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Abstract —Real-time detection is an important requirement of many mission-critical wireless sensor network applications such as
battlefield monitoring and security surveillance. Due to the high network deployment cost, it is crucial to understand and predict the
real-time detection capability of a sensor network. However, most existing real-time analyses are based on overly simplistic sensing
models (e.g., the disc model) that do not capture the stochastic nature of detection. In practice, data fusion has been adopted in
a number of sensor systems to deal with sensing uncertainty and enable efficient collaboration among resource-limited sensors.
However, real-time performance analysis of sensor networks designed based on data fusion has received little attention. In this paper,
we bridge this gap by investigating the fundamental real-time detection performance of large-scale sensor networks under stochastic
sensing models. In particular, we consider two basic data fusion schemes, i.e., value fusion and decision fusion. Our results show
that data fusion is effective in achieving stringent performance requirements such as short detection delay and low false alarm rates.
Moreover, value fusion and decision fusion are suitable for low and high signal-to-noise ratio scenarios, respectively. Our results help
understand the impact of data fusion and provide important guidelines for the design of real-time wireless sensor networks for intrusion
detection. Our analyses are verified through extensive simulations based on both synthetic data sets and data traces collected in a real
deployment for vehicle detection. The results show that data fusion can reduce the network density by about 60% compared with the
disc model while detecting any intruder within one detection period at a false alarm rate lower than 5%.

Index Terms —Data fusion, real-time intrusion detection, performance limits, wireless sensor networks.

✦

1 INTRODUCTION

W IRELESS sensor networks are increasingly avail-
able for mission-critical applications such as bat-

tlefield monitoring and security surveillance. A funda-
mental objective of these applications is real-time intru-
sion detection that requires any unknown intruders to be
detected by the network within tight deadlines. Many
intrusion detection scenarios involve a large number of
sensors distributed in a vast geographical area. More-
over, sensor nodes are often not accessible after deploy-
ment due to the constraints of physical environments
(e.g., battlefields). Therefore, it is crucial to analyze and
understand the expected real-time performance of WSNs
before the actual deployment.
However, we face several key challenges in analyz-

ing the real-time performance of sensor networks for
intrusion detection. First, the real-time detection per-
formance of a sensor network is inherently affected by
the uncertainties in network deployment and sensor
measurement. For instance, unpredictable environmental
noises can easily trigger false alarms of low-cost sensors,
resulting probabilistic detection performance. Although
false alarms can be suppressed by making sensors more
conservative, it inevitably jeopardizes the timeliness of
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detection. Therefore, there exist fundamental trade-offs
between real-time and other detection performance met-
rics of a sensor network. Second, the adoption of ad-
vanced signal processing algorithms often significantly
complicates the modeling and analysis of system real-
time performance. Collaborative signal processing tech-
niques such as data fusion [1] are widely employed by
current sensor systems to enable the cooperation among
multiple sensors with limited sensing capability. For in-
stance, reliable intrusion detection in noisy environments
requires the aggregation of readings from multiple sen-
sors [2]. However, such requirements often have complex
impacts on the system real-time performance.
Recently, several sensor networks have been devel-

oped for real-time detection [3], [4]. However, the real-
time performance of such systems are often analyzed
based on overly simplistic sensing models [3]–[10]. In
particular, the sensing region of a sensor is modeled as a
disc with radius r centered at the position of the sensor,
where r is referred to as the sensing range. A sensor
deterministically detects the targets within its sensing
range. As this simplistic disc model allows a geometric
treatment to the detection problem, it has been widely
adopted in the design and analysis of surveillance sensor
networks. However, a key shortcoming of the disc model
is that it fails to capture the stochastic nature of sensing,
such as probabilistic delay and detectability caused by
noise. Moreover, most studies based on the disc model
do not exploit the collaboration among sensors.
To illustrate the inaccuracy of the disc model, we

plot the sensing performance of an acoustic sensor in



2

1

0.8

0.6

0.4

0.2

200150100500

D
et

ec
ti

o
n

p
ro

b
ab

il
it

y
P

D

Distance from the vehicle (meters)

t = 0.01

t = 0.05

Fig. 1. Detection proba-
bility versus the distance
from the vehicle.
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Fig. 2. False alarm rate
versus detection threshold.

Fig. 1 and 2 using the data traces collected in a vehicle
detection experiment [11]. In the experiment, the sensor
detects moving vehicles by comparing its signal energy
measurement against a threshold (denoted by t). Fig. 1
plots the probability that the sensor detects a vehicle
(denoted by PD) versus the distance from the vehicle.
No clear cut-off boundary between successful and un-
successful sensing of the target can be seen in Fig. 1.
Similar result is observed for the sensor’s false alarm
rate (denoted by PF ) and the detection threshold shown
in Fig. 2. Note that PF is the probability of making a
positive decision when no vehicle is present.

In this work, we develop an analytical framework to
study the real-time surveillance performance of large-
scale WSNs that are designed based on collaborative
data fusion algorithms. To quantify the fundamental
trade-off between detection delay and false alarm rate,
we propose a new real-time metric called α-delay that
is defined as the delay of detecting an intruder subject
to the false alarm rate bound α. Compared with the
classical definition of detection delay, α-delay explicitly
captures the probabilistic detection performance caused
by stochastic sensing. In particular, as many mission-
critical real-time applications require detection delay to
be as small as possible, we are interested in the asymp-
totic case where α-delay is minimized, i.e., any intruder
can be detected almost surely once after its appearance,
while the false alarm rate is no greater than α.

The main focus of this paper is to establish the correla-
tion between network density and α-delay in real-time
intrusion detection. To our best knowledge, this work
is the first to study the real-time performance of large-
scale WSNs based on collaborative sensing models. Our
results help understand the limitations of the existing
real-time analyses based on simplistic sensing models,
and provide key insights into designing and analyzing
the large-scale WSNs that adopt data fusion algorithms.
The main contributions of this paper are as follows.

• We derive the α-delay of random networks un-
der both data fusion and probabilistic disc models.
These results can be used to achieve desirable trade-
offs between false alarm rate, detection delay and
network density. In particular, we consider two basic
data fusion schemes, i.e., value fusion and deci-

sion fusion. Moreover, the existing analytical results
based on the disc model can be naturally extended
to the context of stochastic event detection.

• To understand the limitation of the disc model and
the impacts of data fusion on real-time detection,
we conduct comparative analysis between the disc-
and fusion-based sensing models. We show that the
ratio of network densities to achieve the minimum
α-delay under the two models has an asymptotic

upper bound of O

„

e−ψ·SNR ·
“

SNR
Q−1(α)

”2/k
«

, where k is

the signal path loss exponent, Q−1(·) is the inverse
Q-function of the standard normal distribution, ψ =
0 and ψ = 1 for value and decision fusion models,
respectively. The result implies that data fusion is
effective in achieving stringent performance require-
ments such as short detection delay and low false
alarm rate. Moreover, value and decision fusion
models are suitable for low and high signal-to-noise
ratio (SNR) scenarios, respectively.

• We conduct extensive simulations based on both
synthetic data sets and data traces collected in a real
deployment for vehicle detection. The results show
that data fusion can reduce the network density
by about 60% compared with the disc model while
detecting any intruder within one detection period
at a false alarm rate lower than 5%. Moreover, the
data fusion models are more robust than the disc
model in detecting slowly moving targets.

The rest of this paper is organized as follows. Sec-
tion 2 reviews related work. Section 3 introduces the
preliminaries and problem definition. In Section 4 and
5, we derive the α-delay under the disc and fusion
models, respectively. In Section 6, we study the impact of
data fusion on real-time detection through performance
comparison between the two models. In Section 7, we
extend the analyses to address arbitrary target speed and
decision fusion. Section 8 presents simulation results and
Section 9 concludes this paper.

2 RELATED WORK

Most existing real-time analyses of target detection [5]–
[7] and sensing coverage [8]–[10] in WSNs are based
on the simplistic disc model. The delay of detecting
a moving target with randomly deployed sensors has
been analyzed in [5], [6]. The length of free path that a
target travels undetected is derived in [7]. However, the
disc model adopted by these works fails to capture the
stochastic characteristics of real-world intrusion detec-
tion, such as probabilistic detectability and false alarms.
In this paper, we study the relationship between the
performance of real-time stochastic detection and net-
work density. We propose a probabilistic disc model that
naturally extends the existing analytical results [9] based
on the classical disc model to the context of stochastic
detection. In [12], we developed data fusion algorithms
for volcanic earthquake detection using wireless sensor
systems. Moreover, we study the impact of data fusion
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on network density and compare with the results under
the probabilistic disc model.
Many sensor network systems have incorporated var-

ious data fusion schemes to improve the system per-
formance [2], [11], [13]–[18]. In the surveillance system
based on MICA2 motes developed in [2], the system
false alarm rate is reduced by fusing the detection de-
cisions made by multiple neighboring sensors. In the
DARPA/IXOs SensIT project, advanced data fusion tech-
niques have been employed in a number of algorithms
and protocols designed for target detection [13]–[15],
localization [16], [17], and classification [11], [18]. In
our recent work, we have developed static sensor de-
ployment algorithms [19] and mobile sensor scheduling
algorithms [20], [21] for fusion-based target detection in
WSNs. However, the performance analysis of large-scale
fusion-based WSNs has received little attention.
There is vast literature on stochastic signal detection

based on multi-sensor data fusion. Early work [1] focuses
on small-scale powerful sensor networks (e.g., several
radars). Recent studies on data fusion [14], [15], [22] have
considered the specific properties of WSNs such as sen-
sors’ spatial distribution and limited sensing capability.
However, these works focus on analyzing the optimal
fusion strategies that maximize the system detection
performance of a given network. Our recent work [23]
investigates the fundamental impacts of data fusion on
the coverage of static targets in WSNs. In contrast, this
paper studies the impact of data fusion on the delay of
detecting mobile targets.

3 PRELIMINARIES AND PROBLEM DEFINITION

In this section, we first describe the preliminaries of
our work, which include sensor measurement, network,
and data fusion models. We then introduce the problem
definition.

3.1 Sensor Measurement and Network Models

Sensors perform detection by measuring the energy of
signals emitted by the target.1 The energy of most phys-
ical signals (e.g., acoustic and electromagnetic signals)
attenuates with the distance from the signal source.
Suppose sensor i is di meters away from the target that
emits a signal of energy S. The attenuated signal energy
si at the position of sensor i is given by si = S · w(di),
where w(·) is a decreasing function satisfying w(0) = 1,
w(∞) = 0 and w(x) = Θ(x−k).2 Depending on the
environment, e.g., atmosphere conditions, the signal’s
path loss exponent k typically ranges from 2.0 to 5.0 [17],
[24]. The w(·) is referred to as the signal decay function. We

1. Several types of sensors (e.g., acoustic sensor) only sample signal
intensity at a given sampling rate. The signal energy can be obtained
by preprocessing the time series during a period, which has been
commonly adopted to avoid the transmission of raw data [11], [14]–
[17].
2. We adopt the following asymptotic notation: 1) f(x) = Θ(g(x))

means that g(x) is the asymptotic tight bound of f(x); 2) f(x) =
O(g(x)) means that g(x) is the asymptotic upper bound of f(x).
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Fig. 3. Energy measure-
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note that the theoretical results derived in this paper do
not depend on the closed-form formula of the w(·). We
adopt w(x) = 1

1+xk in the simulations conducted in this
paper, and we set k = 2 except those explicitly specified.
The measurements of sensors are contaminated by

additive random noises from sensor hardware or envi-
ronment. Depending on the hypothesis that the target is
absent (H0) or present (H1), the measurement of sensor
i, denoted by yi, is given by

H0 : yi = ni, H1 : yi = si + ni,

where ni is the energy of noise experienced by sensor i.
We assume that the noise ni at each sensor i follows the
normal distribution, i.e., ni ∼ N (µ, σ2), where µ and σ2

are the mean and variance of ni, respectively. We assume
that the noises, {ni|∀i}, are spatially independent across
sensors. Therefore, the noises at sensors are independent
and identically distributed (i.i.d.) Gaussian noises. In the
presence of target, the measurement of sensor i follows
the normal distribution, i.e., yi|H1 ∼ N (si+µ, σ

2). Due to
the independence of noises, the sensors’ measurements,
{yi|∀i,H1}, are spatially independent but not identically
distributed as sensors receive different signal energies
from the target. In this paper, we define the SNR as δ =
S/σ which quantifies the noise level.
The above signal decay and sensor measurement mod-

els have been widely assumed in the literature of signal
detection [1], [9], [13], [15], [16], [22], [23] and also have
been empirically verified [17], [24]. Fig. 3 and Fig. 4
plot the energy of signal from driving vehicles and
noise measured by an acoustic sensor in the SensIT
experiments [11]. From Fig. 3, we can see that the signal
energy increases linearly with 1/d2, which indicates that
w(x) has an order of x−2. This is consistent with the
signal decay model adopted in this paper with k = 2.
Fig. 4 plots the cumulative distribution function (CDF)
of noise energy, which matches the CDF of the normal
distribution.
We assume that a sensor executes detection task every

T seconds. T is referred to as the detection period. In
each detection period, a sensor gathers the signal energy
during the sampling interval for the detection made in the
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Fig. 5. Temporal view of a single sensor’s operation.
The sensor outputs an energy measurement after each
sampling interval.

current period. The temporal view of a single sensor’s
operation is illustrated in Fig. 5. We note that such
an intermittent measurement scheme is consistent with
several wireless sensor systems for target detection and
tracking [2], [11], [14]. For instance, a sensor may wake
up every 5 seconds and sample acoustic energy for 0.05
seconds, where T is 5 s and the sampling interval is
0.05 s [11]. We assume that the sampling interval is much
shorter than the detection period.
We consider a network deployed in a vast two-

dimensional geographical region. Several recent projects
have demonstrated the deployment of large-scale sensor
networks. In the ExScal project [4], [25], about 1200
nodes are distributed in an area of 1.3 km by 300m.
We assume that the positions of sensors are uniformly
and independently distributed in the deployment re-
gion. Such a deployment scenario can be modeled as
a stationary two-dimensional Poisson point process. Let
ρ denote the density of the underlying Poisson point
process. We note that such a deployment model has
been widely assumed to analyze the performance of
large-scale sensor networks [5]–[9]. Adopting this model
thus allows us to directly compare our results with the
existing results.
We assume that the target may appear at any location

in the deployment region and move freely. Moreover, the
target is blind to the network, i.e., the target does not
know the sensors’ positions, and hence it cannot choose
a moving scheme to reduce the probability of being
detected. The sensors synchronously detect the target,
and we refer to the target detection in one detection
period as the unit detection. The process of detecting
a target consists of a series of unit detections. As the
sampling interval is much shorter than the detection
period, we ignore the target’s movement during the
sampling interval.
Table 1 summarizes the notation used in this paper.

3.2 Data Fusion Model

Data fusion [1] can improve the performance of detection
systems by jointly considering the noisy measurements
of multiple sensors. There exist two basic data fusion
schemes, namely, decision fusion and value fusion. In value
fusion [15], each sensor sends its energy measurements
to the cluster head, which makes a decision based on
the measurements. In decision fusion [22], each sensor
makes a local decision based on its measurement and
sends its decision to the cluster head, which makes a
system decision according to the local decisions. In this

TABLE 1
Summary of Notation

Symbol Definition

S original energy emitted by the target

µ, σ2 mean and variance of noise energy

δ signal-to-noise ratio (SNR), δ = S/σ

di distance from the target

w(·) signal decay function, w(x) = Θ(x−k)

si attenuated signal energy, si = S · w(di)

ni noise energy, ni ∼ N (µ, σ2)

H0 / H1 hypothesis that the target is absent / present

yi energy measurement, yi|H0 = ni, yi|H1 = si + ni
α upper bound of false alarm rate

ρ network density

F(P ) the set of sensors within fusion range of point P

N(P ) the number of sensors in F(P )
∗ The symbols with subscript i refer to the notation of sensor i.

paper, we first focus on value fusion and then extend the
results to decision fusion in Section 7. As proved in [23],
the optimal value fusion rule is to compare the weighted
sum of measurements,

∑

i
si

σ · yi, against a threshold.
However, as the measurements contain both noise and
signal energy, the weight si

σ , i.e., the received SNR of
sensor i, is often unknown in practice. A practical solu-
tion is to adopt equal constant weights for all sensors’
measurements [15], [22], [23]. Since the measurements
from different sensors are treated equally, the sensors
far away from the target should be excluded from data
fusion as their measurements suffer low received SNRs.
Hence, we adopt a value fusion model as follows.

For any physical point P , the sensors within a distance
of R meters from P participate in the data fusion to
detect whether a target is present at P . R is referred to
as the fusion range and F(P ) denotes the set of sensors
within the fusion range of P . The number of sensors in
F(P ) is represented by N(P ). For conciseness, we use
F for F(P ) and N for N(P ) when the point of interest
is clear. Due to the Poisson process deployment, for a
random point P , N follows the Poisson distribution with
mean of ρπR2, i.e., N ∼ Poi(ρπR2). In each detection
period, a cluster head is elected to make the detec-
tion decision by comparing the sum of measurements
reported by member sensors within the fusion range
against a detection threshold η. Let Y denote the sum
of measurements, i.e., Y =

∑

i∈F
yi. If Y ≥ η, the

cluster head decides H1; otherwise, it decides H0. Fig. 6
illustrates the intrusion detection under the data fusion
model.

We assume that the system can obtain the position
of a possible target through a localization service in
the network [16], [17]. An analysis based on a simple
localization algorithm shows that the localization error
decreases with network density and becomes insignif-
icant when the network density is high enough. The
details of the analysis are in Appendix A, which can
be found in the supplemental materials of this paper.
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R

Fig. 6. Intrusion detection under data fusion model. The
void circles represent randomly deployed sensors; the
solid circles represent the target in different sampling
intervals; the dashed discs represent the fusion ranges.

Under such an assumption, the localization error can
be safely ignored in our analysis that is focused on the
detection delay when the network density is high. We
also evaluate the impact of localization error through
simulations in Section 8.
In each detection period, a cluster is formed by the

sensors within the fusion range centered at the pos-
sible target to make a detection decision. The cluster
formation may be initiated by the sensor that has the
maximum measurement. Such a scheme can be imple-
mented by several dynamic clustering algorithms [26].
The fusion range R can be used as an input parameter
of the clustering algorithm.

3.3 Problem Definition

In this paper, we study the delay of stochastic intrusion
detection in large-scale sensor networks. As the process
of detecting a target is inherently stochastic, the detec-
tion delay is closely related to two system performance
metrics, namely, the false alarm rate (denoted by PF )
and detection probability (denoted by PD). PF is the
probability of making a positive decision when no target
is present, and PD is the probability that a present target
is correctly detected. In stochastic detection, positive
detection decisions may be false alarms caused by the
noise in sensor measurements. Note that the false alarm
rate does not depend on the property of target as it is the
probability of making positive decision when no target
is present. Although detection delay can be reduced
by making sensors more sensitive (e.g., setting lower
detection threshold), the fidelity of detection results may
be unacceptable because of high false alarm rates caused
by noises. Therefore, studying detection delay alone
without the consideration of false alarm is meaningless.
We now introduce a concept called α-delay that quantifies
the delay of detection under bounded false alarm rate.

Definition 1. α-delay is the average number of detection
periods before a target is first detected subject to that the
false alarm rate of the network is no greater than α, i.e.,
PF ≤ α, where α ∈ (0, 1).

In practice, mission-critical surveillance applications
require a low false alarm rate (α < 5%) [2], [27], as false
alarms not only reduce the fidelity of detection results

but also waste energy in responsive operations such as
wakening asleep sensors. The focus of this paper is to
study the relationship between the α-delay and network
density. Network density directly determines the cost of
constructing and deploying a network. Thus, our results
will allow the network designer to achieve desirable
trade-offs between cost, false alarm rate, and detection
delay. Moreover, many sensor networks reduce energy
consumption by only activating a subset of nodes while
scheduling others to sleep [2]. Our results can be applied
to reduce the density of active nodes while achieving
the required detection delay. As the detection delay
often dominates the communication delay in stochastic
intrusion detection, we ignore the communication delay
in this paper. For instance, the delay of aggregating the
readings of a group of nodes is within 5 milliseconds [3]
while the detection period can be several seconds.
We address the following problems in this paper:

1) Are the analytical results on detection delay [5]–
[10] derived under the classical disc model still
applicable under the definition of α-delay? We
propose a probabilistic disc model such that the
existing results can be naturally extended to the
context of stochastic detection (Section 4).

2) How to quantify the α-delay when sensors can
collaborate through data fusion? Answering this
question enables us to evaluate the timeliness of
a fusion-based network and to deploy the fewest
sensors for achieving a given α-delay (Section 5).

3) What is the impact of data fusion on network
density when the α-delay is minimized? Many
mission-critical real-time applications require de-
tection delay to be as short as possible [2], [27]. We
analytically compare the network densities under
the disc and fusion models when the α-delay is
minimized. The result provides important insights
into understanding the limitation of the disc model
and the impact of data fusion on the design of real-
time WSNs (Section 6).

4 α-DELAY UNDER PROBABILISTIC DISC
MODEL

In the classical disc model, each sensor has deterministic
sensing capability within its sensing range. If the target
is within at least one sensor’s sensing range, the target is
regarded to be detected by the network. Such a model is
not consistent with the stochastic nature of signal detec-
tion. As a result, although a number of studies [5]–[10]
have been conducted on intrusion detection based on the
disc model, they cannot be readily used to analyze the
performance or guide the design of real-world intrusion
detection systems. In this section, we extend the classical
disc model based on the stochastic detection theory [1] to
capture several realistic sensing characteristics and study
the α-delay under the extended model. The result lays
a foundation for understanding the limitation of disc
model on quantifying the delay of intrusion detection.



6

4.1 Probabilistic Disc Model

In the probabilistic disc model, we choose sensing range
r such that 1) the probability of detecting any target
within r meters from it is no lower than β, and 2) the
false alarm rate is no greater than α, where α and β
are parameters specified by user. Note that α and β are
both within (0, 1). As we ignore the detection probability
outside the sensing range of a sensor, the detection
capability of sensor under this model is lower than
in reality. However, this model preserves the boundary
of sensing region defined in the classical disc model.
Accordingly, the existing analytical results based on the
classical model [5]–[10] can be naturally extended to the
context of stochastic detection. In Section 4.2, we will
discuss how to extend the coverage probability derived
under the classical model [9] to study the α-delay of
stochastic intrusion detection.
We now discuss how to choose the sensing range r

under the probabilistic disc model. The optimal Bayesian
detection rule for a single sensor i is to compare its
measurement yi against a detection threshold t [1]. If yi

exceeds t, sensor i decides H1; otherwise, it decides H0.
As both yi|H0 and yi|H1 follow the normal distributions,
i.e., yi|H0 = ni ∼ N (µ, σ2) and yi|H1 = si + ni ∼ N (µ +
si, σ

2), the false alarm rate and detection probability of
sensor i are given by

PF = P(yi ≥ t|H0) = Q

(

t− µ

σ

)

, (1)

PD = P(yi ≥ t|H1) = Q

(

t− µ− si

σ

)

, (2)

where Q(·) is the complementary CDF of the standard

normal distribution, formally, Q(x) = 1√
2π

∫∞
x e−t2/2dt.

To derive the sensing range, we let PF = α and PD = β.
The detection threshold t can then be solved from (1) as
t = µ + σQ−1(α), where Q−1(·) is the inverse function
of Q(·). Moreover, by replacing si = S · w(r) in (2), we
have

r = w−1

(

Q−1(α) −Q−1(β)

δ

)

(3)

For instance, the sensing range r is 3.8m if α = 0.05,
β = 0.95, δ = 50 (i.e., 17dB) and w(x) = 1

1+x2 .
3 Moreover,

we can see from (3) that r increases with the SNR δ.
This conforms to the intuition that a sensor can detect a
farther target if the noise level is lower (i.e., a greater δ).
As Q−1(·) is a decreasing function, r will decrease if a
lower false alarm rate is required (i.e., a smaller α).

4.2 α-Delay under Probabilistic Disc Model

The intrusion detection under the probabilistic disc
model works as follows. The network periodically de-
tects the target as described in Section 3.3. In each unit
detection, if the target is within at least one sensor’s

3. The SNR is set to be 17 dB according to the measurements in the
vehicle detection experiments based on MICA2 [28] and ExScal [25]
motes.

sensing range, the target is detected with a probability
no lower than β. We let β be sufficiently close to 1 (e.g.,
β = 0.99) such that the target is detected almost surely
if it is within any sensor’s sensing range. Such a setting
enables the sensors to exhibit similar deterministic prop-
erty as under the classical disc model. We refer to the
circular region with radius of r centered at the target as
the target disc. Hence, the target is detected if there is at
least one sensor within the target disc. In this section, we
assume that there is no overlap between any two target
discs such that the unit detections are independent from
each other. Such independence among unit detections
can significantly simplify the analysis. We now discuss
the condition for no overlap between any two target
discs. Suppose the target moves at a constant speed of v,
the no-overlap condition can be satisfied if vT > 2r. For
instance, if the sensing range r is 3.8m as mentioned in
Section 4.1 and the target speed v is 5m/s (i.e., 18 km/h)
[11], the target discs will not overlap as long as the
detection period T is greater than 2 s. In Section 7.1, we
extend the analysis to the case where target discs may
overlap. We have the following lemma.

Lemma 1. Let τ denote the α-delay under the probabilistic
disc model. If there is no overlap between any two target discs,
τ = 1

1−e−ρπr2 .

Proof: As shown in [9], when the sensors are de-
ployed according to the Poisson process, the probability
that there is at least one sensor in a target disc is

p = 1 − e−ρπr2

. Suppose the target is detected in the J th

(J ≥ 1) detection period. As there is no overlap between
any two target discs, the unit detections are independent
from each other. Therefore, J follows the geometric dis-
tribution with a success probability of p in each Bernoulli
trial (i.e., each unit detection). Moreover, according to
the definition of r in (3), the false alarm rate in each unit
detection is no greater than α. According to Definition 1,
the α-delay is given by τ = E[J ] = 1

p = 1
1−e−ρπr2 .

We can see from Lemma 1 that the α-delay decreases
with network density ρ and sensing range r. Note that
r is given by (3) under the probabilistic disc model.

5 α-DELAY UNDER DATA FUSION MODEL

Although the probabilistic disc model discussed in Sec-
tion 4 captures the stochastic nature of sensing, it does
not exploit the possible collaboration among sensors.
In this section, we derive the detection performance
and α-delay under the data fusion model presented in
Section 3.2.

5.1 Performance Modeling of Fusion-based Detec-
tion

In this section, we derive the false alarm rate and de-
tection probability in a unit detection. The results will
be used in Section 5.2 to analyze the α-delay under the
fusion model.
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When no target is present, each sensor measures i.i.d.
noise as discussed in Section 3.1. Denote Fj as the
set of sensors within the fusion range in the jth unit
detection. Suppose there are Nj sensors in Fj . The sum
of energy measurements follows the normal distribution,
i.e., Y |H0 =

∑

i∈Fj
ni ∼ N (Njµ,Njσ

2). Therefore, the

false alarm rate of the jth unit detection is given by PFj =

P(Y ≥ η|H0) = Q

(

η−Njµ√
Njσ

)

, where η is the detection

threshold. As PD is a non-decreasing function of PF [1],
it is maximized when PF is set to be the upper bound α.
Such a scheme is referred to as the constant false alarm
rate detector [1]. Let PFj = α, the optimal detection
threshold can be derived as η∗ = Njµ+

√

NjσQ
−1(α).

When the target is present, the sum of energy mea-
surements in the jth unit detection is Y |H1 =

∑

i∈Fj
si +

∑

i∈Fj
ni. The attenuated signal energies {si|i ∈ Fj} are

i.i.d. and we denote µs and σ2
s as the mean and variance

of si, respectively. The proof for the independence of
{si|i ∈ Fj} and the derivation of µs and σ2

s are in Ap-
pendix B, which can be found in the supplemental mate-
rials of this paper. The µs and σ2

s are given by µs =S ·µ0

and σ2
s = S2 · σ2

0 , where µ0 = 2
R2

∫ R

0
w(di)diddi and σ2

0 =
2

R2

∫ R

0 w2(di)diddi −µ2
0. If Nj is large enough,

∑

i∈Fj
si

approaches the normal distribution according to the
central limit theorem, i.e.,

∑

i∈Fj
si ∼ N (Njµs, Njσ

2
s).

As the sum of two independent Gaussians is also
Gaussian, Y |H1 follows the normal distribution, i.e.,
Y |H1 ∼ N (Njµs + Njµ,Njσ

2
s + Njσ

2). Hence, the de-
tection probability in the jth unit detection is given by

PDj = P(Y ≥ η|H1) ≃ Q

(

η−Njµs−Njµ√
Nj·

√
σ2

s+σ2

)

. By replacing η

with the optimal detection threshold η∗, we have

PDj ≃Q
(

σ
√

σ2
s +σ2

·Q−1(α)− µs
√

σ2
s +σ2

·
√

Nj

)

. (4)

5.2 α-Delay of Fusion-based Detection

As discussed in Section 3.3, the process of detecting
a target consists of a series of unit detections. Based
on the performance modeling of each unit detection in
Section 5.1, we now derive the α-delay under the data
fusion model.

In this section, we assume that there is no overlap
between any two fusion ranges (as shown in Fig. 6).
As a result, the sensor sets {Fj |j ≥ 1} are independent
from each other. Such independence can significantly
simplify the analysis. We now discuss the condition for
no overlap between any two fusion ranges. Suppose the
target moves at a constant speed of v, the no-overlap
condition can be satisfied if vT > 2R. For instance, if the
fusion range R is set to be 10m and the target speed v
is 5m/s (i.e., 18 km/h) [11], the fusion ranges will not
overlap as long as the detection period T is greater than
4 s. In Section 7.1, we extend the analysis to the case
where fusion ranges may overlap.
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Fig. 7. Mean detection
probability versus network
density (R = 25 m).
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Fig. 8. Mean detection
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range (ρ = 0.03).

From (4), PDj is a function of Nj . When the sensor
sets {Fj |j ≥ 1} are independent, {PDj |j ≥ 1} are i.i.d. as
the numbers of sensors involved in each unit detection
(i.e., {Nj|j ≥ 1}) are i.i.d. due to the Poisson process.
We denote E[PD] as the mean of PDj for any j, i.e.,
E[PD] = E[PDj ], ∀j. Intuitively, the intrusion detection
can be viewed as a series of infinite Bernoulli trials and
the success probability of each Bernoulli trial is E[PD].
Accordingly, the number of unit detections before (and
including) the first successful unit detection follows the
geometric distribution with a mean of 1/E[PD]. Hence
the α-delay is given by the following theorem. The
formal proof is in Appendix C, which can be found in
the supplemental materials of this paper.

Theorem 1. Let τ denote the α-delay of fusion-based detec-
tion. If there is no overlap between any two fusion ranges,
τ = 1/E[PD], where E[PD] is the average detection probabil-
ity in any unit detection.

We now discuss how to compute E[PD] in Theorem 1.
As PDj is a function of Nj and Nj follows the Poisson
distribution, i.e., Nj ∼ Poi(ρπR2), E[PD] is given by

E[PD] =

∞
∑

Nj=0

PDj · fPoi(Nj |ρπR2), (5)

where fPoi(k|λ) is the probability density function
(PDF) of the Poisson distribution Poi(λ). Specifically,
fPoi(k|λ) = λke−λ/k!. Note that PDj in (5) is computed
using (4).
Fig. 7 and Fig. 8 plot E[PD] versus network density

ρ and fusion range R, respectively. From Fig. 7, we
can see that E[PD] increases with ρ. Moreover, for a
certain ρ, E[PD] increases with the SNR. From Fig. 8,
we can see that E[PD] is a concave function of fusion
range R and there exists an optimal R that maximizes
E[PD]. Intuitively, as the fusion range initially increases,
more sensors contribute to the data fusion resulting in
better sensing quality. However, as the fusion range
becomes very large, the aggregate noise starts to can-
cel out the benefit because the target signal decreases
rapidly with the distance from the target. In other words,
the measurements of sensors far away from the target
contain low-quality information and hence fusing them
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lowers detection performance. However, because of the
complicated relationship between the α-delay and fusion
range R, it is difficult to obtain the analytical optimal
fusion range. In practice, we can choose the optimal
fusion range according to numerical results.

6 IMPACT OF DATA FUSION ON REAL -TIME
DETECTION

Many mission-critical real-time applications require de-
tection delay to be as small as possible [2], [27]. As
an asymptotic case, the α-delay approaches one, i.e.,
any intruder can be detected almost surely in the first
detection period after its appearance, which is referred
to as the instant detection. As a smaller detection delay
always requires more sensors, the network density for
achieving instant detection is an important cost metric
for mission-critical real-time sensor networks.
In this section, we investigate the required network

density for achieving instant detection under both the
disc and fusion models. According to Lemma 1 and
Theorem 1, the network density under both models
approaches infinity4 when the α-delay reduces to one.
However, the speed that the network density increases
is different. In this section, we study the ratio of network
densities for instant detection under the two models,
which characterize the relative cost of the two models
when detection delay is minimized. The result provides
important insights into understanding the limitation of
the disc model and the impact of data fusion on the
performance of real-time WSNs for intrusion detection.

6.1 Network Density for Achieving Instant Detection

In this section, we assume that the target discs and
fusion ranges under the disc and fusion models do not
overlap, respectively. In Section 7.1, we will generalize
the analysis to the case where target discs or fusion
ranges may overlap. We have the following lemma. The
proof is in Appendix D, which can be found in the
supplemental materials of this paper.

Lemma 2. Let ρf and ρd denote the network densities for
achieving α-delay of τ under the value fusion and disc models,
respectively. If there is no overlap between target discs and
fusion ranges under the two models, respectively, there exists
ξ ∈ (0, 1) such that

2

γ2R2
· r2 ≤ lim

τ→1+

ρf

ρd
≤ 2

ξγ2R2
· r2, (6)

where γ = − µs√
σ2

s+σ2
.

Note that according to the proof of Lemma 2, ξ is a
function of γ. According to Lemma 2, limτ→1+ ρf/ρd is
largely affected by the sensing range of a single sensor.

4. Numerically, the network density ρ will not be very large when
the α-delay approaches one. For instance, according to Lemma 1,
suppose the sensing range r is 5m, the α-delay under the disc model
is 1 + 10−5 when ρ = 0.15.

According to (3), the sensing range r is determined
by the requirements on false alarm rate and detection
probability (i.e., α and β), as well as the SNR δ. As
discussed in Section 4.2, β is a constant close to one.
Accordingly, we only analyze the impacts of α and δ on
the network density for achieving instant detection. We
have the following theorem.

Theorem 2. If there is no overlap between target discs
and fusion ranges under the disc and value fusion models,
respectively, for given path loss exponent k, the ratio of
network densities for instant detection under the two models
has an asymptotic tight bound of

lim
τ→1+

ρf

ρd
= Θ

(

(

δ

Q−1(α)

)2/k
)

. (7)

Proof: In Lemma 2, γ depends on the SNR δ, i.e.,

γ = − µs
√

σ2
s + σ2

= − Sµ0
√

S2σ2
0 + σ2

= − µ0
√

σ2
0 + 1

δ2

,

where µ0 and σ2
0 are constants given in Section 5.1. More-

over, ξ is a function of γ. Accordingly, γ and ξ are both
constants when δ is fixed or approaches infinity. Hence,
according to Lemma 2, the tight bound of the density
ratio is limτ→1+ ρf/ρd = Θ(r2). As w−1(x) = Θ(x−1/k),

according to (3), r2 = Θ

(

(

δ
Q−1(α)

)2/k
)

for fixed β.

Therefore, we have (7).
Theorem 2 suggests that, for a certain path loss ex-

ponent k, the relative cost for instant detection between
the fusion and disc models depends on the required false
alarm rate α and SNR δ. First, when α→ 0, Q−1(α) → ∞
and hence limτ→1+ ρf/ρd → 0. It suggests that data
fusion can significantly reduce network density when a
small false alarm rate is required. Second, limτ→1+ ρf/ρd

increases with δ, which suggests that the advantage of
data fusion diminishes as the SNR increases. Moreover,
the path loss exponent k determines the order of den-
sity ratio with regard to the SNR. Intuitively, sensor
collaboration is more advantageous when the SNR is
low. However, when the SNR is sufficiently high, the
detection performance of a single sensor is satisfactory
and the collaboration among multiple sensors may be
unnecessary.

6.2 Application of Results

In this section, we use two realistic examples to illustrate
the implications of Theorem 2. They also provide several
important insights into understanding the applicability
of the disc model and the data fusion model in various
application scenarios.

6.2.1 Data fusion reduces network density
As limτ→1+ ρf/ρd → 0 when α → 0, if a small α
is required, ρf < ρd for instant detection, i.e., the
fusion model requires lower network density than the
disc model. In other words, data fusion is effective in
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reducing detection delay and false alarms. Fig. 9 plots
the lower and upper bounds of the density ratio given
by Lemma 2. We set the SNR δ to be 50 (i.e., 17dB)
according to the measurements in the vehicle detec-
tion experiments based on MICA2 [28] and ExScal [25]
motes. The fusion range R is optimized to be 37m.
From the figure, we can see that if α < 0.2, the fusion
model will outperform the disc model. In practice, most
mission-critical surveillance systems require a small α.
For example, in the vehicle detection system [2] and the
acoustic shooter localization system [27], the false alarm
rates are tuned to be near zero. Therefore, data fusion
can significantly reduces the network density for these
mission-critical surveillance systems.

6.2.2 Disc model suffices for high-SNR detection
As limτ→1+ ρf/ρd increases with δ for fixed α, if the
SNR is high enough such that limτ→1+ ρf/ρd > 1, the
disc model is superior to the value fusion model in
achieving instant detection. It implies that the disc model
suffices when the SNR is sufficiently high. Fig. 10 plots
the upper bound of density ratio versus SNR under
various path loss exponents. From the figure, we can
see linear and concave relationships between the density
ratio and SNR when k is 2.0 and 4.0, respectively, which
are consistent with Theorem 1. Moreover, if the SNR is
sufficiently high (e.g., 22dB), the disc model outperforms
the value fusion model. However, the noise experienced
by a sensor comes from various sources, e.g., the random
disturbances in the environment and the electronic noise
in the sensor’s circuit. Thus, the SNR depends on the
characteristics of targets, the environment, and the sen-
sor device. In the vehicle detection experiments based
on low-power motes, e.g., MICA2 [28] and ExScal [25],
the SNRs are usually low to moderate (≤ 17dB). In such
a case, value fusion can effectively reduce the network
density required to achieve short detection delay and
low false alarm rate.

7 EXTENSIONS

In this section, we generalize the results to address
arbitrary target speed and short detection period. We
then extend our analyses to address decision fusion
model.

R

Fig. 11. The overlap case under the data fusion model.
The void circles represent sensors; the solid circles repre-
sent the target in different sampling intervals; the dashed
discs represent the fusion ranges.

7.1 Extension to General Target Speed and Detec-
tion Period

In previous sections, we assume that there is no overlap
between any two target discs and fusion ranges under
the disc and fusion models, respectively. However, fu-
sion ranges may overlap if the target speed is low or
the detection period T is short, as illustrated in Fig. 11.
In this section, we will generalize the previous analyses
without the no-overlap limitation. Recall the discussions
in Sections 4.2 and 5.2, when there is no overlap, the
unit detections are independent from each other. As a
result, the index of first successful unit detection (i.e., J)
follows the geometric distribution and the α-delay can be
computed as the mean of the geometric distribution. In
contrast, when target discs or fusion ranges can overlap,
the detection results in different unit detections are sta-
tistically correlated due to the possible common sensors
shared by different unit detections. Hence, J does not
follows the geometric distribution anymore. Therefore,
the correlation among unit detections substantially com-
plicates the analysis of α-delay. As a result, it is difficult
to obtain the closed-form formula of α-delay. Instead,
we aim to find the bound of α-delay in this section. The
lower bound of α-delay under the disc model is given by
the following lemma. The proof is in Appendix E, which
can be found in the supplemental materials of this paper.

Lemma 3. Let τ denote the α-delay under the probabilistic
disc model. We have τ ≥ 1

1−e−ρπr2 , where r is given by (3).

Compared with the results in Lemmas 1 and 3, we
can see that the α-delay is minimized for the no-overlap
case. Intuitively, the area covered by the union of target
discs is maximized in the no-overlap case, which yields
the maximum overall detection probability for a given
number of detection periods and in turn leads to the
minimum detection delay.

The upper bound of α-delay under the data fusion
model is given by the following theorem. The proof is
in Appendix F, which can be found in the supplemental
materials of this paper.

Theorem 3. Let τ denote the α-delay of fusion-based de-
tection. We have τ ≤ E[1/PD], where PD is the detection
probability in any unit detection.
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As 1/PD is a convex function of PD, according to
Jensen’s inequality, E[1/PD] ≥ 1/E[PD], where 1/E[PD]
is the α-delay when there is no overlap between any two
fusion ranges. We now discuss how to compute E[1/PD]
in Theorem 3. As PDj is a function of Nj which follows
the Poisson distribution, i.e., Nj ∼ Poi(ρπR2), E[1/PD]
can be numerically computed by averaging 1

PDj
over the

distribution of Nj .
With the lower and upper bounds of α-delay under the

disc and fusion models, respectively, we can derive the
asymptotic bound of ratio of network densities required
by the two models to achieve instant detection. As it
is more challenging to handle the expression E[1/PD]
in Theorem 3 than E[PD] in Theorem 1, compared with
Section 6.1, we will employ substantially different tech-
nique to analyze the density ratio. We have the following
theorem. The proof is in Appendix G, which can be
found in the supplemental materials of this paper.

Theorem 4. Let ρf and ρd denote the network densities
for achieving α-delay of τ under the value fusion and disc
models, respectively. For given path loss exponent k, the ratio
of network densities for instant detection has an asymptotic
upper bound of

lim
τ→1+

ρf

ρd
= O

(

(

δ

Q−1(α)

)2/k
)

. (8)

Different from the result in Theorem 2 which is the
asymptotic tight bound of the density ratio, Theorem 4
gives the asymptotic upper bound. In Section 8, we will
compare the density ratios under the overlap and no-
overlap cases through simulations. Moreover, as target
speed is an important factor of the overlap/no-overlap
condition, we also evaluate the impact of target speed
on the density ratio.

7.2 Real-time Detection under Decision Fusion
Model

In this section, we extend our analysis to a decision
fusion model. In decision fusion scheme, each sensor
makes a local decision based on its measurements and
transmits its decision to the cluster head, which makes a
system decision according to the local decisions. Due to
its low communication overhead, decision fusion is often
preferred in bandwidth-constrained sensor systems. We
adopt a decision fusion model as follows. Each sensor
i in F(P ) makes a local decision Ii by comparing its
measurement yi against a local threshold λ. If yi ≥ λ,
Ii = 1; otherwise, Ii = 0. Let Λ denote the number of
positive local decisions, i.e., Λ =

∑

i∈F(P ) Ii. The cluster
head makes a system detection decision by a threshold
testing, i.e., given a system threshold θ ∈ (0, 1), if Λ

N(P ) ≥ θ,
the cluster head decides H1; otherwise, it decides H0. By
setting θ = 1

2 or θ = 1, the decision fusion model is the
majority rule or AND rule, respectively. Such a decision
fusion model has been widely employed in previous
analytical studies [1], [15], [20], [22] and real systems [2].

We now analyze the performance of real-time detec-
tion under the decision fusion model. In the absence of
target, the local false alarm rate of sensor i, denoted by

P i
F , is P

i
F = P(yi ≥ λ|H0) = Q

(

λ−µ
σ

)

. Note that all

sensors have the same local false alarm rate and thus
we denote P i

F = α0. In the jth unit detection, the number
of positive local decisions, i.e., Λ|H0, follows a Binomial
distribution. Formally, Λ|H0 ∼ Bin(Nj , α0), where Nj is
the number of sensors within the fusion range in the
jth unit detection. However, the system false alarm rate
under the binomial distribution is complicated [20]. We
have proved in [20] that if Nj is large enough, the system
false alarm rate in the jth unit detection can be approxi-

mated by PFj = P(Λ ≥ θNj |H0) ≃ Q

(

θNj−Njα0√
Njα0−Njα2

0

)

. In

order to bound system false alarm rate, letting PFj = α
yields a quadratic equation with respect to α0, which has
two distinct roots. We can compute the local threshold
λ with the smaller root of α0 within (0, 1).
In the presence of target, the local detection probability

of sensor i, denoted by P i
D, is P i

D = P(yi ≥ λ|H1) =

Q
(

λ−µ−si

σ

)

. As sensors receive different signal energies,

their local decisions are independent but not identically
distributed Bernoulli random variables. As proved in
[20], Λ|H1 approximately follows the normal distribution
according to Lyapunov’s central limit theorem, where
the system detection probability can be calculated by

PDj ≃ Q





θNj −
∑

i∈Fj
P i

D
√

∑

i∈Fj
P i

D −∑i∈Fj
(P i

D)2



 . (9)

In (9),
∑

i∈Fj
P i

D is a random variable that follows
a complicated compound distribution, which has no
analytical CDF. We now analyze the bounds of PDj .
Let Pmin

D and Pmax
D denote the lower and upper

bounds of P i
D , which are Pmin

D = Q
(

λ−µ−Sw(R)
σ

)

and

Pmax
D = Q

(

λ−µ−S
σ

)

, respectively. It has been shown

in [20] that PDj given by (9) increases with
∑

i∈Fj
P i

D

with high probability. Therefore, the lower and upper

bounds of PDj are given by Q

„

θ−Pmin
D√

Pmin
D

−(Pmin
D

)2
·

p

Nj

«

and

Q

„

θ−Pmax
D√

Pmax
D

−(Pmax
D

)2
·

p

Nj

«

, respectively. Hence, there ex-

ists γ ∈

»

θ−Pmax
D√

Pmax
D

−(Pmax
D

)2
,

θ−Pmin
D√

Pmin
D

−(Pmin
D

)2

–

such that PDj =

Q(γ
√

Nj). Moreover, it is easy to verify that γ =

Θ

(

− 1√
Φ(−δ)

)

, where Φ(x) = 1 −Q(x).

We now extend previous analytical results to the
decision fusion model. Theorems 1 and 3 hold for any
data fusion model if the unit detections are identically
distributed. Hence, they hold for the decision fusion
model in this section. Moreover, under both the value
and decision fusion models, the relationship between
PDj and Nj is identical in the asymptotic case (i.e.,
PDj = Q(γ

√

Nj)). Therefore, Lemma 2 holds for the
decision fusion model as well. However, different from
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the value fusion model, γ for the decision fusion model
is unbounded when δ → ∞. The following theorem
extends Theorem 4 to the decision fusion model.

Theorem 5. When decision fusion model is assumed, the
relationship between ρf and ρd satisfies

lim
τ→1+

ρf

ρd
= O

(

e−δ ·
(

δ

Q−1(α)

)2/k
)

. (10)

Proof: Under the decision fusion model, γ =

Θ

(

− 1√
Φ(−δ)

)

. Moreover, Φ(x) ≤
√

2
π e

x
2 for x ≤ −1.

Hence, 1
γ2 = Θ (Φ(−δ)) = O

(

e−δ
)

. According to the

proof of Theorem 4, limτ→1+
ρf

ρd
≤ 2

γ2ξR2 · r2, where ξ

is any constant in (0, 1). By replacing 1
γ2 = O

(

e−δ
)

and

r2 = Θ

(

(

δ
Q−1(α)

)2/k
)

, we have (10).

From Theorem 5, the impact of α on the density ratio
is same for both the value and decision fusion models.
Specifically, data fusion can significantly reduce network
density when a small false alarm rate is required. How-
ever, different from Theorems 2 and 4, the density ratio
decreases with δ, which suggests that the decision fusion
model is more effective than the value fusion model
for achieving short detection delay in the case of high
SNRs. The intuition behind this result is as follows.
When the SNR is high, the local detection at a sensor
can largely reduce the impact of noise. Moreover, the
decision fusion of multiple sensors will further improve
the system result. In contrast, under the value fusion
model, the noises from sensors are still aggregated at the
cluster head. Therefore, the value fusion model becomes
less effective than the decision fusion model when the
SNR is high. However, this paper is focused on arguing
the advantages of collaborative data fusion with regard
to the disc model in achieving real-time detection. The
extensive comparison of data fusion models is left for
our future work. The simulation results in Section 8
validates Theorem 5.

8 PERFORMANCE EVALUATION

In this section, we conduct extensive simulations based
on real data traces as well as synthetic data to evaluate
the real-time detection performance in non-asymptotic
and asymptotic cases, respectively.

8.1 Trace-driven Simulations

We first conduct simulations using the data traces col-
lected in a real vehicle detection experiment [11]. In the
experiment, 75 WINS NG 2.0 nodes are deployed to
detect military vehicles driving through the surveillance
region. We refer to [11] for detailed setup of the experi-
ment. The dataset used in our simulations includes the
ground truth data and the acoustic time series recorded
by 20 nodes when a vehicle drives through. The ground
truth data include the positions of sensors and the
trajectory of the vehicle.
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Fig. 12. The network density versus achieved α-delay.

Sensors’ sensing ranges under the probabilistic disc
model are determined individually to meet the detection
performance requirements (α = 5% and β = 95%).
The resulted sensing ranges are from 22.5m to 59.2m
with the average of 43.2m. Such a significant variation
is due to several issues including poor calibration and
complex terrain. The sensors are deployed uniformly
into a large field and periodically detect the target. The
target initially appears at the origin, and moves along the
X-axis at a speed of 10m/s. The detection period T is
set to be 60 s. Each sensor in the simulation is associated
with a real sensor chosen at random. When a sensor
makes a measurement, its reading is set to be the energy
gathered by the associated real sensor at a similar dis-
tance to vehicle in the data trace. Under the disc model,
once the target enters the sensing range of a sensor,
the sensor makes a detection decision by comparing its
measurement against the detection threshold t derived
in Section 4.1. Under the fusion model, sensors fuse their
measurements or local decisions to detect the target as
discussed in Section 3.2. For the decision fusion model,
we adopt the majority rule, i.e., θ = 1

2 . We conduct 500
runs with different random sensor deployments. The α-
delay is computed as the average number of detection
periods before the target is first detected in each run.
Fig. 12 plots the network density versus the achieved

α-delay under various settings. We can see that the data
fusion models are more effective than the disc model for
achieving short α-delay. In particular, the value fusion
model with a fusion range of 100m saves more than 50%
sensors when the α-delay is less than 2. We note that the
average number of sensors taking part in data fusion is
within 20 and hence will not introduce high communica-
tion overhead. Moreover, as value fusion often has better
detection performance than decision fusion [1], we can
see from Fig. 12 that the decision fusion model requires
more sensors than the value fusion model.

8.2 Simulations based on Synthetic Data

8.2.1 Simulation Settings and Methodology
Both the mean and variance of the noise generator (i.e., µ
and σ2) are set to be 1. Except those explicitly specified,
the default settings of SNR and fusion range are 50 (i.e.,
17dB) and 25m, respectively. Note that the setting of
SNR is according to the measurements in the vehicle
detection experiments based on motes [25], [28].
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Fig. 13. α-delay versus network density under value
fusion model.

The sensors are deployed uniformly into a large field
and periodically detect the target. The target initially
appears at the origin, and moves along the X-axis at
a speed of 2R per detection period. Under the fusion
model, we consider the target localization error as fol-
lows. Suppose the real target position is at P (x, y) when
sensors take measurements, while the target position
localized by the network is at P ′(x + ǫ cos θ, y + ǫ sin θ),
where ǫ is a specified constant and θ is picked uniformly
from [0, 2π). Sensors within the fusion range centered
at P ′ fuse their measurements and make the detection
decision. Under the disc model, the sensing range r is
computed according to (3). Once the target enters the
sensing range of a sensor, the sensor makes a detection
decision by comparing its measurement against the de-
tection threshold t derived in Section 4.1. We conduct 500
runs with different random sensor deployments. The α-
delay is computed as the average number of detection
periods before the target is first detected in each run.
We also evaluate the impact of the overlap/no-overlap
condition by comparing the simulation results under the
overlap and no-overlap cases. For the overlap case, the
target moves R

2 and r
2 in each detection period under the

fusion and disc models, respectively; for the no-overlap
case, it moves 2R and 2r, respectively.

8.2.2 Simulation Results
We first evaluate the analytical α-delay of fusion-based
detection under the no-overlap case, which is given by
Theorem 1. Meanwhile, we also evaluate the impact
of localization error on the result. Fig. 13 plots the α-
delay versus the network density under the value fusion
model. The curve labeled with “analytical” plots the α-
delay computed according to Theorem 1 and Eq. (5).
The data points labeled with “SIM(ǫ)” represent the
simulation results with a constant localization error ǫ.
From the figure, we can see that the α-delay decreases
with the network density. The simulation result without
localization error (i.e., ǫ = 0) confirms the analytical
result when the network density is greater than 0.01.
When ρ is smaller than 0.01, the simulation result starts
to deviate from the analytical result. This is due to
the approximation made in the derivation of PD in
Section 5.1. However, we can see that the maximum error
between the analytical and simulation results falls within
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Fig. 14. α-delay versus network density. (a) Value fusion
model. (b) Disc model.

one detection period. Fig. 13 also shows that the impact
of localization error is small. The simulation result has
a considerable deviation from the analytical result only
when the localization error is equal to the fusion range
(25m). In such a case, the target falls completely outside
of the fusion range. Moreover, the impact of localization
error diminishes as the network density increases. This
result demonstrates the robustness of our analysis with
respect to localization error, especially in achieving in-
stant detection.

The second set of simulations evaluate the impact
of overlap/no-overlap condition on the α-delay under
the disc and fusion models, respectively. Fig. 14(a) plots
the α-delay versus the network density under the value
fusion model. The curves labeled with “analytical (no-
overlap)” and “upper bound” plot the α-delay under
the no-overlap case (given by Theorem 1) and its upper
bound (given by Theorem 3), respectively. We can see
that the two analytical results are very close. The other
two curves plot the simulation results for the overlap
and no-overlap cases, respectively. The simulation re-
sults closely match the analytical results when the net-
work density is greater than 0.02. When ρ is smaller than
0.01, the deviation between the analytical and simulation
results is due to the approximation made in the deriva-
tion of PD. Moreover, we can see from Fig. 14(a) that
the overlap/no-overlap condition has little impact on the
α-delay under the fusion model. Fig. 14(b) plots the α-
delay under the disc model. Note that the lower bound
given by Lemma 3 is also the analytical result of α-
delay under the no-overlap case given by Lemma 1. We
can see that the simulation results confirm the analytical
results under the disc model. Moreover, the α-delay
significantly increases under the overlap case. Hence, the
overlap/no-overlap condition has significant impact on
the α-delay under the disc model.

We now evaluate the impact of false alarm rate on
the density ratio. Fig. 15(a) plots the ratio of network
densities required by the value fusion and disc models
to achieve the same α-delay given various false alarm
rates. Fig. 15(b) plots the corresponding results for the
decision fusion model. We can see from Fig. 15(a) that the
disc model requires more than twice sensors when the α-
delay approaches to one. Both for the value and decision
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Fig. 15. Density ratio versus α-delay given different α
(SNR = 10 dB). (a) Value fusion. (b) Decision fusion.
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Fig. 16. Density ratio versus α-delay given different SNR
(α = 1%). (a) Value fusion. (b) Decision fusion.

fusion models, the density ratio decreases if a lower α
is required, which is consistent with Theorems 2, 4 and
5. Moreover, from the two figures, we can see that the
density ratio under the overlap case is smaller than that
under the no-overlap case. This is consistent with our
observation in the previous set of simulations, i.e., the
overlap condition has little impact on the fusion model
while leads to significant increase of α-delay under the
disc model.

We then evaluate the impact of SNR on the density
ratio. Fig. 16(a) plots the ratio of network densities
required by the value fusion and disc models given
various SNRs. Fig. 16(b) plots the corresponding results
for the decision fusion model. From Fig. 16(a), we can
see that the density ratio increases with SNR, which is
consistent Theorems 2 and 4. For instance, if the SNR is
13dB, the density ratio ρf/ρd is about 0.5 when the α-
delay reduces to one. However, if the SNR increases to
20dB, ρf/ρd is greater than 1.2 and hence the disc model
requires fewer sensors than the fusion model. In contrast,
as shown in Fig. 16(b), the decision fusion model can
reduce the density ratio when SNR increases, which
is consistent with Theorem 5. Moreover, from Fig. 16,
we can see that value and decision fusion models are
suitable for low and high SNR scenarios, respectively.

As target speed is an important factor of the
overlap/no-overlap condition, we finally evaluate its im-
pact on the density ratio. Fig. 17 shows the density ratio
versus the target speed. We can see that the density ratio
significantly increases when the target speed increases
from r

20 to 2r. This is due to the significant impact of
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Fig. 17. Density ratio versus target speed (SNR = 13 dB,
α = 5%, τ = 1.05, r = 2.25 m, R = 8 m, T = 1 s).

overlap condition on the disc model, as observed in
Fig. 14(b). Hence, the data fusion models are more robust
than the disc model in detecting slowly moving targets.

9 CONCLUSION

In this paper, we study the impact of data fusion on
real-time detection in WSNs through the performance
comparison between the disc model and various data
fusion models. Our results show that data fusion is ef-
fective in achieving stringent performance requirements
such as short detection delay and low false alarm rate.
Moreover, value and decision fusion models are suitable
for low and high SNR scenarios, respectively. Our results
help understand the applicability of the disc and data
fusion models, and hence provide important guidelines
for the design of real-time WSNs for intrusion detection.
This paper assumes the Poisson process model for sensor
deployment. In our future work, we will extend the
study to address other deployment models such as the
grid deployment.
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