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APPENDIX A
TARGET LOCALIZATION PERFORMANCE

In each detection period, a sensor participates in the
target localization if its reading exceeds a threshold (. Let
(X;,Y;) denote the coordinates of sensor i and suppose
there are m sensors participating in the localization.
The target is localized at the geometric center of these
sensors, ie, X = L3 X, and Y = L3 V. Let
(di,0;) denote the coordinates of sensor 7 in the polar
coordinate plane with origin at the target. Due to the
Poisson process, §; is uniformly distributed in (0, 27). It
is easy to verify that (X,Y’) are the unbiased estimator of
the target position. Hence, the mean square error (MSE)
of X is MSE(X) = Var[X] = LVar[X;] = ;-E[d7].
We now prove that E[d?] is upper-bounded. As y; =
S-w(d) +n; > ¢ di < wt (C_%) Hence, E[d?] <

E {(wl (C‘T"))Q] . Asaresult, MSE(X) = O (). Note

that m increases statistically with the network density.

APPENDIX B
DERIVING THE MEAN AND VARIANCE OF s;

We first prove that {s;|i € F;} are independent and
identically distributed (i.i.d.) for any target position P.
As sensors are deployed uniformly and independently,
{d;|i € F;} are i.id. for any P, where d; is the distance
between sensor i and point P. Therefore, {s;|i € F;} are
i.id. for any P, as s; is a function of d;, i.e., s; = S-w(d,;).

We then derive the mean and variance of s;, i.e., jis
and o2. Let (z,,y,) and (z;,y;) denote the coordinates
of point P and sensor i, respectively. The posterior prob-
ability density function (PDF) of (x;, y;) is f(z:,y:) =
where (z; — z,)% + (y; —

1
TR
yp)? < R%. Hence, the posterior
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cumulative distribution function (CDF) of d; is given by
F(d) = [77de [y L where d; € [0, R].
Therefore,

a2
cxdr = £,

R
s = / Sw(d;)dF(d;) = i{i / w(d; >diddiv

_ 2 2 2 2S2 . . 2
o2 st di)AF (di) =i = T [P (di)didd; — 3.

By letting po = fo )didd; and o =
fo ;)d;dd;—pg, we have us—Suo and 02 = S?03.
APPENDIX C

THE PROOF OF THEOREM 1

Proof: Denote A; as the event that the target is not
detected in the ;' umt detection. Thus, the probability of
Aj is P(A;) =1 — Pp;. Suppose the target is detected in
the J™ unit detection. Although the intrusion detection is
a series of infinite Bernoulli trials, J does not follow the
geometric distribution because the success probability of
each Bernoulli trial (i.e., Pp;) is a random variable (RV)
rather than a constant. The mean of J is give by

E[J] = 1-P(A1)+ij~P <Jﬂ AkﬂAj)

j=2 k=1

(11)

(12)
j=1
=1+ [P (13)
j=1 k=1
o J
:1—|—ZH(1—PDk)- (14)
j=1k=1

Note that the (JJ_} Ax (4, in (11) represents the event
that the target is not detected from the first to the (j—1)"
unit detection but detected in the j™ unit detection.
As the measurements in different sampling intervals
are mutually independent, A; : j > 1 are mutually
independent. Hence, Eq. (13) follows. We now explain
the physical meaning of E[J]. For a given randomly



deployed network, if the target always appears at a
fixed location and travels a fixed trajectory, according
to (4), {Ppj|j > 1} are fixed values as {N;|j > 1} are
fixed. As each unit detection is probabilistic, the E[J]
is the average delay of detecting the target with fixed
trajectory. For the target that appears at random location
and travels arbitrary trajectory, {Pp;|j > 1} are RVs as
{Nj|j > 1} are RVs. Therefore, the average delay for
detecting the target with arbitrary trajectory, i.e., a-delay,
is given by 7 = E[E[J]], where E[E[J]] is the average
of E[J] taken over all possible target trajectories. As
discussed in Section 5.2, if fusion ranges do not overlap,
{N;|lj > 1} are iid. RVs. Hence, {Pp;|j > 1} are also

i.i.d. RVs. Therefore, 7 = E[E[J]] = 1+ Y72, [[}_, E[1 -
Ppi] =1+ 372, (1 -E[Pp]) = ]E[IlDD] -
APPENDIX D

PROOF OF LEMMA 2

Proof: We abuse the symbols a bit to use N instead
of N; and Pp instead of Pp; as we are not interested in
the index of unit detection. As p — oo, N — oo almost
surely. In (4), the second item — -v/N dominates

2+ 2
when p — oo, since the first item 7_.Q a) is
NS

Q(yVN) to

From Lemma 1

a constant. Therefore, it’s safe to use Pp =

: _ __ bs
approximate (4), where v = Joiror
and Theorem 1, if the same «-delay of 7 is achieved
under the two models, we have

E[Pp] =1 — e Pim"" (15)

We first prove the lower bound in (6). It is easy to ver-
ify that Pp = Q(yV/N) is a concave function. According
to Jensen’s inequality, we have E[Pp] < Q(y+/E[N]) =
Q(v+/pymR?). From (15), we have 1 — P = E[Pp] <
Q(v\/psmR?). Accordingly, pg < ——L; In ®(yy/7R- \/py),
where ®(z) = 1 — Q(z). Hence, the density ratio satisfies

o PI 2 Pf 2 2

1 — > - lim .
et pa s D(v/TR - /P ) v2R? "
In the above derivation we use the equality
xlingo TRV —-2, which is proved in Appendix H.

We now prove the upper bound in (6). As Pp > 0,
according to Markov’s inequality, for any given number
¢, we have

E[Pp] > c¢-P(Pp > c). (16)

We define £ and ¢ as follows:

5772—#2—\/74—1-472

2 )

¢=Qy\/épsmR2).  (17)

It's easy to verify that £ € (0,1). Therefore,

BPp > (w¢1>Qmw@mHﬂ B(N > psmR2).

As N ~ Poi(pymR?) and the Poisson distribution
approaches the normal distribution N (psmR?, psmR?)
when py — 0o, we have

P(sz@—cg(%> Q ((5 1>\/pfw32)-

By replacing ¢ and P(Pp > ¢) in (16), we have

E[Pp] > Q (7\/@) Q ((5 - 1)@) .

It is easy to verify that v/ = £ — 1. Thus the above
inequality reduces to E[Pp] > Q*(h,/py), where h =

vV/&rR. From (15), we have 1 — e Pe™ = E[Pp] >
Q?(hy/py). Accordingly, pg > —== - (In(1 + Q(h\/pr)) +
In®(h,/py)). Hence, we have
P 2 Pf
lim — < li
g = o B (1 + Q(hypy)) + InB(hy/py)
2
= — 2 1. pf - . 2. 1
s nd(hypy) | PR (18)
Note that h = v/E7rR < 0 and In(1 + Q(h\/—)) In2
when p; — oo. We also use the equality hm = ( v

— 2 that is proved in Appendix H to derive (18). O

APPENDIX E
PROOF OF LEMMA 3

Proof: Let A; denote the event that the target is not
detected in the j™ unit detection and C; denote the
corresponding target disc. Suppose the target is detected
in the J™ unit detection. Recall (12), we have ]E[J] =
L5 P (Vi An) = 14352, TH P (4|0 J.
The above derivation follows the def1n1t10n of condi-
tional probability. Let C' denote the common area be-
tween the k™ target disc and the union of all the previous
target discs, i.e., C = Cy N (U;—; C1). Therefore, C > 0

and

Hence, 7 = E[J] > 1+ 372,

P (there is no sensor in (Cy — C))

P(a|N)4) -

_ efp(ﬂ'rsz) > efpﬂTz'

2 J
— 1
e ) = . O
( 1—e—pmr2

APPENDIX F
PROOF OF THEOREM 3

Proof: We first introduce the generalized Holder’s
inequality [1]. For random variables X;, i = 1,...,n, we
have BT, |Xll < TTL, (B[ PP where p; > 1
and ZZ lpz = 1. If XZ, i = 1,...,n, are identically
distributed, by setting p; = n, we have

E (][] IXiI] <E[X]",

=1

(19)




where X can be any Xj. In our problem, {N;|j > 1} are
identically distributed RVs due to the Poisson process.
As Pp; is a function of N; (given by (4)), {Pp;|j > 1} are
also identically distributed RVs. Recall (14), by applying
the inequality (19) , the a-delay of fusion-based detection
can be derived as

J

= —1+ZE[H 1— Ppy)

APPENDIX G
PROOF OF THEOREM 4

Proof: According to Lemma 3 and Theorem 3, we
have

1/(1—e Py <+ <E[1/Pp]. (20)
We first find a upper bound of E[1/Pp]. As discussed
in Appendix D, it is safe to use Pp = Q(yVN) to ap-
proximate (4), where v = — . As N ~ Poi(psmR?)

and the Poisson distribution approaches to the normal
distribution N (psmR?, psmrR?) when py — oo, for any
given constant ¢ € (0,1), we have P(N > {psrR?) =

Q EppmRippmR? ) Q((g—l)‘ /pf7TR2). When p; — oo,

N
P(N > &pymR?) — 1, ie, N > &pprR? with high
probability (w.h.p.). Moreover, as 1/Pp =1/Q(yN) is a
decreasing function of N, E[1/Pp| < 1/Q(v/§{psmR?)
w.h.p.. Furthermore according to (20), we have 1/(1 —
e—pamr’ ) < 1/Q(v\/EpymR2) wh.p. when py — oo. After
manipulation, we have p; > —— In (®(vv/&rR,/p5)),
where ®(z) =1 — Q(x). Hence, we have

o?

2 2
2¢R2 T
(21)
above derivation, we use the equality
—2 that is proved in Appendix H.

lim pf< —mr? lim

Pr —
r—1t pg ps—oo In (B(WWETR/PF))

In the

dm s =

Hence, the upper bound of the density ratio is
2/k

M%MWWZOW)MQZGGV%Q )m

have (8). O]

APPENDIX H
A Limit USED IN THE PROOFS OF LEMMA 2
AND THEOREM 4

Denote ¢(z) and ®(x) as the PDF and CDF the standard
normal distribution respectively, i.e., ¢(x) = \/—_ e /2
and ®(z) = [“_¢(t)dt. Note that ®'(z) = ¢(z) and

¢' () = —x¢(x). For constant ¥ < 0, we have

e ®(0r) * Jim, o 02)) U o p(0a)
2 . ¢(x)dx+P(Vx) o (V)
_EJLOO —P2zp(dz) 93 (19+w1%0 (v ))
® 2 p(Jz)Y
‘1%@+$wwm Wﬁ%%)

m — 2 y-_2
e—oo 1 — 9222 ) 92’
where the steps marked by (*) follow from the 1'Hopital’s

rule. Note that for v < 0, lim ®(¥x)z = 0 and
lim z¢(dx)=
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