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APPENDIX A

TARGET LOCALIZATION PERFORMANCE

In each detection period, a sensor participates in the
target localization if its reading exceeds a threshold ζ. Let
(Xi, Yi) denote the coordinates of sensor i and suppose
there are m sensors participating in the localization.
The target is localized at the geometric center of these
sensors, i.e., X̄ = 1

m

∑m
i=1 Xi and Ȳ = 1

m

∑m
i=1 Yi. Let

(di, θi) denote the coordinates of sensor i in the polar
coordinate plane with origin at the target. Due to the
Poisson process, θi is uniformly distributed in (0, 2π). It
is easy to verify that (X̄, Ȳ ) are the unbiased estimator of
the target position. Hence, the mean square error (MSE)
of X̄ is MSE(X̄) = Var[X̄] = 1

mVar[Xi] = 1
2mE[d2

i ].
We now prove that E[d2

i ] is upper-bounded. As yi =

S · w(di) + ni ≥ ζ, di ≤ w−1
(

ζ−ni

S

)

. Hence, E[d2
i ] ≤

E

[

(

w−1
(

ζ−ni

S

))2
]

. As a result, MSE(X̄) = O
(

1
m

)

. Note

that m increases statistically with the network density.

APPENDIX B

DERIVING THE MEAN AND VARIANCE OF si

We first prove that {si|i ∈ Fj} are independent and
identically distributed (i.i.d.) for any target position P .
As sensors are deployed uniformly and independently,
{di|i ∈ Fj} are i.i.d. for any P , where di is the distance
between sensor i and point P . Therefore, {si|i ∈ Fj} are
i.i.d. for any P , as si is a function of di, i.e., si = S ·w(di).

We then derive the mean and variance of si, i.e., µs

and σ2
s . Let (xp, yp) and (xi, yi) denote the coordinates

of point P and sensor i, respectively. The posterior prob-
ability density function (PDF) of (xi, yi) is f(xi, yi) = 1

πR2

where (xi − xp)
2 + (yi − yp)

2 ≤ R2. Hence, the posterior
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cumulative distribution function (CDF) of di is given by

F (di) =
∫ 2π

0 dθ
∫ di

0
1

πR2 · xdx =
d2

i

R2 , where di ∈ [0, R].
Therefore,

µs =

∫ R

0

Sw(di)dF (di) =
2S

R2

∫ R

0

w(di)diddi,

σ2
s =

∫ R

0

S2w2(di)dF (di)−µ2
s =

2S2

R2

∫ R

0

w2(di)diddi−µ2
s.

By letting µ0 = 2
R2

∫ R

0
w(di)diddi and σ2

0 =
2

R2

∫ R

0 w2(di)diddi−µ2
0, we have µs =Sµ0 and σ2

s = S2σ2
0 .

APPENDIX C

THE PROOF OF THEOREM 1

Proof: Denote Aj as the event that the target is not
detected in the jth unit detection. Thus, the probability of
Aj is P(Aj) = 1− PDj . Suppose the target is detected in
the J th unit detection. Although the intrusion detection is
a series of infinite Bernoulli trials, J does not follow the
geometric distribution because the success probability of
each Bernoulli trial (i.e., PDj) is a random variable (RV)
rather than a constant. The mean of J is give by

E[J ] = 1 · P(Ā1) +

∞
∑

j=2

j · P
(

j−1
⋂

k=1

Ak

⋂

Āj

)

(11)

= 1 − P(A1) +

∞
∑

j=2

j ·
(

P

(

j−1
⋂

k=1

Ak

)

− P

(

j
⋂

k=1

Ak

))

= 1 +

∞
∑

j=1

P

(

j
⋂

k=1

Ak

)

(12)

= 1 +

∞
∑

j=1

j
∏

k=1

P(Ak) (13)

= 1 +

∞
∑

j=1

j
∏

k=1

(1 − PDk). (14)

Note that the
⋂j−1

k=1 Ak

⋂

Āj in (11) represents the event
that the target is not detected from the first to the (j−1)th

unit detection but detected in the jth unit detection.
As the measurements in different sampling intervals
are mutually independent, Aj : j ≥ 1 are mutually
independent. Hence, Eq. (13) follows. We now explain
the physical meaning of E[J ]. For a given randomly
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deployed network, if the target always appears at a
fixed location and travels a fixed trajectory, according
to (4), {PDj |j ≥ 1} are fixed values as {Nj|j ≥ 1} are
fixed. As each unit detection is probabilistic, the E[J ]
is the average delay of detecting the target with fixed
trajectory. For the target that appears at random location
and travels arbitrary trajectory, {PDj |j ≥ 1} are RVs as
{Nj|j ≥ 1} are RVs. Therefore, the average delay for
detecting the target with arbitrary trajectory, i.e., α-delay,
is given by τ = E[E[J ]], where E[E[J ]] is the average
of E[J ] taken over all possible target trajectories. As
discussed in Section 5.2, if fusion ranges do not overlap,
{Nj|j ≥ 1} are i.i.d. RVs. Hence, {PDj |j ≥ 1} are also
i.i.d. RVs. Therefore, τ = E[E[J ]] = 1 +

∑∞
j=1

∏j
k=1 E[1 −

PDk] = 1 +
∑∞

j=1(1 − E[PD])j = 1
E[PD] .

APPENDIX D

PROOF OF LEMMA 2

Proof: We abuse the symbols a bit to use N instead
of Nj and PD instead of PDj as we are not interested in
the index of unit detection. As ρ → ∞, N → ∞ almost
surely. In (4), the second item − µs√

σ2
s+σ2

·
√

N dominates

when ρ → ∞, since the first item σ√
σ2

s+σ2
· Q−1(α) is

a constant. Therefore, it’s safe to use PD = Q(γ
√

N) to
approximate (4), where γ = − µs√

σ2
s+σ2

. From Lemma 1

and Theorem 1, if the same α-delay of τ is achieved
under the two models, we have

E[PD] = 1 − e−ρdπr2

. (15)

We first prove the lower bound in (6). It is easy to ver-
ify that PD = Q(γ

√
N) is a concave function. According

to Jensen’s inequality, we have E[PD] ≤ Q(γ
√

E[N ]) =

Q(γ
√

ρfπR2). From (15), we have 1− e−ρdπr2

= E[PD] ≤
Q(γ

√

ρfπR2). Accordingly, ρd ≤ − 1
πr2 ln Φ(γ

√
πR ·√ρf ),

where Φ(x) = 1−Q(x). Hence, the density ratio satisfies

lim
τ→1+

ρf

ρd
≥ −πr2 · lim

ρf→∞

ρf

ln Φ(γ
√

πR · √ρf )
=

2

γ2R2
· r2.

In the above derivation, we use the equality
lim

x→∞

x
ln Φ(ϑ

√
x)

= − 2
ϑ2 , which is proved in Appendix H.

We now prove the upper bound in (6). As PD > 0,
according to Markov’s inequality, for any given number
c, we have

E[PD] ≥ c · P(PD ≥ c). (16)

We define ξ and c as follows:

ξ =
γ2 + 2 −

√

γ4 + 4γ2

2
, c = Q(γ

√

ξρfπR2). (17)

It’s easy to verify that ξ ∈ (0, 1). Therefore,

P(PD ≥c)=P

(

Q(γ
√

N)≥Q(γ
√

ξρfπR2)

)

=P(N ≥ξρfπR2).

As N ∼ Poi(ρfπR2) and the Poisson distribution
approaches the normal distribution N (ρfπR2, ρfπR2)
when ρf →∞, we have

P(PD≥c)=Q

(

ξρfπR2−ρfπR2

√

ρfπR2

)

=Q

(

(ξ−1)
√

ρfπR2

)

.

By replacing c and P(PD ≥ c) in (16), we have

E[PD] ≥ Q

(

γ
√

ξρfπR2

)

· Q
(

(ξ − 1)
√

ρfπR2

)

.

It is easy to verify that γ
√

ξ = ξ − 1. Thus the above
inequality reduces to E[PD] ≥ Q2(h

√
ρf), where h =

γ
√

ξπR. From (15), we have 1 − e−ρdπr2

= E[PD] ≥
Q2(h

√
ρf ). Accordingly, ρd ≥ − 1

πr2 · (ln(1 + Q(h
√

ρf )) +
ln Φ(h

√
ρf )). Hence, we have

lim
τ→1+

ρf

ρd
≤ −πr2 lim

ρf→∞

ρf

ln(1 + Q(h
√

ρf )) + ln Φ(h
√

ρf )

= −πr2 lim
ρf→∞

ρf

ln Φ(h
√

ρf )
=

2

ξγ2R2
· r2. (18)

Note that h = γ
√

ξπR < 0 and ln(1 + Q(h
√

ρf )) = ln 2
when ρf → ∞. We also use the equality lim

x→∞

x
ln Φ(ϑ

√
x)

=

− 2
ϑ2 that is proved in Appendix H to derive (18).

APPENDIX E

PROOF OF LEMMA 3

Proof: Let Aj denote the event that the target is not
detected in the jth unit detection and Cj denote the
corresponding target disc. Suppose the target is detected
in the J th unit detection. Recall (12), we have E[J ] =

1+
∑∞

j=1 P

(

⋂j
k=1 Ak

)

= 1+
∑∞

j=1

∏j
k=1 P

(

Ak

∣

∣

∣

⋂k−1
l=1 Al

)

.

The above derivation follows the definition of condi-
tional probability. Let C denote the common area be-
tween the kth target disc and the union of all the previous

target discs, i.e., C = Ck ∩ (
⋃k−1

l=1 Cl). Therefore, C ≥ 0
and

P

(

Ak

∣

∣

∣

∣

∣

k−1
⋂

l=1

Al

)

= P (there is no sensor in (Ck − C))

= e−ρ(πr2−C) ≥ e−ρπr2

.

Hence, τ = E[J ] ≥ 1 +
∑∞

j=1

(

e−ρπr2
)j

= 1

1−e−ρπr2 .

APPENDIX F

PROOF OF THEOREM 3

Proof: We first introduce the generalized Hölder’s
inequality [1]. For random variables Xi, i = 1, . . . , n, we

have E [
∏n

i=1 |Xi|] ≤ ∏n
i=1 (E [|Xi|pi ])

1/pi where pi > 1
and

∑n
i=1 p−1

i = 1. If Xi, i = 1, . . . , n, are identically
distributed, by setting pi = n, we have

E

[

n
∏

i=1

|Xi|
]

≤ E [|X |n] , (19)
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where X can be any Xi. In our problem, {Nj|j ≥ 1} are
identically distributed RVs due to the Poisson process.
As PDj is a function of Nj (given by (4)), {PDj |j ≥ 1} are
also identically distributed RVs. Recall (14), by applying
the inequality (19) , the α-delay of fusion-based detection
can be derived as

τ = E[E[J ]] = 1 +

∞
∑

j=1

E

[

j
∏

k=1

(1 − PDk)

]

≤ 1 +
∞
∑

j=1

E[(1 − PD)j ] = E

[

1

PD

]

.

APPENDIX G

PROOF OF THEOREM 4

Proof: According to Lemma 3 and Theorem 3, we
have

1/(1 − e−ρdπr2

) ≤ τ ≤ E [1/PD] . (20)

We first find a upper bound of E [1/PD]. As discussed
in Appendix D, it is safe to use PD = Q(γ

√
N) to ap-

proximate (4), where γ = − µs√
σ2

s+σ2
. As N ∼ Poi(ρfπR2)

and the Poisson distribution approaches to the normal
distribution N (ρfπR2, ρfπR2) when ρf → ∞, for any
given constant ξ ∈ (0, 1), we have P(N ≥ ξρfπR2) =

Q

(

ξρf πR2−ρf πR2√
ρf πR2

)

= Q
(

(ξ−1)
√

ρfπR2
)

. When ρf → ∞,

P(N ≥ ξρfπR2) → 1, i.e., N ≥ ξρfπR2 with high
probability (w.h.p.). Moreover, as 1/PD = 1/Q(γN) is a
decreasing function of N , E[1/PD] ≤ 1/Q(γ

√

ξρfπR2)
w.h.p.. Furthermore, according to (20), we have 1/(1 −
e−ρdπr2

) ≤ 1/Q(γ
√

ξρfπR2) w.h.p. when ρf →∞. After
manipulation, we have ρd ≥ − 1

πr2 ln
(

Φ(γ
√

ξπR
√

ρf )
)

,
where Φ(x) = 1 − Q(x). Hence, we have

lim
τ→1+

ρf

ρd
≤ −πr2 lim

ρf→∞

ρf

ln
(

Φ(γ
√

ξπR
√

ρf )
) =

2

γ2ξR2
· r2.

(21)
In the above derivation, we use the equality
lim

x→∞

x
ln Φ(ϑ

√
x)

= − 2
ϑ2 that is proved in Appendix H.

Hence, the upper bound of the density ratio is

limτ→1+ ρf/ρd = O(r2). As r2 = Θ

(

(

δ
Q−1(α)

)2/k
)

, we

have (8).

APPENDIX H

A LIMIT USED IN THE PROOFS OF LEMMA 2

AND THEOREM 4

Denote φ(x) and Φ(x) as the PDF and CDF the standard
normal distribution, respectively, i.e., φ(x) = 1√

2π
e−x2/2

and Φ(x) =
∫ x

−∞ φ(t)dt. Note that Φ′(x) = φ(x) and

φ′(x) = −xφ(x). For constant ϑ < 0, we have

lim
x→∞

x2

ln Φ(ϑx)

(*)
= lim

x→∞

2x
1

Φ(ϑx)φ(ϑx)ϑ
=

2

ϑ
lim

x→∞

Φ(ϑx)x

φ(ϑx)

(*)
=

2

ϑ
lim

x→∞

φ(ϑx)ϑx+Φ(ϑx)

−ϑ2xφ(ϑx)
= − 2

ϑ3

(

ϑ+ lim
x→∞

Φ(ϑx)

xφ(ϑx)

)

(*)
= − 2

ϑ3

(

ϑ + lim
x→∞

φ(ϑx)ϑ

φ(ϑx) − ϑ2x2φ(ϑx)

)

= − 2

ϑ3

(

ϑ + lim
x→∞

ϑ

1 − ϑ2x2

)

= − 2

ϑ2
,

where the steps marked by (*) follow from the l’Hôpital’s
rule. Note that for ϑ < 0, lim

x→∞
Φ(ϑx)x = 0 and

lim
x→∞

xφ(ϑx)=0.
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