code, TouchSync can be readily integrated into any
wearable applications. Extensive evaluation based on our Arduino
and TinyOS implementations shows that TouchSync’s synchroniza-
tion errors are below 3 and 7 milliseconds on the same wearer and
between two wearers 10 kilometers apart, respectively.

CCS CONCEPTS
• Networks → Time synchronization protocols; • Human-
centered computing → Ubiquitous and mobile devices;

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SenSys ’17, November 6–8, 2017, Delft, Netherlands
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5459-2/17/11. . . $15.00
https://doi.org/10.1145/3131672.3131681

KEYWORDS
Clock synchronization, wearables, skin electric potential

ACM Reference Format:
Zhenyu Yan, Yang Li, Rui Tan, and Jun Huang. 2017. Application-Layer
Clock Synchronization for Wearables Using Skin Electric Potentials Induced
by Powerline Radiation. In Proceedings of SenSys ’17, Delft, Netherlands,
November 6–8, 2017, 14 pages.
https://doi.org/10.1145/3131672.3131681

1 INTRODUCTION
The annual worldwide shipments of consumer wearables (e.g.,
smart watches, wristbands, eyewears, clothing, etc) have grown
by 29% in 2016 [11]. This rapid growth is expected to continue,
projecting to 213 million units shipped in 2020 [11]. Along with
the proliferation of consumer wearables, specialized domains such
as clinical/home healthcare [1] and exercise/sport analysis [25]
are also increasingly adopting smart wearable apparatuses. In the
body-area networks formed by these wearables, a variety of system
functions and applications depend on tight clock synchronization
among the nodes. For instance, two earbuds of a wireless headphone
need to be synchronized mutually and/or with a master device (e.g.,
a smartphone) to control the playback positions in their buffers to
deliver audio synchronously [3]. Motion analysis [22] and muscle
activity monitoring [24, 25] require sensory data from multiple
tightly synchronized nodes.

While current wearable systems adopt customized, proprietary
clock synchronization approaches [8], we envisage a wide spectrum
of interoperable wearables that can synchronize with each other
to enable more novel applications. For instance, in body sensor as-
sisted multi-user gaming that may need to decide which participant
performs an action or gesture first, tight clock synchronization
among the body sensors and/or the handheld game consoles is
needed. In the envisaged scheme, an application developer can
readily synchronize any two communicating wearables using high-
level and standard system calls provided by their operating systems
(OSes), such as reading system clock, transmitting and receiving
network messages. However, the design of clock synchronization
approaches faces a fundamental trade-off between the synchroniza-
tion accuracy and the universality for heterogeneous platforms.

https://doi.org/10.1145/3131672.3131681
https://doi.org/10.1145/3131672.3131681

SenSys ’17, November 6–8, 2017, Delft, Netherlands Zhenyu Yan, Yang Li, Rui Tan, and Jun Huang

This is because a high synchronization accuracy generally requires
low-level timestamping for the synchronization packets, which
may be unavailable on the hardware platforms or inaccessible to
the application developer.

We illustrate this accuracy-universality trade-off using the Net-
work Time Protocol (NTP) [26] and the Precision Time Protocol
(PTP) [12]. NTP synchronizes a slave node and a master node by
recording their clock values when a UDP synchronization packet
is passed to and received from the sender’s and receiver’s OSes,
respectively. Thus, NTP is universal in that it can be applied to
any host that speaks UDP. However, as the application-layer times-
tamping cannot capture the details of the nondeterministic OS and
network delays, NTP may yield significant synchronization errors
up to hundreds of milliseconds (ms) in a highly asymmetric net-
work. To solve this issue, PTP uses hardware-level timestamping
provided by PTP-compatible Ethernet cards at the end hosts and
all the switches on the network path to achieve microsecond (µs)
accuracy. However, the need of the special hardware inevitably
negates its universality and restricts PTP’s adoption to time-critical
local-area networks only, e.g., those found in industrial systems.

In wireless networks, due to the more uncertain communica-
tion delays caused by media access control (MAC), NTP performs
worse. Thus, similar to PTP, most existing clock synchronization
approaches for wireless sensor networks (WSNs) (e.g., RBS [4],
TPSN [7], and FTSP [23]) have resorted to MAC-layer timestamp-
ing provided by the nodes’ radio chips to pursue synchronization
accuracy. While FTSP has become the de facto standard in TinyOS-
based WSNs, the need of the MAC-layer timestamping presents a
significant barrier for its wide adoption to the broader Internet of
Things (IoT) domain, where the IoT platforms use diverse radios
and OSes, and in general they do not provide an interface for the
MAC-layer timestamping.

In this paper, we aim at developing a new clock synchroniza-
tion approach for wearables that establishes a desirable accuracy-
universality trade-off point between the two extremes represented
by NTP and PTP to well address the momentum of IoT platform
heterogenization. In particular, we will stem from the sensor na-
ture of wearables to explore ambient signals that can assist clock
synchronization. Recent studies exploited external periodic signals
such as powerline radiation [28] and Radio Data System (RDS) [19]
to calibrate the clocks of WSN nodes. However, these approaches
need non-trivial extra hardware to capture the external signals.
Moreover, they focus on clock calibration that ensures different
clocks advance at the same speed, rather than synchronizing the
clocks to have the same value. But they inspire us to inquire (i) the
existence of a periodic and synchronous signal that can be sensed
by different wearables without adding non-trivial hardware to pre-
serve universality and (ii) how to exploit the signal to synchronize
the wearables without using hardware-level packet timestamping.

For the first inquiry, we conduct extensive measurements to ex-
plore such signals. Our measurements based on Adafruit’s Flora
[14], an Arduino-based wearable platform, show that by simply
sampling an onboard analog-to-digital converter (ADC), a Flora
can capture powerline electromagnetic radiation that oscillates at
the power grid frequency (e.g., 50Hz). When the Flora’s ADC has
a physical contact with the wearer’s skin, the sampled skin electric
potential (SEP) is a significantly amplified version of the powerline

radiation, because the human body acts as an effective antenna.
Although the SEP’s amplitude is dynamic due to the human body
movements, its frequency is highly stable. Moreover, the SEPs on
the same wearer and even different wearers in a same indoor en-
vironment exhibit desirable synchronism. The time displacement
between the SEPs at different positions of a still wearer is generally
less than 1ms. These results suggest that SEP is a promising basis
for synchronizing the wearables.

For the second inquiry, we integrate the periodic and synchro-
nous SEP signal into the universal principle of NTP to deal with the
major source of NTP’s error, i.e., asymmetric communication delays.
In the original NTP, the problem of estimating the offset between
the slave’s and master’s clocks is a real-domain underdetermined
problem that has infinitely many solutions. NTP chooses a solu-
tion by assuming symmetric communication delays, which does
not hold in many scenarios, however. Assisted with the periodic
SEP, the problem reduces to an integer-domain underdetermined
problem that has a finite number of solutions. However, it is chal-
lenging to infer which solution is correct. In this paper, we show
that, if the time displacement between the SEP signals captured
by two synchronizing wearables is shorter than half of the power
grid voltage cycle, the integer ambiguity can be resolved by jointly
considering multiple synchronization rounds with dynamic and
asymmetric communication delays. Thus, the clock offset between
a pair of wearables can be estimated with ms accuracy due to the
ms synchronism between their SEP signals.

Based on the above two key results, we design a novel clock
synchronization approach for wearables, which we call TouchSync.
It runs at the application layer in that the needed SEP sampling, the
network message exchange and timestamping can be implemented
using standard wearable OS calls. Thus, by introducing a rather sim-
ple skin contact, we can readily achieve ms synchronization accu-
racy across heterogeneous wearable platforms, without resorting to
the hardware-level packet timestamping that is extremely difficult
to be standardized. To simplify the adoption of TouchSync by appli-
cation developers, we design and release a touchsync.h header file
[31] that implements TouchSync’s signal processing algorithms and
the integer ambiguity solver. With this header, the implementations
of TouchSync in Arduino and TinyOS need about 50 and 150 lines of
code, respectively, which manage sensor sampling, synchronization
message exchange and application-layer timestamping only. All
these tasks are basics for Arduino and TinyOS developers. We also
conduct extensive experiments in various indoor environments to
show the pervasive availability of the SEP signals. On the same
wearer, TouchSync mostly achieves sub-ms accuracy and the largest
error is 2.9ms. We also conduct a TouchSync-over-Internet proof-
of-concept experiment that yields errors below 7ms between two
wearers 10 km apart.

The ADC-skin contact needed by TouchSync can be easily inte-
grated into the wearable designs with near-zero cost. Although our
experiments show that, in the absence of the contact, TouchSync
can still work with graceful performance degradation, SEP is a new
and valuable sensing modality for integration consideration, since
it provides accurate timing and is indicative of other information
about the wearer (e.g., body orientation, movements, and indoor
location) as suggested by our measurements in this paper.

Clock Synchronization for Wearables Using SEP Induced by Powerline Radiation SenSys ’17, November 6–8, 2017, Delft, Netherlands

The rest of this paper is organized as follows. Section 2 reviews
related work. Section 3 introduces background and our objective.
Section 4 presents a measurement study. Section 5, Section 6, and
Section 7 designs, implements, and evaluates TouchSync, respec-
tively. Section 8 concludes.

2 RELATEDWORK
Highly stable time sources are ill-suited for wearables. Chip-scale
atomic clocks are too expensive ($1,500 per unit [29]). GPS receivers
are power-consuming and do not work in indoor environments.
Recent studies exploited external signals available in indoor en-
vironments to synchronize or calibrate the clocks of distributed
nodes. In [2], an AM radio receiver is designed to decode the global
time information broadcast by timekeeping radio stations. In [19],
a mote peripheral is designed to capture the periodic RDS signals
of FM radios for clock calibration. In [28], a mote peripheral called
syntonistor can receive the periodic electromagnetic radiation from
powerlines to calibrate wireless sensors’ clocks, where some clock
synchronization approach is still needed for the initial synchroniza-
tion. In [27, 30], voltage sensors plugged in to wall power outlets are
used to secure clock synchronization against malicious network de-
lays. In particular, the voltage cycle length fluctuations are exploited
to implement a data-based clock synchronization approach [30].
In [20], such fluctuations extracted from the powerline radiation
are used as natural timestamps. However, the error of the natural
timestamps can be up to hundreds of ms. Moreover, the clock syn-
chronization based on the natural timestamps needs to transmit a
considerable amount of cycle length data and a compute-intensive
matching process to decode the fluctuations to time information
[20]. Thus, the natural timestamping approach is ill-suited for tight
clock synchronization among resource-constrained wearables. In
[18], a smartphone captures ultrasonic beacons from pre-deployed
synchronized beacon nodes to synchronize its own clock. All the
above approaches [2, 18–20, 27, 28, 30] need non-trivial customized
hardware and infrastructures, which reduce their universality.

Two recent studies leverage built-in sensingmodalities to capture
external periodic signals for clock calibration. In [10], a 802.15.4
radio is used to capture theWi-Fi beacons to calibrate motes’ clocks.
Although this approach does not require a peripheral, it uses the
received signal strength indication (RSSI) register of the CC2420
radio chip, which makes it hardware specific and nonuniversal for
IoT platforms that use diverse radios. In [21], motes use light sensors
to capture the fluorescent light that flickers at a frequency twice
of the power grid frequency to calibrate their clocks. Although
light sensors are widely available, the required fluorescent lighting
may not be available in natural lighting environment. In contrast,
the powerline radiation that induces the SEP signal used by our
approach pervades civil infrastructures.

The studies [10, 19, 21, 28] mentioned above, including the two
[21, 28] that are power grid related, focus on clock calibration
that involves no message exchanges among nodes. Though con-
tinuous clock calibration maintains the nodes synchronized once
they are initially synchronized, the initial synchronization and the
resynchronizations needed upon clock calibration faults are not
addressed in these studies. Thus, these studies and ours are com-
plementary, in that the principle of TouchSync can be used for

master clock

slave clock

re
q
u
es

t rep
ly

(a) NTP principle.

send access Tx

Rx receive

time

propagation

FTSP

FTSP

NTP/TouchSync
timestamp timestamp

timestamp

NTP/TouchSync
timestamp

(b) Packet timestamping for synchronization.

Figure 1: NTP principle and packet timestamping.

the initial synchronization of the systems adopting these clock
calibration approaches [10, 19, 21, 28].

3 BACKGROUND AND OBJECTIVE
3.1 NTP Principle and Packet Timestamping
Many clock synchronization approaches adopt the principle of NTP,
which is illustrated in Fig. 1(a). A synchronization session consists of
the transmissions of a request packet and a reply packet. The t1 and
t4 are the slave’s clock valueswhen the request and reply packets are
transmitted and received by the slave node, respectively. The t2 and
t3 are the master’s clock values when the request and reply packets
are received and transmitted by the master node, respectively. Thus,
the round-trip time (RTT) is RTT = (t4 − t1) − (t3 − t2). Based
on a symmetric link assumption that assumes identical times for
transmitting the two packets, the offset between the slave’s and
the master’s clocks, denoted by δNTP , is estimated as δNTP =

t4 −
(
t3 +

RTT
2

)
. Then, this offset is used to adjust the slave’s clock

to achieve clock synchronization. Under the above principle, non-
identical times for transmitting the two packets will result in an
error in estimating the clock offset. The estimation error is half of
the difference between the times for transmitting the two packets.

We use Fig. 1(b) and the terminology in [23] to explain how
the timestamps (e.g., t3 and t4) are obtained in NTP and existing
WSN clock synchronization approaches. The send time and the
receive time are the times used by the OS to pass a packet between
the synchronization program and the MAC layer at the sender and
receiver, respectively. They depend on OS overhead. The access time
is the time for the sender’s MAC layer to wait for a prescribed time
slot in time-division multiple access (TDMA) or a clear channel in
carrier-sense multiple access with collision avoidance (CSMA/CA).
It often bears the highest uncertainty and can be up to 500ms [23].
The transmission (Tx) and reception (Rx) times are the physical
layer processing delays at the sender and receiver, respectively. The
propagation time equals the distance between the two nodes divided
by the speed of light, which is generally below 1 µs.

As illustrated in Fig. 1(b), NTP timestamps the packet when
the packet is passed to or received from the OS. Thus, the packet
transmission time used by NTP is subjected to the uncertain OS
overhead and MAC. Therefore, as measured in Section 4.2, NTP
over a Bluetooth connection can yield nearly 200ms clock offset
estimation errors. To remove these uncertainties, FTSP uses MAC-
layer access to obtain the times when the beginning of the packet

SenSys ’17, November 6–8, 2017, Delft, Netherlands Zhenyu Yan, Yang Li, Rui Tan, and Jun Huang

0 cm 1 2 3 4

battery

Flora

ADC pin

BLE module

Figure 2: Flora. Figure 3: Prototypes sup-
porting TouchSync.

is transmitted/received by the radio chip. As the propagation time
is generally below 1 µs, FTSP simply estimates the clock offset as
the difference between the two hardware-level timestamps. Thus,
the two-way scheme in Fig. 1(a) becomes non-essential for FTSP.

3.2 Objective
NTP, though universal, gives unacceptably low accuracy. On the
other extreme, existing WSN clock synchronization approaches,
though achieving µs accuracy, may not be universally applicable to
the diversified IoT platforms with different radio chips and OSes. In
this paper, by introducing the readily available SEP signal, we aim
at developing a new clock synchronization approach for wearables
that (i) uses application-layer timestamping as NTP does to preserve
universality and (ii) achieves ms accuracy that meets the require-
ments of a range of applications. For instance, music streaming
requires a synchronism below 30ms between two wireless earbuds
[3]. For seismic sensing based motion analysis [22] and muscle
activity monitoring [25] that generally adopt sampling rates up to
500Hz, the ms synchronization accuracy can enable us to discrim-
inate any readings sampled by different sensors at different time
instants. To this end, we need to understand the properties of SEP,
which is the subject of Section 4.

4 MEASUREMENT STUDY
In this section, we conduct measurements to gain insights for guid-
ing the design of TouchSync.

4.1 Measurement Setup
Our measurement study uses two Adafruit Flora nodes [14] and a
Raspberry Pi (RPi) 3 Model B single-board computer [5]. The Flora
is an Arduino-based wearable platform that can be programmed
using the Arduino IDE. Each Flora node, as shown in Fig. 2, consists
of a main board with an ATmega32u4 MCU (8MHz, 2.5KB RAM),
a Bluetooth Low Energy (BLE) 4.1 module, and a 150mAh lithium-
ion polymer battery. The RPi has a built-in BLE 4.1 module and
runs Ubuntu MATE 16.04 with BlueZ 5.37 as the BLE driver. We
use Adafruit’s nRF51 Arduino library [15] and BluefruitLE Python
library [16] on the Floras and the RPi, respectively, to send and
receive data over BLE in the UART mode through the write() and
read() functions. The Floras and RPi operate as BLE peripheral
(slave) and central (master), respectively. To obtain the ground truth
clocks, in each experiment, we synchronize the Floras with the RPi

0
10
20
30
40
50
60
70
80
90

100

0 50 100 150 200

O
cc

ur
re

nc
e

One-way delay (ms)

slave to master
master to slave

(a)

0
10
20
30
40
50
60
70
80

-50 0 50 100 150 200

O
cc

ur
re

nc
e

Clock offset estimation error (ms)

(b)

Figure 4: Performance of NTP over a BLE connection.

as follows. At the beginning of the experiment, we wire a general-
purpose input/output (GPIO) pin of the RPi with a digital input pin
of each Flora. Then, the RPi issues a rising edge through the GPIO
pin and records its clock value tmaster . Upon detecting the rising
edge, a Flora records its clock value tslave and sends it to the RPi.
The RPi computes the ground-truth offset between the Flora’s and
the RPi’s clocks as δGT = tslave − tmaster . Then, we remove the
wiring and conduct experiments.

4.2 Performance of NTP over BLE Connection
As our objective is to devise a new clock synchronization approach
that uses application-layer timestamping as NTP does, this section
measures the performance of NTP to provide a baseline. We imple-
ment the NTP principle described in Section 3.1 on the Flora setup.
Fig. 4(a) shows the distributions of the one-way application-layer
communication delays over 110 NTP sessions. The slave-to-master
delays are mostly within [40, 50]ms, with a median of 42ms and a
maximum of 376ms (not shown in the figure). As specified by the
BLE standard, the master device pulls data from a slave periodically.
The period, called connection interval, is determined by the master.
The slave needs to wait for a pull request to transmit a packet to the
master. In BlueZ, the connection interval is set to 67.5ms by default.
As the arrival time of a packet from the slave’s OS is uniformly
distributed over the connection interval, the expected access time
is 67.5/2 = 33.75ms. This is consistent with our measured median
delay of 42ms, which is about 8ms longer because of other delays
(e.g., send and receive times). The exceptionally long delays (e.g.,
376ms) observed in our measurements could be caused by transient
wireless interference and OS delays. For the master-to-slave link,
the delays are mostly within [0, 10]ms, with a median of 8ms and a
maximum of 153ms. A BLE slave can skip a number of pull requests,
which is specified by the slave latency parameter, and sleep to save
energy. Under BlueZ’s default setting of zero for slave latency, the
slave keeps awake and listening, yielding short master-to-slave
delays.

The asymmetric slave-to-master and master-to-slave delays will
cause significant errors in the NTP’s clock offset estimation. At the
end of each synchronization session, the RPi computes this error
as δNTP − δGT , where δNTP and δGT are NTP’s estimate and the
ground-truth offset, respectively. Fig. 4(b) shows the distribution
of the errors. We observe that 28% of the errors are larger than
25ms. The largest error in the 110 NTP sessions is 183ms. Such an
error profile does not well meet the ms accuracy requirements of
many applications [3, 22, 25]. Though it is possible to calibrate the
average error to zero by using prior information (e.g., the settings of

Clock Synchronization for Wearables Using SEP Induced by Powerline Radiation SenSys ’17, November 6–8, 2017, Delft, Netherlands

0
0.2
0.4
0.6
0.8

1

0 0.05 0.1 0.15 0.2

N
or

m
al

iz
ed

si
gn

al

Time (s)

Node A
Node B

(a) Shared ground

0
0.2
0.4
0.6
0.8

1

0 0.05 0.1 0.15 0.2

N
or

m
al

iz
ed

si
gn

al

Time (s)

Node A
Node B

(b) Independent grounds

Figure 5: No human body contact.

the connection interval and slave latency), the calibration is tedious,
nonuniversal, and incapable of reducing noise variance.

4.3 Skin Electric Potential (SEP)
In this set of measurements, we explore i) whether a human body
is an effective antenna for receiving the powerline radiation and
ii) whether the SEP signals induced by the radiation on the same
wearer or different wearers are synchronous. The Flora’s MCU has
a 10-bit ADC that supports a sampling rate of up to 15 kHz. To
facilitate experiments, we have made two Flora-based prototypes
as shown in Fig. 3. We place the Flora into a 3D-printed insulating
wristband and use a stainless thin conductive thread to create a
connection between Flora’s ADC pin and the wearer’s skin. The
Flora samples the ADC at 333Hz continuously for two minutes and
streams the timestamped raw data to the RPi for offline analysis.
The sampling rate of 333Hz is sufficient to capture the powerline
radiation or SEP with a frequency of 50Hz in our region. All sam-
ples are normalized using the reference voltage of the ADC. As
only the ADC pin is connected to the researcher, the grounding of
the Flora may affect the sampling result. To understand the impact
of grounding, we conduct two sets of comparative experiments,
where the two Floras have shared and independent grounds, re-
spectively. In each experiment set, there are two scenarios: still and
moving. For the moving scenario, the researcher keeps changing
the body orientation, movement, and location. The experiments are
conducted in a computer science laboratory with various appliances
such as lights, computers, and printers.

4.3.1 Shared ground. Wewire the ground pins of the two Floras,
such that they have a shared ground. We conduct three tests.

First, Fig. 5(a) shows the signals captured by the two Floras when
they have no physical contact with any human body. The signals
have small fluctuations with a normalized peak-to-peak amplitude
of 0.024. The signals fluctuate at a frequency of 50Hz. This suggests
that the Floras can pick up the powerline radiation. However, the
signals are weak.

Second, a researcher touches the ADC pins of the two Floras
with his two hands, respectively. Figs. 6(a) and 6(b) show the signals
captured by the two nodes during the same time duration, when
the researcher stands still and walks, respectively. Under the two
scenarios (still and moving), the two nodes yield salient and almost
identical signals. The peak-to-peak amplitudes in the two figures
are around 0.4 and 0.8, which are 17 and 33 times larger than that
of the signal shown in Fig. 5(a). This suggests that the human body
can effectively receive the powerline radiation.

0
0.2
0.4
0.6
0.8

1

0 0.05 0.1 0.15 0.2

N
or

m
al

iz
ed

si
gn

al

Time (s)

Node A
Node B

(a) Still body

0
0.2
0.4
0.6
0.8

1

0 0.05 0.1 0.15 0.2

N
or

m
al

iz
ed

si
gn

al

Time (s)

(b) Moving body

Figure 6: SEPs on a same wearer (shared ground).

0
0.2
0.4
0.6
0.8

1

0 0.05 0.1 0.15 0.2

N
or

m
al

iz
ed

si
gn

al

Time (s)

(a) Still bodies

0
0.2
0.4
0.6
0.8

1

0 0.05 0.1 0.15 0.2

N
or

m
al

iz
ed

si
gn

al

Time (s)

(b) Moving bodies

Figure 7: SEPs on different wearers (shared ground).

0
0.2
0.4
0.6
0.8

1
1.2
1.4

same,still

same,move

diff,still

diff,move

|ǫ
|(

m
s)

(a) Shared ground

0
1
2
3
4
5
6
7

same,still

same,move

diff,still

diff,move

|ǫ
|(

m
s)

(b) Independent grounds

Figure 8: Absolute time displacement |ϵ | between the EMR
signals captured by the two Floras in various scenarios. Er-
ror bar represents (5%, 95%) confidence interval. Each error
bar is obtained from one minute of data.

Third, two researchers touch the ADC pins of the two Floras
separately. Figs. 7(a) and 7(b) show the signals captured by the two
nodes when the two researchers stand still and walk, respectively.
The two nodes yield salient signals with different amplitudes. We
note that several factors may affect the reception of powerline
radiation, e.g., human body size, position and facing of the body in
the electromagnetic field generated by the powerlines.

We evaluate the synchronism between the signals captured by
the two Floras shown in Figs. 6 and 7. We condition the signals by
first applying a band-pass filter (BPF) to remove the direct current
(DC) component that may fluctuate as seen in Fig. 6(b) and then
detect the zero crossings (ZCs) of the filtered signals. More details
of the BPF and ZC detection will be presented in Section 5.2. We use
the time displacement between the two signals’ ZCs as the metric
to evaluate their synchronism. Specifically, the time displacement,
denoted by ϵ , is given by ϵ = tZCA − tZCB , where tZCA and tZCB repre-
sent the ground-truth times of Node A’s ZC and the corresponding
ZC at Node B, respectively. Fig. 8(a) shows the error bars for |ϵ |,
which correspond to the scenarios in Figs. 6(a), 6(b), 7(a), and 7(b),

SenSys ’17, November 6–8, 2017, Delft, Netherlands Zhenyu Yan, Yang Li, Rui Tan, and Jun Huang

0.2

0.3

0.4

0.5

0 0.05 0.1 0.15 0.2

N
or

m
al

iz
ed

si
gn

al

Time (s)

(a) Still body

0.3

0.4

0.5

0 0.5 1 1.5 2

N
or

m
al

iz
ed

si
gn

al

Time (s)

(b) Moving body

Figure 9: SEPs on a same wearer (independent grounds).

0.3

0.4

0 0.05 0.1 0.15 0.2

N
or

m
al

iz
ed

si
gn

al

Time (s)

(a) Still bodies

0.3

0.4

0.5

0.6

0 0.5 1 1.5 2

N
or

m
al

iz
ed

si
gn

al

Time (s)

(b) Moving bodies

Figure 10: SEPs on different wearers (independent grounds).

respectively. In Fig. 8(a), “same” and “diff” mean the same wearer
and different wearers, respectively; “still” and “move” mean stand-
ing still and walking, respectively. On the same wearer, the SEPs
captured by the two Floras are highly synchronous, with an average
|ϵ | of 0.9 µs. On different wearers, the |ϵ | increases to about 1ms.
When the two wearers move, the average |ϵ | is 0.35ms smaller than
that when they stand still. This small difference may be caused by
several affecting factors discussed earlier, i.e., human body size and
etc. The human body movements increase the variance of |ϵ |, since
they create more signal dynamics as seen in Fig. 6(b).

4.3.2 Independent grounds. Then, we remove the connection
between the two Floras’ ground pins, such that they have indepen-
dent grounds. This setting is consistent with real scenarios, where
the wearables are generally not wired. We conduct three tests.

Fig. 5(b) shows the two Floras’ signals when they have no physi-
cal contact with any human body. The signals have small oscilla-
tions with a frequency of 50Hz.

Figs. 9(a) and 9(b) show the signals of the two Floras worn on two
wrists of a researcher when he stands still and walks, respectively.
Compared with the results in Fig. 6(a) based on a shared ground,
the two signals in Fig. 9(a) have an offset in their values. This
offset is the difference between the electric potentials at the two
Floras’ grounds. Fig. 9(b) shows the signals over two seconds that
contain about 100 SEP cycles to better illustrate the changing signal
envelopes over time due to the human body movements. Compared
with Fig. 6(b), the two signals in Fig. 9(b) have different signal
envelopes. This is because the electric potentials at the two Floras’
grounds, which are also induced by the powerline radiation, are
not fully correlated in the presence of human body movements.

Figs. 10(a) and 10(b) show the signals of the two Floras worn
by two researchers each when they stand still and walk, respec-
tively. Salient EMR signals can be observed. Moreover, the human

movements cause significant fluctuations of DC lines and the signal
amplitudes, as seen in Fig. 10(b).

We also evaluate the synchronism between the two Floras’ sig-
nals. Fig. 8(b) shows the time displacement’s error bars that cor-
respond to the scenarios in Figs. 9(a), 9(b), 10(a), and 10(b). The
average |ϵ | is below 3ms. Compared with the results in Fig. 8(a) that
are based on a shared ground, the time displacements increase. This
is because of the additional uncertainty introduced by the indepen-
dent floating grounds of the two Floras. Nevertheless, on the same
wearer, the average |ϵ | is about 1ms only. The body movements
increase the 95%-percentile of |ϵ | to 6ms. In Section 5.2, we will
use a phase-locked loop to reduce the variations of ϵ .

4.3.3 Summary. From the above measurements, we obtain the
following three key observations. First, the human body can act
as an antenna that effectively improves the powerline radiation
reception. Second, during the human body movements, the SEP
amplitude changes. However, the synchronism between the two
SEP signals captured by the two nodes on the same wearer or
different wearers is still acceptably preserved. In Section 5.2, we
will condition the SEP signals to improve the synchronism. Third,
the floating ground of a node introduces additional uncertainty,
because the powerline radiation can also generate a varying electric
potential at the ground pin. However, the floating ground does not
substantially degrade the synchronism between the two nodes’ SEP
signals. All experiments in the rest of this paper are conducted
under the floating ground setting. The above three observations
suggest that the SEP induced by powerline radiation is a good
periodic signal that can be exploited for synchronizing wearables.

We note that, all the above measurements are conducted in a
computer science laboratory that draws electricity from a single
power grid phase. Thus, the SEPs received by the Floras in the
laboratory have the same phase. Typically, a small area (e.g., a room
and an office floor) is supplied by the same power grid phase. Thus,
the wearables in the area will sense synchronized SEPs. Two remote
wearables may sense different power grid phases. The voltage phase
difference will become part of the synchronization error. It is 6.7ms
and 5.6ms in 50Hz and 60Hz grids, respectively. We will observe
this in our experiments presented in Section 7.2.

The powerline radiation and SEP are generally unavailable out-
doors. Our extensive evaluation in Section 7 will show the pervasive
availability of SEPs in indoor environments. As most of our lifetime
is indoors (e.g., 87% on average for Americans [17]), the SEP will
be available for synchronizing wearables.

5 DESIGN OF TOUCHSYNC
In this section, we present the design of TouchSync. Section 5.1
overviews the workflow of TouchSync. Section 5.2 presents the
signal processing algorithms to generate stable, periodic, and syn-
chronous impulses trains (i.e., Dirac combs) from the SEP signals.
Section 5.3 presents a synchronization protocol assisted with the
Dirac combs. Section 5.4 solves the integer ambiguity problem to
complete synchronization.

5.1 TouchSync Workflow
TouchSync synchronizes the clock of a slave to that of a master. This
paper focuses on the synchronization between a slave-master pair,

Clock Synchronization for Wearables Using SEP Induced by Powerline Radiation SenSys ’17, November 6–8, 2017, Delft, Netherlands
st

ar
t

en
d

slave

master

SEP sampling

SEP sampling

se
ss

io
n
 1

SEP data

SEP data

signal

processing

ambiguity solving

& offset estimation

se
ss

io
n
 2

SEP data

SEP data

message

transmission

re
q
u
e
s
t

re
q
u
e
s
tre

p
ly
1

re
p
ly
1

re
p
ly
2

re
p
ly
2

Figure 11: A synchronization process of TouchSync.

BPF/MRF ZCD PLL
SEP signal

segment

Dirac

comb

Figure 12: SEP signal processing pipeline.

which is the basis for synchronizing a network of nodes. A synchro-
nization process, as illustrated in Fig. 11, is performed periodically
or in an on-demand fashion. For instance, the wearer(s) may push
some buttons on two wearables to start a synchronization process.
The period of the synchronization can be determined by the needed
clock accuracy and the clock drift rate. During the synchroniza-
tion process, both the slave and the master continuously sample
the SEP signals and store the timestamped samples into their local
buffers. At the beginning of the synchronization process, the slave
node sends a message to the master to signal the start of the sensor
sampling. A synchronization process has multiple synchronization
sessions. Fig. 11 shows two sessions. In each session, the slave and
the master exchange three messages: request, reply1, and reply2.
The request and reply1 are used to measure the communication
delays. After transmitting the reply1, the master retrieves a seg-
ment of SEP signal from its buffer to process and transmits the
processing results using the reply2 to the slave. Upon receiving
the reply1, the slave retrieves a segment of SEP signal from its
buffer to process. Upon receiving the reply2, the slave tries to solve
the integer ambiguity problem to estimate the offset between the
slave’s and the master’s clocks. If the ambiguity cannot be solved,
another synchronization session is initiated; otherwise, the two
nodes stop sampling SEPs and the slave uses the estimated offset
to adjust its clock and complete the synchronization process.

5.2 SEP Signal Processing
This section presents TouchSync’s signal processing illustrated as
the filled blocks in Fig. 11. The objective is to generate a highly
stable, periodic, and synchronous Dirac comb from a SEP signal
with fluctuating DC component and jitters as shown in Figs. 10(b)
and 8(b). The algorithms should be compute- and storage-efficient.

We apply a signal processing pipeline illustrated in Fig. 12. It has
three steps:
Band-pass filter (BPF) or mean removal filter (MRF): We ap-
ply a 5th-order/6-tap infinite impulse response (IIR) BPF with steep
boundaries of a (45Hz, 55Hz) passband to remove the fluctuating

-0.1

 0

 0.1

 0 0.5 1 1.5 2

F
il
te

re
d

 s
ig

n
a

l

Time (s)

Figure 13: BPF output (each
color stands for the same
node in Fig. 10).

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

19 19.5 20 20.5 21

Pr
ob

ab
ili

ty

Interval between two ZCs (ms)

Input
Output

Figure 14: Jitter before
and after PLL.

0
1
2
3
4
5

1 5 10 20 50

|ǫ
|(

m
s)

Missed ZCs

Figure 15: PLL robustness.

0
50

100
150
200
250

0 0.5 1 1.5 2

In
te

rv
al

(m
s)

Time (s)

Input
Output

Figure 16: PLL convergence.

DC component and high-frequency noises of the SEP signal. The
red and blue curves in Fig. 13 are the filtering results for the red
and blue signals shown in Fig. 10(b). We can see that the DC com-
ponents have been removed. For too resource-limited wearables, a
MRF that subtracts the running average from the original signal
can be used instead of the BPF for much lower compute and storage
complexities. Its effect is similar to a low-pass filtering.
Zero crossing detector (ZCD): It detects the ZCs, i.e., the time
instants when the filtered SEP signal changes from negative to pos-
itive. It computes a linear interpolation point between the negative
and the consequent positive SEP samples as the ZC to mitigate the
impact of low time resolution due to a low SEP sampling rate.
Phase-locked loop (PLL):We apply a software PLL to deal with
the ZC jitters and miss detection caused by significant dynamics
of the SEP signal. The PLL generates an impulse train using a loop
and uses an active proportional integral (PI) controller to tune the
interval between two consecutive impulses according to the time
differences between the past impulses and the input ZCs. The con-
troller skips the time differences larger than 25ms to deal with
ZC miss detection. Fig. 14 shows the distributions of the interval
between two consecutive ZCs of the PLL’s input and output, re-
spectively. The PLL reduces jitters. Before PLL, the minimum and
maximum intervals are 13.5ms and 30.8ms, respectively. After
PLL, the minimum and maximum intervals are 19.4ms and 20.7ms,
respectively. To understand PLL’s robustness against ZC miss de-
tection, we artificially drop a number of continuous ZCs to simulate
an outage period and evaluate the time displacement ϵ between
the PLL’s output and the dropped ZCs. Fig. 15 shows the |ϵ | versus
the number of missed ZCs. When 50 ZCs that last for one second
are missed, the caused |ϵ | is 4.5ms only. Moreover, after the outage
period, the |ϵ | restores to sub-ms with five input ZCs only.

Though the above three steps are standard signal processing
techniques, they are crucial for TouchSync. Moreover, we tune
them to better cater into our needs. In [28], the PLL is also used to
reduce jitters of a clock calibration signal. Different from [28] that

SenSys ’17, November 6–8, 2017, Delft, Netherlands Zhenyu Yan, Yang Li, Rui Tan, and Jun Huang

continuously runs PLL for continuous clock calibration, TouchSync
samples SEP and runs PLL only when clock synchronization is
needed. Thus, we configure the PLL to have a short convergence
time of about one second, as shown in Fig. 16. Moreover, owing
to a special consideration in the design of TouchSync that will be
presented in Section 5.3, the signal processing algorithms operate
in an “offline” manner, in that they start to work until the whole
SEP signal segment to be processed becomes available. This largely
simplifies the implementation of these algorithms.

5.3 NTP Assisted with Dirac Combs
TouchSync uses the synchronous Dirac combs at the slave and
the master to achieve clock synchronization through multiple syn-
chronization sessions. This section presents the protocol and the
analysis for a single synchronization session.

5.3.1 Protocol for a synchronization session. A synchronization
session of TouchSync is illustrated in Fig. 17. We explain it from
the following two aspects.

Message exchange and timestamping: The session consists
of the transmissions of three messages: request, reply1,
and reply2. The request and reply1 messages are similar
to the two UDP packets used by NTP. Their transmission and
reception timestamps, i.e., t1, t2, t3, and t4, are obtained upon
the corresponding messages are passed/received to/from the
OS, as illustrated in Fig. 1(b). The master will transmit the
auxiliary reply2 message to convey the results of its signal
processing, which is detailed below.

Signal processing and clock offset estimation: After themas-
ter has transmitted the reply1 message, the master (i) re-
trieves from its signal buffer a SEP signal segment that covers
the time period from t2 to t3 with some safeguard ranges be-
fore t2 and after t3, (ii) feeds the signal processing pipeline in
Section 5.2 with the retrieved SEP signal segment to produce
a Dirac comb as illustrated in Fig. 17, and (iii) identifies the
last impulses (LIs) in its Dirac comb that are right before the
time instants t2 and t3, respectively. The LIs are illustrated
by thick red arrows in Fig. 17. Then, the master computes
the elapsed times from t2’s LI to t2 and t3’s LI to t3, which
are denoted by ϕ2 and ϕ3, respectively. The ϕ2 and ϕ3 are
the phases of the t2 and t3 with respect to the Dirac comb.
After that, the master transmits the reply2 message that
contains t2, t3, ϕ2, and ϕ3 to the slave. After receiving the
reply1 message, the slave retrieves a SEP signal segment
that covers the time period from t1 to t4 with some safeguard
ranges, executes the signal processing pipeline, identifies the
LIs right before t1 and t4, and computes the phases ϕ1 and ϕ4,
as illustrated in Fig. 17. After receiving the reply2 message,
based on {t1, t2, t3, t4} and {ϕ1,ϕ2,ϕ3,ϕ4}, the slave uses the
approach in Section 5.3.2 to analyze the offset between the
slave’s and master’s clocks. From the PLL convergence speed
shown in Fig. 16, we set the safeguard to one second.

Now, we discuss several design considerations for the protocol
described above. TouchSync uses the request and reply1 mes-
sages to measure the clock offset, while the reply2 is an auxiliary
message to convey the timestamps t2, t3 and the measurements
ϕ2, ϕ3. With this auxiliary message, we can decouple the task of

φ1 φ4

φ2 φ3

request
={}

reply1
={}

reply2
={t2, t3, φ2 , φ3}

master clock

slave clockt1

t2 t3

t4

LI

LI LI

LI

Figure 17: A synchronization session of TouchSync. The ver-
tical arrows represent the impulses of the Dirac combs gen-
erated from the SEP signal.

timestamping the reception of request and the transmission of
reply1 from the signal processing task of generating the Dirac
comb and computing ϕ2 and ϕ3. On many platforms (e.g., Android
Wear and watchOS), continuously sampled sensor data is passed to
the application block by block. With the decoupling, the master can
compute ϕ2 and ϕ3 after the reply1 is transmitted and the needed
SEP data blocks become available. This is why the signal processing
algorithms in Section 5.2 can operate in an “offline” manner.

5.3.2 Clock offset analysis. We now analyze the offset between
the slave’s and the master’s clocks based on {t1, t2, t3, t4} and
{ϕ1, ϕ2, ϕ3, ϕ4}. Denote by T the period of the Dirac comb. In our
region served by a 50Hz grid, the nominal value for T is 20ms.
To capture the small deviation from the nominal value, T can be
also easily computed as the average interval between consecutive
impulses of the Dirac comb. We define the rounded phase differences
θq and θp (which correspond to the request and reply1messages,
respectively) as

θq =

{
ϕ2 − ϕ1, if ϕ2 − ϕ1 ≥ 0;
ϕ2 − ϕ1 +T , otherwise. (1)

θp =

{
ϕ4 − ϕ3, if ϕ4 − ϕ3 ≥ 0;
ϕ4 − ϕ3 +T , otherwise. (2)

As ϕk is the elapsed time from tk ’s LI to tk , we have 0 ≤ ϕk < T , for
k ∈ [1, 4]. From Eqs. (1) and (2), we can verify that 0 ≤ θq < T and
0 ≤ θp < T . From our measurements in Section 4.2, the times for
transmitting the request and reply1 messages can be longer than
T . Thus, we use i to denote the non-negative integer number of the
Dirac comb’s periods elapsed from the time of sending request
to the time of receiving it at the master, and j to denote the non-
negative integer number of the Dirac comb’s periods elapsed from
the time of sending reply1 to the time of receiving it at the slave.

We denoteτq andτp the actual times for transmitting the request
and the reply messages, respectively. Thus,

τq = θq + i ·T − ϵ, τp = θp + j ·T + ϵ, (3)

where ϵ is the time displacement between the slave’s and master’s
Dirac combs. Here, we assume a constant ϵ to simplify the discus-
sion. Therefore, the RTT computed by RTT = (t4 − t1) − (t3 − t2)
must satisfy

RTT = τq + τp = θq + θp + (i + j) ·T . (4)

Clock Synchronization for Wearables Using SEP Induced by Powerline Radiation SenSys ’17, November 6–8, 2017, Delft, Netherlands

In Eq. (4), RTT, θq , and θp are measured in the synchronization
session illustrated in Fig. 17; i and j are unknown non-negative
integers. If the i and j can be determined, the estimated offset
between the slave’s and the master’s clocks, denoted by δ , can be
computed by either one of the following formulas:

δ = t1 − (t2 − τq) = t1 − t2 + θq + i ·T − ϵ, (5)

δ = t4 − (t3 + τp) = t4 − t3 − θp − j ·T − ϵ . (6)
It can be easily verified that the above two formulas give the same
result. The analysis in the rest of this paper chooses to use Eq. (6).
The ϵ is generally unknown. If we ignore it in Eq. (6) to compute δ ,
it becomes part of the clock offset estimation error.

Eq. (4) is an integer-domain underdetermined problem. Clearly,
from Eq. (4), both i and j belong to the range

[
0, RTT−θq−θpT

]
. Thus,

Eq. (4) has a finite number of solutions for i and j . Note that, under
the original NTP principle, we have a real-domain underdetermined
problem of RTT = τq + τp that has infinitely many solutions. NTP
chooses a solution by assuming τq = τp , which does not hold in
general. Thus, by introducing the Dirac combs, the ambiguity in
determining τq , τp , and δ is substantially reduced from infinitely
many possibilities to finite possibilities. Though we still have am-
biguity in the integer domain, our analysis and extensive numeric
results in Section 5.4 show that the ambiguity can be solved.

Note that, in [27], the periodic and synchronous power grid
voltage signals collected directly from power outlets are used to
synchronize two nodes that have high-speed wired network con-
nections. The approach in [27] also uses the elapsed times from
LIs (i.e., ϕ1, ϕ2, ϕ3, ϕ4) to deal with asymmetric communication
delays and improve synchronization accuracy. However, due to the
high-speed connectivity, it only considers the case where both i
and j are zero. In contrast, with wireless connectivity, i and j are
random and often non-zero due to the access time (cf. Section 3.1).
Estimating i and j is challenging and it is the subject of Section 5.4.

5.4 Integer Ambiguity Solver (IAS)
Before we present the approach to solving integer ambiguity, we
make the following two assumptions for simplicity of exposition.
First, we assume that the ground-truth clock offset δGT is a constant
during a synchronization process. From our performance evaluation
in Section 7, TouchSync generally takes less than one second to
achieve synchronization. Typical crystal oscillators found in MCUs
and personal computers have drift rates of 30 to 50 ppm [10]. Thus,
the maximum drift of the offset between two clocks during one
second is 50 ppm × 1 s × 2 = 0.1ms. This drift is smaller than
the ms-level time displacement ϵ between two SEP signals, which
dominates the synchronization error of TouchSync. Second, we
assume ϵ = 0. In Section 5.4.4, we will discuss how to deal with
non-zero and time-varying ϵ .

We let imin and imax denote the minimum and maximum possi-
ble values for i; jmin and jmax denote the minimum and maximum
possible values for j . For instance, from our one-way message trans-
mission time measurements summarized in Fig. 4(a), the BLE’s
slave-to-master transmission times are always greater than 30ms.
Thus, we may set imin = 1, since in our regionT is 20ms. When we
have no prior knowledge about the ranges for i and j , we may sim-
ply set imin = jmin = 0 and imax = jmax =

RTT−θq−θp
T . Section 5.4.4

master clock

slave clock

0

t1[1]=105

t2[1]=50 t3[1]=60

t4[1]=190 t1[2]=205

t2[2]=127 t3[2]=137

t4[2]=293

τq [1]=50 τp[1]=25 τq [2]=27 τp[2]=51

Figure 18: An example of solving the integer ambiguity. The
transmissions of the auxiliary reply2 messages are omitted
in the illustration.

will discuss how the use of the prior knowledge impacts on the
integer ambiguity solving.

TouchSync performs multiple synchronization sessions to solve
the integer ambiguity problem. In this section, we use x[k] to de-
note a quantity x in the kth synchronization session. For instance,
RTT[k] denotes the measured RTT in the kth session. From Eqs. (4)
and (6), for the kth synchronization session, we have

RTT[k] = θq [k] + θp [k] + (i[k] + j[k]) ·T ;
δ = t4[k] − t3[k] − θp [k] − j[k] ·T ;
imin ≤ i[k] ≤ imax, jmin ≤ j[k] ≤ jmax.

(7)

If TouchSync performs K synchronization sessions, we have an
underdetermined system of 2K equations with (2K + 1) unknown
variables (i.e., δ and {i[k], j[k]|k ∈ [1,K]}). In the integer domain,
such an underdetermined system can have a unique solution.

5.4.1 An example of unique solution. We use an example in
Fig. 18 to illustrate. The unit for time is ms, which is omitted in
the following discussion for conciseness. In this example, T = 20,
imin = jmin = 1, imax = jmax = 4, and the ground-truth clock
offset δGT = 105. Two synchronization sessions are performed.
The timestamps and the actual message transmission delays are
shown in Fig. 18. The ground-truth values for i and j in the two
synchronization sessions are: i[1] = 2, j[1] = 1, i[2] = 1, and
j[2] = 2. The RTTs can be computed as RTT[1] = 75 and RTT[2] =
78. With any synchronous Dirac combs, from Eqs. (1) and (2), the
rounded phase differences computed by the two nodes must be
θq [1] = 10, θp [1] = 5, θq [2] = 7, and θp [2] = 11. For the first
synchronization session, Eq. (7) has two possible solutions only:

{i[1]=1, j[1]=2,δ =85}, {i[1]=2, j[1]=1,δ =105}. (8)

For the second synchronization session, Eq. (7) has two possible
solutions only as well:

{i[2]=1, j[2]=2,δ =105}, {i[2]=2, j[2]=1,δ =125}. (9)

From Eqs. (8) and (9), δ = 105 is the only common solution. Thus,
we conclude that δ must be 105.

5.4.2 Program for solving integer ambiguity. From the above
example, due to the diversity of the ground-truth values of i and j in
multiple synchronization sessions, the intersection of the δ solution
spaces of these synchronization sessions can be a single value. Thus,
the integer ambiguity problem is solved. On the contrary, if the
ground-truth i and j do not change over multiple synchronization
sessions, the ambiguity remains. As explained in Section 3.1, with
application-layer timestamping, the message transmission times
are highly dynamic due to the uncertain OS overhead and MAC.

SenSys ’17, November 6–8, 2017, Delft, Netherlands Zhenyu Yan, Yang Li, Rui Tan, and Jun Huang

Such uncertainties and dynamics, which are undesirable in the
original theme of NTP, interestingly, become desirable for solving
the integer ambiguity in TouchSync.

From the above key observation, TouchSync performs the syn-
chronization session illustrated in Fig. 17 repeatedly until the in-
tersection among the δ solution spaces of all the synchronization
sessions converges to a single value. Algorithms 1 and 2 provide
the pseudocode for TouchSync’s slave and master programs.

Algorithm 1 Slave’s pseudocode for a synchronization process
1: Global variables: t1, t4, δ ’s solution space ∆ = ∅, session index k = 0
2:
3: command start_sync_session() do
4: k = k + 1
5: t1 = read_system_clock()
6: send message request = { } to master
7: end command
8:
9: event reply1 received from master do
10: t4 = read_system_clock()
11: wait until SEP data covering t1 and t4 are available
12: run the SEP signal processing pipeline in Section 5.2
13: compute ϕ1 and ϕ4
14: end event
15:
16: event reply2 received from master do
17: compute θq and θp using Eqs. (1) and (2), respectively
18: RTT = (t4 − t1) − (reply2.t3 − reply2.t2)
19: solve Eq. (7), ∆′ denotes the set of all possible solutions for δ
20: if k == 1: ∆ = ∆′; else: ∆ = ∆ ∩ ∆′

21: if ∆ has only one element δ : use δ to adjust clock;
22: else: start_sync_session() // start a new synchronization session
23: end event

Algorithm 2Master’s pseudocode for a synchronization process
1: event request received from slave do
2: t2 = read_system_clock()
3: ... // execute other compute tasks
4: t3 = read_system_clock()
5: send message reply1 = { } to slave
6: wait until SEP data covering t2 and t3 are available
7: run the SEP signal processing pipeline in Section 5.2
8: compute ϕ2 and ϕ3
9: send message reply2 = {t2, t3, ϕ2, ϕ3} to slave
10: end event

5.4.3 Convergence speed. We run a set of numeric experiments
to understand the convergence speed of the IAS. We use the number
of synchronization sessions until convergence to characterize the
convergence speed, which is denoted by K in the rest of this paper.
We fix imin and jmin to be zero. For a certain setting ⟨imax, jmax⟩, we
conduct 100,000 synchronization processes to assess the distribution
ofK . For each synchronization session of a synchronization process,
we randomly and uniformly generate the ground-truth i and j, as
well as θq and θp within their respective ranges, i.e., i ∈ [0, imax],
j ∈ [0, jmax], and θq ,θp ∈ [0,T). Then, we simulate the integer
ambiguity solving program presented in Section 5.4.2 to measure

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 910

1
3
5
7
9

A
ve

ra
ge

K

imax

jmax

A
ve

ra
ge

K

(a) Average K vs. imax and jmax .

0
20
40
60
80

100
120
140
160

2 4 6 8 10

K
’s

di
st

rib
ut

io
n

imax and jmax

no prior knowledge
with prior knowledge

(b) Box plot for K (box represents the 1st and 3rd quartiles; whiskers represent
minimum and maximum values.)

Figure 19: Convergence speed of IAS.

the K for each synchronization process. In practice, the i , j, θq and
θp may not follow the uniform distributions. But the numeric results
here help us understand the convergence speed. In Section 7.2, we
will evaluate the convergence speed in real-world settings.

In Fig. 19(a), each grid point is the average of all K values in
the 100,000 synchronization processes under a certain ⟨imax, jmax⟩
setting. Fig. 19(b) shows the box plot for K under each setting
where imax = jmax. We note that all simulated synchronization
processes converge. From the two figures, even if imax = jmax = 10
(which means that the one-way communication delays are up to
200ms forT = 20ms), the average K is nine only. Although the K ’s
distribution has a long tail as shown in Fig. 19(b), 75% of theK values
are below 11. This result is consistent with our real experiment
results in Table 2 of Section 7.2, where most K values are two only
and the largest K is 12.

5.4.4 Discussions. First, we discuss how to address non-zero and
time-varying ϵ . From the analysis in Eq. (7) that is based on ϵ = 0,
the difference between two δ solutions is multiple of T . This can
also be seen from Eqs. (8) and (9). In practice, ϵ can be non-zero and
time-varying. It will be a major part of the δ estimation error. From
Fig. 8(b), the |ϵ | is at most 6ms. Thus, the resulted variation to the
δ solutions will be less than a half and one third ofT , in the regions
served by 60Hz and 50Hz power grids, respectively. Therefore, we
can still correctly identify the correspondence among the δ elements
in the set intersection operation in Line 20 of the slave’s program in
Algorithm 1. Specifically, if two δ elements have a difference smaller
than T /2, they should be considered the same element in the set
intersection operation; otherwise, they are different elements. For
this correspondence identification to be correct, the ϵ needs to be
smaller than T /2. After convergence, the final δ can be computed
as the average of the δ elements that are considered the same. We
have incorporated this in our implementation of TouchSync.

Clock Synchronization for Wearables Using SEP Induced by Powerline Radiation SenSys ’17, November 6–8, 2017, Delft, Netherlands

Second, we discuss how the use of the prior knowledge (i.e., imin,
imax, jmin, and jmax) impacts on the integer ambiguity solving. With
the prior knowledge, we may shrink the search range for i and j to
speed up the convergence of the IAS. The prior knowledge can be
based on the statistical information obtained in offline experiments.
For instance, a group of the box plots are the results for the IAS
with the prior knowledge of imax and jmax. The IAS can search the
i and j within the ranges of [0, imax] and [0, jmax], respectively. The
other group of results are for the IAS without the prior knowledge.
Thus, the IAS has to search within the range of

[
0, RTT−θq−θpT

]
for both i and j. We can see that, if no prior knowledge is used,
the K increases. But the IAS still always converges. Once the IAS
converges, the synchronization error of TouchSync mainly depends
on the time displacement ϵ .

6 IMPLEMENTATION OF TOUCHSYNC
6.1 touchsync.h Header and Implementations
Designed as an application-layer clock synchronization approach,
TouchSync can be implemented as an app or part of an app, purely
based on the standard wearable OS calls to sample the SEP signal,
exchange networkmessages, and timestamp them in the application
layer. To simplify the adoption of TouchSync by application devel-
opers, we have implemented TouchSync’s platform-independent
tasks (i.e., SEP signal processing and IAS) in ANSI C and provide
them in a touchsync.h header file [31]. As most embedded and
IoT platforms are C compatible, our C implementation is applicable
to a wide range of wearables. Wrappers for other programming lan-
guages can also be implemented. The header file defines a circular
buffer to store the SEP signal. It provides four functions to be used
by the application developer:
• buf_add() pushes a new SEP sample to the circular buffer;
• on_receive_reply1() implements Line 11-13 of Algorithm 1;
• on_receive_reply2() implements Line 17-20 of Algorithm 1;
• send_reply1_done() implements Line 6-8 of Algorithm 2.

Other tasks of TouchSync, i.e., sensor sampling, synchronization
message exchange and timestamping, are platform dependent. We
leave them for the application developer to implement. As these
tasks are basics for embedded programming, by using the four
functions provided by touchsync.h, application developers with-
out much knowledge in signal processing can readily implement
TouchSync on different platforms. Our own Arduino and TinyOS
programs that implement TouchSync’s work flow have about 50
and 150 lines of code only, respectively.

6.2 Benchmarking
To understand the overhead of TouchSync, we deploy our TinyOS
and Arduino implementations to Zolertia’s Z1 motes [13] and Flo-
ras, respectively. The Z1 mote is equipped with an MSP430 MCU
(1MHz, 8KB RAM) and a CC2420 802.15.4 radio. Both implementa-
tions sample SEP at 333Hz. On Z1, we configure the length of the
circular buffer defined in touchsync.h to be 512. Thus, this circular
buffer can store 1.5 seconds of SEP data. This is sufficient, because
the time periods [t2, t3] and [t1, t4] that should be covered by the
SEP signal segments to be retrieved from the circular buffer and

Table 1: Storage and compute overhead of TouchSync.

Platform Memory use (KB) Processing time (ms)
ROM RAM BPF/MRF ZCD PLL IAS

Z1 10 5 364 9 48 1
Flora 17 1.9* 1.3 3 15 0.8

* Estimated based on buffer lengths.

processed by the master and slave are generally a few ms and be-
low 100ms, respectively. On Flora, we configure the circular buffer
length to be 400 and redefine its data type such that TouchSync
can fit into Flora’s limited RAM space of 2.5KB. Table 1 tabulates
the memory usage of TouchSync and the computation time of dif-
ferent processing tasks. On Z1, a total of 421ms processing time is
needed for a synchronization session. The BPF uses a major portion
of the processing time. Flora cannot adopt BPF because of RAM
shortage. It uses MRF instead, which consumes much less RAM and
processing time.

Z1 and Flora are two representative resource-constrained plat-
forms. The successful implementations of TouchSync on them sug-
gest that TouchSync can also be readily implemented on other more
resourceful platforms.

7 PERFORMANCE EVALUATION
We conduct extensive experiments to evaluate the performance of
TouchSync in various real environments. Each experiment uses two
Flora nodes, which act as the TouchSync slave and master, respec-
tively. As Flora does not support BLE master mode, the two Floras
cannot communicate directly. Thus, we use a RPi that operates as a
BLE master to relay the data packets between the two Floras. This
setting is consistent with most body-area networks with a smart-
phone as the hub. If the hub can also sample powerline radiation
or SEP1, each wearable can also synchronize with the hub directly
using TouchSync. We use the approach discussed in Section 4.1 to
obtain the ground truth clock of each Flora. The details and the
results of our experiments are presented below.

7.1 Signal Strength and Wearing Position
As the intensity of powerline radiation attenuates with distance,
SEPs will have varying signal strength. Thus, we evaluate the im-
pact of the SEP signal strength on the performance of the signal
processing pipeline in Section 5.1. We measure the signal strength
as follows. For a full-scale sinusoid signal with a peak-to-peak
amplitude of one (normalized using ADC’s reference voltage), its
standard deviation is 0.5/

√
2 = 0.354. The signal strength of a

normalized sinusoid with a standard deviation of σ is defined as
σ/0.354. Thus, a 100% signal strength suggests a full-scale signal for
the ADC. For this experiment, we use a Flora to record a SEP signal.
The strength of this signal is 34%. We feed the signal processing
pipeline with this signal to generate a series of baseline ZCs. Then,
we scale down the amplitude of this signal, re-quantize it, and pro-
cess it using the pipeline to generate another series of ZCs. We use
the mean absolute error (MAE) of these ZCs with respect to the
1Our preliminary experiments show that a smartphone can capture the powerline
radiation by sampling its built-in microphone and then applying a BPF on the collected
audio data. Thus, it is possible to implement TouchSync on smartphones.

SenSys ’17, November 6–8, 2017, Delft, Netherlands Zhenyu Yan, Yang Li, Rui Tan, and Jun Huang

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14

0 5 10 15 20 25 30 35M
ea

n
ab

so
lu

te
er

r(
m

s)

Signal strength (%)

Figure 20: Impact of signal
strength.

0
0.1
0.2
0.3
0.4
0.5
0.6

wrist ankle head waist

|ǫ
|(

m
s)

Figure 21: Impact of wearing
position.

=

L1

L2

L3

L4

L5

L6

L9

Figure 22: Laboratory floor plan with test points marked.

baseline ZCs as the error metric. Fig. 20 shows the MAE versus the
strength of the scaled down signal. When we scale down the signal
by 60 times, yielding a signal strength of 0.6%, the ZCs’ MAE is
0.14ms only. This suggests that TouchSync can still detect the ZCs
accurately even when the SEP signal is rather weak. TouchSync can
inform the wearer if the signal is too weak to detect ZCs reliably.

We evaluate the impact of the wearing position on the synchro-
nism of SEP signals. A researcher wears a Flora on his left wrist.
Then, he conducts four tests by fixing the second Flora to his right
wrist, right ankle, forehead, and waist, respectively. Each test lasts
for two minutes. Fig. 21 shows the error bars (5%-95% confidence
interval) for the absolute time displacement |ϵ | between the two
Floras in these four tests. The average |ϵ | values in the four tests are
close. This suggests that the wearing positions have little impact on
the synchronism of SEP signals and the synchronization accuracy
of TouchSync.

7.2 Evaluation in Various Environments
We evaluate the SEP signal strength and the accuracy of TouchSync
in various indoor environments.

7.2.1 Laboratory. We conduct experiments in a computer sci-
ence laboratory with about 100 seats and various office facilities
(lights, computers, printers, projectors, meeting rooms, etc). Fig. 22
shows the laboratory’s floor plan. We arbitrarily select nine test
points, marked by “Lx” in Fig. 22. A researcher carries the Floras to

Table 2: Signal strength and TouchSync accuracy.

Test Without skin contact With skin contact
point Signal K error Signal K error

strength (ms) strength (ms)

La
bo

ra
to
ry

L1 2.6% 3 -0.2 84.7% 2 -0.7
L2 3.2% 2 0.3 31.5% 3 -0.7
L3 2.3% 2 -2.5 26.1% 2 0.5
L4 4.0% 1 -0.6 33.7% 2 0.0
L5 0.8% 15 1.1 3.3% 2 -0.2
L6 5.7% 10 -0.4 39.5% 10 -0.0
L7 2.3% n.a. n.a. 3.0% 2 -0.9
L8 4.6% 2 -1.5 8.3% 2 0.6
L9 2.6% 1 -1.2 67.4% 2 -0.9

H
om

e

H1 4.2% 2 -1.1 8.9% 2 -0.8
H2 3.4% 1 -0.9 14.5% 2 -1.0
H3 4.6% 1 -1.3 44.9% 2 0.2
H4 7.8% n.a. n.a. 39.2% 2 0.3
H5 3.8% 1 -1.6 3.9% 1 -2.8
H6 3.9% 4 -4.4 9.9% 2 -2.3
H7 5.0% 2 -1.9 6.8% 1 -2.9
H8 8.2% 1 -11.5 54.7% 4 -1.3
H9 2.9% 1 -2.4 9.1% 1 -1.3

O
ffi
ce

O1 4.0% n.a. n.a. 3.3% 4 0.4
O2 5.6% 1 -7.9 2.9% 2 -1.6
O3 1.7% 1 -0.4 3.9% 2 -0.3
O4 5.4% 3 -2.5 5.8% 2 -0.8
O5 4.8% 6 -6.2 5.6% 12 -0.2

C
or
ri
do

r

C1 3.6% 12 0.1 4.4% 11 0.7
C2 6.2% 2 0.6 44.2% 2 -1.0
C3 5.8% 1 -7.6 4.4% 1 -1.1
C4 1.9% 1 -6.0 2.2% 1 -2.8
C5 1.9% 2 -3.7 5.8% 1 -1.0

* n.a. means that TouchSync cannot converge because of large ϵ .

each test point and conducts two experiments. In the first exper-
iment, the Floras have no physical contact with human body; in
the second experiment, the researcher wears the two Floras. Thus,
the experiment evaluates the same-wearer scenario. The example
applications mentioned in Section 1, i.e., wireless earbuds, motion
analysis, and muscle activation monitoring, belong to this scenario.
Each synchronization session takes about 150ms. A synchroniza-
tion process completes once the IAS converges.

The first part of Table 2 shows the SEP’s signal strength, the
number of synchronization sessions until convergence (K), and
the clock offset estimation error at each test point. Without skin
contact, the signal strength is a few percent only. But TouchSync
can still achieve a 3ms accuracy. At L7, TouchSync cannot con-
verge because of large and varying ϵ . The skin contact significantly
increases the signal strength. Moreover, TouchSync converges after
two synchronization sessions in most cases. For K = 2, a synchro-
nization process takes less than one second. The absolute clock
offset estimation errors are below 1ms, lower than those without
skin contact. However, without skin contact, the accuracy does not
substantially degrade. This suggests that, TouchSync is resilient to
the loss of skin contact due to say loose wearing.

Clock Synchronization for Wearables Using SEP Induced by Powerline Radiation SenSys ’17, November 6–8, 2017, Delft, Netherlands

Figure 23: Home floor plan with test points marked.

7.2.2 Home. We conduct experiments in a 104m2 three-bedroom
home with typical home furniture and appliances. Fig. 23 shows
the home’s floor plan. We arbitrarily select nine test points, marked
by “Hx” in Fig. 23. The second part of Table 2 shows the results.
Without skin contact, the signal strength results are similar to those
obtained in the laboratory. With skin contact, the signal strength
increases and the absolute clock offset estimation errors are below
3ms.

7.2.3 Office. The third part of Table 2 shows the results obtained
at five test points in a 15m2 office. At test points O1 and O2, the
signal strength with skin contact is slightly lower than that without
skin contact. This is possible as the two tests were conducted during
different time periods and the powerline radiation may vary over
time due to changed electric currents.With skin contact, TouchSync
gives sub-ms accuracy except at O2.

7.2.4 Corridor. We select five test points with equal spacing in
a 200m corridor of a campus building. The fourth part of Table 2
gives the results. With skin contact, TouchSync yields absolute
clock offset estimation errors of about 1ms except at C4. The errors
with skin contact are lower than those without skin contact.

7.2.5 Discussions. In summary, with skin contact, TouchSync
gives sub-ms clock offset estimation errors at 20 test points out of
totally 28 test points in Table 2. All errors are below 3ms.

From Table 2, at 3 out of 28 test points, the test without skin
contact gives higher signal strength than that with skin contact.
This is because the two tests are conducted sequentially and the
EMR may change over time. Moreover, the signal strength exhibits
significant variation at different locations. This is because the EMR
decays with the distance from the powerline. Nevertheless, the
above results show the pervasive availability of SEP in indoor envi-
ronments. In our experiments presented above, we do not observe
interference from electrical appliances that leads to wrong clock
synchronization. In our future work, we will conduct extensive in-
vestigation on the impact of the possible electromagnetic radiation
from various electrical appliances on TouchSync.

We now discuss the energy consumption of TouchSync. Com-
pared with NTP, TouchSync’s SEP sampling and extra synchroniza-
tion sessions incur additional energy consumption. SEP sampling

0

5

10

15

20

0 55 110

O
cc

ur
re

nc
e

One-way delay (ms)

slave to master
master to slave

Figure 24: One-way delays
over a ngrok tunnel.

-4
-2
0
2
4
6
8

10

1 2 3 4 5 6 7 8

ǫ
an

d
δ

(m
s)

Experiment run

ǫ
δ

Figure 25: Accuracy of
TouchSync-over-Internet.

is performed during the clock synchronization process only. The
ADC’s power consumption is much lower than the radio’s. For in-
stance, the ADC embedded in the TI MSP430G2x53 MCU consumes
0.6mA only, much lower than the power consumption of ZigBee
and Bluetooth radios which is typically tens of mA. Thus, the ra-
dio’s energy consumption during the IAS’s convergence process
dominates TouchSync’s energy consumption. From Table 2, with
skin contact, the IAS converges within 2.9 synchronization sessions
on average. Thus, TouchSync’s energy consumption is estimated
as about three times of NTP’s.

7.3 TouchSync-over-Internet
Tightly synchronizing wearables over long physical distances is
often desirable. For instance, in distributed virtual reality appli-
cations, tight clock synchronization among participating sensing
and rendering devices that may be geographically distributed is
essential [6, 9]. Although the synchronization can be performed
in a hop-by-hop manner (e.g., wearables↔ smartphone ↔ cloud),
errors accumulate over hops. In particular, tightly synchronizing a
smartphone to global time has been a real and challenging problem
– tests showed that the synchronization through LTE and Wi-Fi
experiences hundreds of ms jitters [18]. In contrast, TouchSync can
perform end-to-end synchronizations for wearables distributed in a
geographic region served by the same power grid. The basis is that,
the 50/60 Hz power grid voltage, which generates the powerline
radiation, is highly synchronous across the whole power grid [30].
TouchSync can also synchronize wearables directly with a cloud
server in the same region. The smartphone merely relays the mes-
sages exchanged among the wearables and the cloud server if the
wearables cannot directly access Internet. The cloud server can use
a sensor directly plugged in to a power outlet to capture the power
grid voltage. Owing to the Internet connectivity, the end-to-end
synchronization scheme greatly simplifies the system design and
implementation.

We conduct a proof-of-concept experiment of TouchSync-over-
Internet as follows. Two researchers carry a Flora-RPi setup each
to two buildings that are about 10 km apart. The RPi is attached
with an Adafruit GPS receiver to obtain ground-truth coordinated
universal time (UTC) with µs accuracy. The two nodes, one as
TouchSync master and the other as TouchSync slave, communicate
through a tunnel established by ngrok 1.7, an open-source reverse
proxy often adopted for creating IoT networks. Fig. 24 shows the
distributions of the two one-way delays over the ngrok tunnel. We
can see that the ngrok exhibits greater dynamics than the BLE link
(cf. Fig. 4(a)). We evaluate TouchSync-over-Internet for eight times

SenSys ’17, November 6–8, 2017, Delft, Netherlands Zhenyu Yan, Yang Li, Rui Tan, and Jun Huang

during a day. Fig. 25 shows the box plots of the time displacements
(i.e., ϵ) between the SEPs captured by the two nodes. We can see
that ϵ varies from −2ms to 9ms during the day. From the building
managements, the two rooms where the master and slave nodes are
located draw electricity from the R and Y phases of the power grid,
respectively. There is a phase difference of 20/3 = 6.7ms between
these two phases. Moreover, from power engineering, the difference
between the power grid voltage phases at different geographic
locations is non-zero and time-varying. These factors lead to the
non-zero and time-varying ϵ in Fig. 25. The dotted line in Fig. 25
shows the synchronization errors of TouchSync-over-Internet (i.e.,
δ) in various experiment runs. They are within the range of ϵ , since
ϵ is the major source of TouchSync’s synchronization error. The
largest δ is 7ms. The integer ambiguity solver converges within 4
to 13 synchronization sessions.

8 CONCLUSION
TouchSync synchronizes the clocks of wearables by exploiting the
wearers’ skin electric potentials induced by powerline radiation.
Different from existing WSN clock synchronization approaches
that find difficulties in being applied on diverse IoT platforms due
to their need of hardware-level packet timestamping or non-trivial
extra hardware, TouchSync can be readily implemented as an app
based on standard wearable OS calls. Extensive evaluation shows
TouchSync’s synchronization errors of below 3ms and 7ms on the
same wearer and between two wearers 10 km apart, respectively.

ACKNOWLEDGMENTS
The authors wish to thank our shepherd Dr. Lu Su and the anony-
mous reviewers for providing valuable feedback on this work. This
research was funded by a Start-up Grant at Nanyang Technological
University.

REFERENCES
[1] Marie Chan, Daniel EstèVe, Jean-Yves Fourniols, Christophe Escriba, and Eric

Campo. 2012. Smart Wearable Systems: Current Status and Future Challenges.
Artificial Intelligence in Medicine 56, 3 (Nov. 2012), 137–156.

[2] Yin Chen, Qiang Wang, Marcus Chang, and Andreas Terzis. 2011. Ultra-low
power time synchronization using passive radio receivers. In Proceedings of
the 10th ACM/IEEE International Conference on Information Processing in Sensor
Networks (IPSN). IEEE, Chicago, IL, USA, 235–245.

[3] Mihail C. Dinescu, Joseph Mazza, Adam Kujanski, Brian Gaza, and Michael Sagan.
2015. Synchronizing wireless earphones. (April 7 2015). https://www.google.
com/patents/US9002044 US Patent 9,002,044.

[4] Jeremy Elson, Lewis Girod, and Deborah Estrin. 2002. Fine-grained Network
Time Synchronization Using Reference Broadcasts. SIGOPS Operating Systems
Review 36, SI (Dec. 2002), 147–163.

[5] Raspberry Pi Foundation. 2017. Raspberry Pi 3 Model B. (2017). https://www.
raspberrypi.org/products/raspberry-pi-3-model-b/.

[6] Martin Friedmann, Thad Starner, and Alex Pentland. 1992. Synchronization in
Virtual Realities. Presence: Teleoperators and Virtual Environments 1, 1 (Jan. 1992),
139–144.

[7] Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava. 2003. Timing-sync
Protocol for Sensor Networks. In Proceedings of the 1st International Conference
on Embedded Networked Sensor Systems (SenSys). ACM, Los Angeles, California,
USA, 138–149.

[8] Adam Geboff, Sriram Hariharan, Joakim Linde, Li-Quan Tan, and Shahrooz
Shahparnia. 2015. Device synchronization over bluetooth. (April 2 2015). https:
//www.google.com/patents/US20150092642 US Patent App. 14/496,314.

[9] Felix G. Hamza-Lup and Jannick P. Rolland. 2004. Scene Synchronization for Real-
time Interaction in Distributed Mixed Reality and Virtual Reality Environments.
Presence: Teleoperators and Virtual Environments 13, 3 (July 2004), 315–327.

[10] Tian Hao, Ruogu Zhou, Guoliang Xing, and Matt Mutka. 2011. WizSync: Exploit-
ing Wi-Fi Infrastructure for Clock Synchronization in Wireless Sensor Networks.

In Proceedings of the 32nd Real-Time Systems Symposium (RTSS). IEEE, Vienna,
Austria, 149–158.

[11] IDC. 2016. IDC Forecasts Wearables Shipments to Reach 213.6 Million Units
Worldwide in 2020. (2016). http://www.idc.com/getdoc.jsp?containerId=
prUS41530816.

[12] IEEE. 2008. IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems. IEEE Std 1588-2008 (Revision of
IEEE Std 1588-2002) 1, 1 (July 2008), 1–300. https://doi.org/10.1109/IEEESTD.2008.
4579760

[13] Zolertia Inc. 2017. Z1 mote. (2017). http://zolertia.io/z1.
[14] Adafruit Industries. 2017. Adafruit FLORA. (2017). https://www.adafruit.com/

category/92.
[15] Adafruit Industries. 2017. Adafruit nRF51 BLE Library. (2017). https://learn.

adafruit.com/adafruit-feather-32u4-bluefruit-le/installing-ble-library.
[16] Adafruit Industries. 2017. Adafruit Python BluefruitLE. (2017). https://github.

com/adafruit/Adafruit_Python_BluefruitLE.
[17] Neil E. Klepeis, William C. Nelson, Wayne R. Ott, John P. Robinson, Andy M.

Tsang, Paul Switzer, Joseph V. Behar, Stephen C. Hern, andWilliamH. Engelmann.
2001. The National Human Activity Pattern Survey (NHAPS): a resource for
assessing exposure to environmental pollutants. Journal of Exposure Analysis
and Environmental Epidemiology 11, 3 (2001), 231–252.

[18] Patrick Lazik, Niranjini Rajagopal, Bruno Sinopoli, and Anthony Rowe. 2015.
Ultrasonic time synchronization and ranging on smartphones. In Proceedings
of 21st IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE, Seattle, WA, USA, 108–118.

[19] Liqun Li, Guoliang Xing, Limin Sun, Wei Huangfu, Ruogu Zhou, and Hongsong
Zhu. 2011. Exploiting FM Radio Data System for Adaptive Clock Calibration in
Sensor Networks. In Proceedings of the 9th International Conference on Mobile
Systems, Applications, and Services (MobiSys). ACM, Bethesda, Maryland, USA,
169–182.

[20] Yang Li, Rui Tan, and David K. Y. Yau. 2017. Natural Timestamping Using Power-
line Electromagnetic Radiation. In Proceedings of the 16th ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN). ACM, Pittsburgh,
Pennsylvania, 55–66.

[21] Zhenjiang Li, Wenwei Chen, Cheng Li, Mo Li, Xiang-Yang Li, and Yunhao Liu.
2012. FLIGHT: Clock Calibration Using Fluorescent Lighting. In Proceedings of
the 18th Annual International Conference on Mobile Computing and Networking
(MobiCom). ACM, Istanbul, Turkey, 329–340.

[22] Konrad Lorincz, Bor-rong Chen, Geoffrey Werner Challen, Atanu Roy Chowd-
hury, Shyamal Patel, Paolo Bonato, and Matt Welsh. 2009. Mercury: A Wearable
Sensor Network Platform for High-fidelity Motion Analysis. In Proceedings of
the 7th ACM Conference on Embedded Networked Sensor Systems (SenSys). ACM,
Berkeley, California, 183–196.

[23] Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. 2004. The
Flooding Time Synchronization Protocol. In Proceedings of the 2nd International
Conference on Embedded Networked Sensor Systems (SenSys). ACM, Baltimore,
MD, USA, 39–49.

[24] Frank Mokaya, Roland Lucas, Hae Young Noh, and Pei Zhang. 2015. MyoVibe:
Vibration Based Wearable Muscle Activation Detection in High Mobility Exer-
cises. In Proceedings of the 2015 ACM International Joint Conference on Pervasive
and Ubiquitous Computing (UbiComp). ACM, Osaka, Japan, 27–38.

[25] Frank Mokaya, Roland Lucas, Hae Young Noh, and Pei Zhang. 2016. Burnout:
A Wearable System for Unobtrusive Skeletal Muscle Fatigue Estimation. In Pro-
ceedings of the 15th International Conference on Information Processing in Sensor
Networks (IPSN). IEEE, Vienna, Austria, 1–12.

[26] NTP Project. 2017. NTP: The Network Time Protocol. (2017). http://www.ntp.
org/.

[27] Dima Rabadi, Rui Tan, David K.Y. Yau, and Sreejaya Viswanathan. 2017. Tam-
ing Asymmetric Network Delays for Clock Synchronization Using Power Grid
Voltage. In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security (ASIACCS). ACM, Abu Dhabi, United Arab Emirates,
874–886.

[28] Anthony Rowe, Vikram Gupta, and Ragunathan (Raj) Rajkumar. 2009. Low-
power Clock Synchronization Using Electromagnetic Energy Radiating from AC
Power Lines. In Proceedings of the 7th ACM Conference on Embedded Networked
Sensor Systems (SenSys). ACM, Berkeley, California, 211–224.

[29] Symmetricom, Inc. 2011. Symmetricom annouces general avail-
ability of industry’s first commercially-available chip scale atom-
tic clock. (2011). http://www.businesswire.com/news/home/
20110118005182/en/Symmetricom-Announces-General-Availability-Industry’
s-Commercially-Available-Chip.

[30] Sreejaya Viswanathan, Rui Tan, and David K.Y. Yau. 2016. Exploiting Power Grid
for Accurate and Secure Clock Synchronization in Industrial IoT. In Proceedings
of the 37th IEEE Real-Time Systems Symposium (RTSS). IEEE, Porto, Portugal,
146–156.

[31] Zhenyu Yan, Yang Li, Rui Tan, and Huang Jun. 2017. TouchSync implementation.
(2017). https://github.com/yanmarvin/touchsync.

https://www.google.com/patents/US9002044
https://www.google.com/patents/US9002044
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.google.com/patents/US20150092642
https://www.google.com/patents/US20150092642
http://www.idc.com/getdoc.jsp?containerId=prUS41530816
http://www.idc.com/getdoc.jsp?containerId=prUS41530816
https://doi.org/10.1109/IEEESTD.2008.4579760
https://doi.org/10.1109/IEEESTD.2008.4579760
http://zolertia.io/z1
https://www.adafruit.com/category/92
https://www.adafruit.com/category/92
https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le/installing-ble-library
https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le/installing-ble-library
https://github.com/adafruit/Adafruit_Python_BluefruitLE
https://github.com/adafruit/Adafruit_Python_BluefruitLE
http://www.ntp.org/
http://www.ntp.org/
http://www.businesswire.com/news/home/20110118005182/en/Symmetricom-Announces-General-Availability-Industry's-Commercially-Available-Chip
http://www.businesswire.com/news/home/20110118005182/en/Symmetricom-Announces-General-Availability-Industry's-Commercially-Available-Chip
http://www.businesswire.com/news/home/20110118005182/en/Symmetricom-Announces-General-Availability-Industry's-Commercially-Available-Chip
https://github.com/yanmarvin/touchsync

	Abstract
	1 Introduction
	2 Related Work
	3 Background and Objective
	3.1 NTP Principle and Packet Timestamping
	3.2 Objective

	4 Measurement Study
	4.1 Measurement Setup
	4.2 Performance of NTP over BLE Connection
	4.3 Skin Electric Potential (SEP)

	5 Design of TouchSync
	5.1 TouchSync Workflow
	5.2 SEP Signal Processing
	5.3 NTP Assisted with Dirac Combs
	5.4 Integer Ambiguity Solver (IAS)

	6 Implementation of TouchSync
	6.1 touchsync.h Header and Implementations
	6.2 Benchmarking

	7 Performance Evaluation
	7.1 Signal Strength and Wearing Position
	7.2 Evaluation in Various Environments
	7.3 TouchSync-over-Internet

	8 Conclusion
	Acknowledgments
	References

