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APPENDIX A
HARDNESS OF PROBLEM 2
In this appendix, we discuss the hardness of Problem 2
presented in Section 4.2. Specifically, we discuss the non-
linearity and non-convexity of the problem. We note that
non-linear and non-convex optimization problems often
have exponential complexities and the general solution
to them does not exist [1]. In the constraint of Problem 2,
the detection probability PDj

, which is given by (3), has
a complex non-linear relationship with the number of
sensors and their positions. Therefore, Problem 2 is a
non-linear optimization problem. We now discuss the
non-convexity of Problem 2. Denote the placement with
n sensors as Sn. Thus, |Sn| = n. By replacing PDj

in the
constraint (i.e., min1≤j≤K{PDj

} ≥ β) with (3) and after
manipulation, we have

min
1≤j≤K

nj
∑

i=1

W (di) ≥ σ2(χ−1
nj

(1 − α)− χ−1
nj

(1− β)).

where nj is the number of sensors in the fusion range of
spot j. Denote f(Sn) = min

1≤j≤K

∑nj

i=1 W (di)− σ2(χ−1
nj

(1 −

α) − χ−1
nj

(1 − β)). Suppose S
∗
n maximizes f(Sn), if

f(S∗
n) ≥ 0, S

∗
n is a candidate solution. By iterating

n, we can find the optimal solution to Problem 2, i.e.,
S = argminS∗

n
n. If the sub-problem, i.e., maximizing

f(Sn), is non-convex, Problem 2 is non-convex. We now
prove the non-convexity of f(Sn) by exemplification.
In our example, we randomly choose two surveillance
spots in a 10×10 field, with the coordinates of (8.21, 0.15)
and (0.43, 1.69), respectively. We then randomly place 3
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Fig. A.1. f(Sn) is non-convex. Settings: W0 = 400, d0 =
1, k = 2, σ2 = 1, α = 0.01, β = 0.9.

Algorithm 1 The procedure of finding global optimal
solution
Input: α, β, surveillance field A, a set of surveillance

spots T

Output: Sensor placement S where |S| is minimized
1: N = 1
2: repeat
3: use the CSA solver to find N sensor locations in

A that maximize min1≤j≤K{PDj
}

4: compute ηj for each tj ∈ T by ηj =
σ2X−1

nj
(1−α)

nj

5: compute PDj
for each tj ∈ T by (3)

6: N = N + 1
7: until min1≤j≤K{PDj

} ≥ β
8: return S

or 4 sensors in the field. When n = 3, the coordinates
of sensors are (6.49, 4.51), (7.32, 5.47) and (6.48, 2.96),
respectively. When n = 4, the coordinates of sensors are
(7.45, 3.68), (1.89, 6.26), (6.87, 7.80) and (1.84, 0.81), re-
spectively. Fig. A.1 plots f(Sn) versus the X-coordinate
of the first sensor. We can see from the figure that f(Sn)
is a non-convex function with respect to sensor position.
In summary, Problem 2 is a non-linear and non-convex
optimization problem.

APPENDIX B
GLOBAL OPTIMAL PLACEMENT

A straightforward optimal solution for Problem 2 is to
incrementally search for the optimal sensor placements
with different number of sensors under the constraint
min1≤j≤K{PDj

} ≥ β. The details are shown in Algo-
rithm 1. It begins with N = 1 and iterates for incremental
N . In each iteration, the minimum detection probability
among all surveillance spots, i.e., min1≤j≤K{PDj

}, is
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Fig. B.1. The execution time vs. the number of sensors in
the optimal placement.

maximized. Once the constraint min1≤j≤K{PDj
} ≥ β is

satisfied, the global optimal solution is found.
The optimization step that maximizes the minimum

detection probability (Line 3 in Algorithm 1) is imple-
mented by a non-linear programming solver based on
the Constrained Simulated Annealing (CSA) algorithm
[2]. CSA extends conventional Simulated Annealing to
look for the global optimal solution of a constrained
optimization problem with discrete variables. CSA al-
lows the objective function and constraint functions to
be specified in a procedure instead of in a closed-
form. Theoretically, CSA is a global optimal algorithm
that converges asymptotically to a constrained global
optimum with probability one (Theorem 1 of [2]).
In theory, the complexity of CSA, like other stochastic

search algorithms, increases exponentially with respect
to the number of variables [2]. Therefore, the non-linear
programming solver has an exponential time complexity
with respect to the number of sensors. Hence, for a
large-scale placement problem, Algorithm 1 becomes
prohibitively expensive.
Fig. B.1 shows the execution time of Algorithm 1

versus the number of sensors in the optimal solution.
The dotted curve is the linear regression of the execution
times with different numbers of sensors. We can see
that the execution time increases drastically with the
number of sensors. For instance, if 100 sensors are to be
placed, the projected execution time of the global optimal
algorithm is about e36 seconds, i.e., 5× 1010 days.

APPENDIX C
DIVIDE-AND-CONQUER SENSOR PLACEMENT
ALGORITHM

The pseudo codes of the divide-and-conquer sensor
placement algorithm and the refinement process pro-
posed in Section 5.2 are shown in Algorithm 2 and
Algorithm 3, respectively.
In Algorithm 2, we treat the surveillance spots one

by one. Specifically, for spot tj , we place the fewest
additional sensors within the fusion region of tj to cover
tj and the neighboring spots in its impact region. The
optimization (Line 5) is implemented by the CSA solver.

Algorithm 2 The divide-and-conquer sensor placement
algorithm

Input: α, β, impact region set {Aj |1 ≤ j ≤ K}, and
the set of surveillance spots in each impact region
{Tj |1 ≤ j ≤ K}

Output: Local optimal sensor placement S
1: S = ∅
2: for j = 1 to K do
3: n = 0
4: repeat
5: place additional n sensors in Cj (denoted by

set ∆) to maximize minth∈Tj
{PDh

} under place-
ment S ∪∆

6: compute ηh for each th ∈ Tj under placement
S ∪∆

7: compute PDh
for each th ∈ Tj under placement

S ∪∆
8: n = n+ 1
9: until minth∈Tj

{PDh
} ≥ β

10: S = S ∪∆
11: end for
12: return S

In each round of Algorithm 3 (from Line 2 to 20),
all surveillance spots are processed one by one. The
algorithm terminates if the current round cannot further
reduce the number of sensors in the placement. When
the jth spot tj is processed (from Line 4 to 19), the
algorithm first removes all dedicated sensors of tj , and
computes a new local placement S′ using the CSA solver
(from Line 8 to 15). If S

′ uses fewer sensors than the
original placement S, we replace the original placement
with S

′ (from Line 17 to 19). Note that we do not
remove any shared sensors in the placement computed
by Algorithm 2 as otherwise the coverage of neighboring
surveillance spots may be affected.
We now discuss the convergence of Algorithm 3. As

only the new placement with fewer sensors (from Line 17
to 19) in each iteration is acceptable, obviously, the
size of the placement computed in each round keeps
decreasing. Denote N∗ and N0 as the sizes of the global
optimal solution (i.e., the output of Algorithm 1) and the
solution of Algorithm 2, respectively. The upper bound
of the number of rounds of Algorithm 3 is thus N0−N∗.

APPENDIX D
ANALYSIS OF MODEL PARAMETERS

In this appendix, we discuss how to set the parameters
of the sensing and data fusion models.

D.1 Optimal Upper Bound of Fusion Radius

In this section, we analyze the upper bound of fusion
radius R, and give the optimal value regarding sensor
density. Suppose a surveillance spot t is covered by n
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Algorithm 3 The sensor placement refinement algorithm

Input: α, β, impact region set {Aj|1 ≤ j ≤ K}, the set of
surveillance spots in each impact region {Tj |1 ≤ j ≤
K}, sensor placement S computed by Algorithm 2

Output: new sensor placement S
1: repeat
2: total sensor number N = |S|
3: for j = 1 to K do
4: find dedicated sensor set Dj of tj in S

5: if Dj = ∅ then
6: skip this iteration for tj and continue
7: else
8: S

′ = S \Dj /* remove dedicated sensors of tj */
9: n = 1
10: repeat
11: place additional n sensors in Cj (denoted

by ∆) to maximize minth∈Tj
{PDh

} under
placement S′ ∪∆

12: compute ηh and PDh
for each th ∈ Tj under

placement S′ ∪∆
13: n = n+ 1
14: until minth∈Tj

{PDh
} ≥ β

15: S
′ = S

′ ∪∆
16: end if
17: if |S′| < |S| then
18: S = S

′

19: end if
20: end for
21: until |S| = N
22: return S

sensors in the fusion region of t. According to (3), the
detection probability of t satisfies:

PD = 1−Xn

(

nη −
∑n

i=1 W (di)

σ2

)

≥ β.

By replacing η with the optimal detection threshold η =
σ2X−1

n (1−α)
n

obtained in Section 4.2 and solving the sum
of energies

∑n

i=1 W (di) from the previous inequality, we
get:

∑n

i=1 W (di)

σ2
≥ X−1

n (1− α)−X−1
n (1 − β). (D.1)

Inequality (D.1) means that given n sensors, the sum
of energies received by sensors is lower bounded if
the corresponding spot is covered. As the signal energy
attenuates with the distance from the target, in the worst
case, every sensor is placed at the edge of the fusion
region. Therefore, the minimum sum of energies is

min

{

n
∑

i=1

W (di)

}

= nW (R). (D.2)

By replacing the sum of energies in (D.1) with its mini-
mum value given by (D.2) and solving the fusion radius
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Fig. D.1. Sensor density vs. upper bound of fusion radius.
Settings: W0 = 400, d0 = 1, k = 2, α = 0.01, β = 0.9.

R, we get:

R ≤ W−1

(

σ2
(

X−1
n (1− α) −X−1

n (1− β)
)

n

)

, (D.3)

where W−1(·) is the inverse function of the signal at-
tenuation model W (d). Denote the right hand of (D.3)
as Ru, which is the upper bound of the fusion radius.
Inequality (D.3) shows that, given n sensors, if the fusion
radius does not exceed Ru, the surveillance spot t is
always covered no matter how the sensors are placed
in the fusion region of t. If we set R = Ru, the sensor
density is ρ = n/(πR2

u), which is the minimum sensor
density that guarantees the coverage of the surveillance
spot no matter how the sensors are placed. Because both
ρ and Ru depend on n, it’s hard to derive the marginal
relationship between ρ and Ru with an analytical expres-
sion. However, in practice, we can find the optimal Ru

that minimizes ρ by numerical approaches. For instance,
Fig. D.1 shows several numerical results under the signal
attenuation model defined by (1) under different set-
tings. From the figure, we can see that the sensor density
ρ is a convex function of Ru under different settings and
thus we can find the optimal Ru, e.g., Ru = 7.76 is the
optimal value for the setting σ2 = 1. Furthermore, for a
certain fusion radius (e.g., Ru = 10), the sensor density
for low SNR setting (e.g., σ2 = 5) is greater than the
sensor density for high SNR setting (e.g., σ2 = 1). This
is reasonable as more sensors are needed to achieve the
same sensing quality when the SNR is low.

D.2 Analysis of Impact Region Radius

In this section, we discuss the optmal setting of the
impact region radius. As discussed in Section 5.1, the key
idea of our divide-and-conquer approach is to reduce
the total number of sensors by taking advantage of
the shared sensors in the overlapping fusion regions
of surveillance spots. Moreover, the global optimization
problem is divided into the sub-problems of covering
the spots within the impact region of each spot. If the
distance between any two spots is less than 2R, the two
spots can have shared sensors. Therefore, in previous
sections, we let the impact region radius be 2R. In this
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section, we discuss the setting of impact region radius
in detail, which provides more insights into the divide-
and-conquer approach.

We first discuss the impact of placing an additional
sensor for the coverage of a surveillance spot. The
necessary and sufficient condition of the coverage of
a surveillance spot is given by (D.1). If an additional
sensor is placed into the fusion region of the spot,
both sides of inequality (D.1) increase. We now explore
the sufficient condition for maintaining inequality (D.1).
We let f(n|α, β) = X−1

n (1 − α) − X−1
n (1 − β) and

g(n|α, β) = f(n + 1|α, β) − f(n|α, β), where n ≥ 1. Our
extensive numerical experiments show that g(n|α, β) is
a monotonically decreasing function if α < β. Note that
mission-critical applications typically require low false
alarm rates (e.g., < 5%) and high detection probabilities
(e.g., > 90%). Therefore, the maximum value of g(n|α, β)
is g(1|α, β). When an additional sensor is placed in
the fusion region of the spot, the minimum increase

to the left-hand side of (D.1) is W (R)
σ2 . Accordingly, if

W (R) ≥ σ2 ·g(1|α, β), inequality (D.1) still holds when an
additional sensor is placed, and therefore the coverage
of the spot will not be breached.

With the above sufficient condition for maintaining
coverage when additional sensors are placed, we now
discuss the setting of impact region radius. Our discus-
sion has the following two cases:

Case 1):W (R) < σ2 ·g(1|α, β). Suppose the impact region
radius is smaller than 2R, placing sensors to cover the
currently treated spot can breach the coverage of the
spots out of the impact region. Therefore, the best choice
of impact region radius is 2R.

Case 2): W (R) ≥ σ2 · g(1|α, β). In this case, the impact
region radius can be smaller than 2R. However, as the
sensor placement is not known a priori, it is difficult
to derive the optimal impact region radius that mini-
mizes the network density. In this paper, we evaluate
the optimal impact region radius through numerical
experiments, which are presented in Appendix F.1.

D.3 Handling Target Location Error

The problem formulation in this paper only ensures the
detection performance at the surveillance spots. When
the target does not appear at the surveillance spots
exactly, the detection performance of the computed sen-
sor placement may not meet the user requirement. We
now briefly discuss an approach to handle this issue.
Suppose the distance between the surveillance spot and
the real position of the target, referred to as target location
error, is upper-bounded by ǫ. By replacing W (d) with
W (d+ ǫ), Eq. (3) computes the lower bound of detection
probability. Therefore, the resulted sensor placement can
meet the detection performance requirement when the
target location error does not exceed ǫ.
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Fig. E.1. The CDF of the detection probabilities at regular
or random surveillance spots.

APPENDIX E
MORE TRACE-DRIVEN SIMULATION RESULTS

In the trace-driven simulations presented in Section 6,
we evaluate the performance of sensor placement for real
vehicle trajectories. In order to extensively evaluate the
performance of our sensor placement algorithm, in this
appendix, we choose regularly or randomly distributed
surveillance spots in a 30 × 30m2 area. We evaluate
the performance of the cluster-based sensor placement
algorithm in two sets of simulations. First, 67 sensors
are placed to cover 196 surveillance spots regularly
distributed at 14× 14 grid points. Second, 10 sensors are
placed to cover 25 surveillance spots randomly scattered
in the field. We then evaluate the effectiveness of the
resulted sensor placements using the real data traces
via the approach discussed in Section 6. Fig. 1(a) and
Fig. 1(b) show the CDF of the detection probability
under the two sensor placements, respectively. From the
figures, we can see that over 90% surveillance spots are
covered in both two placements, which satisfies the re-
quired lower bound of detection probability. In Section 6,
we have discussed the reasons for the remaining 10%
surveillance spots that do not reach the requirement on
detection probability.

APPENDIX F
MORE NUMERICAL EVALUATION RESULTS

In Section 7, we have evaluated the impact of surveil-
lance spot clustering on our algorithms and compared
the divide-and-conquer placement algorithm with the
global optimal algorithm as well as a greedy algorithm.
In this appendix, we present more evaluation results on
the impacts of fusion radius, impact region radius and
decay factor. The evaluation settings can be found in
Section 7.

F.1 Fusion Radius and Impact Radius

We first evaluate the impact of fusion radius. Total 45
surveillance spots scatter randomly in the field. The
cluster-based divide-and-conquer placement algorithm
is used. We change the fusion radius R from 3 to 12.
Fig. F.1 plots the number of sensors required in the



5

5

10

15

20

25

30

35

40

3 4 5 6 7 8 9 10 11 12

T
h
e

n
u
m

b
er

o
f

se
n
so

rs
(N

)

Fusion range radius (R)
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solution computed by the placement algorithm versus
the fusion radius. From the figure, we can see that the
number of required sensors drops rapidly from 37 to
7 when fusion radius R increases from 3 to 7.6, and
gradually increases to 17 when R becomes larger. In
Appendix D.1, we discussed the optimal upper bound of
fusion radius that minimizes the network density. The
simulation result in this appendix is consistent with the
numerical results shown in Fig. D.1 in Appendix D.1,
which means that the analysis in Appendix D.1 is tight
enough to be applicable to computing the optimal fusion
radius.

We now evaluate the impact of impact region radius.
As discussed in Appendix D.2, if W (R) ≥ σ2 · g(1|α, β),
it is difficult to derive the optimal impact region radius
that minimizes the network density. In this appendix, we
conduct numerical experiments to explore the optimal
impact region radius. Note that we use the sensor place-
ment algorithm without surveillance spot clustering. In
the experiments, 255 or 196 surveillance spots are chosen
regularly or randomly in the 30×30m2 area, respectively.
Fig. F.2 plots the number of placed sensors versus the
impact region radius. We can see from the figure that, for
both the cases of regular and random surveillance spots,
the number of placed sensors has a convex relationship
with the impact region radius. The intuition behind this
result is as follows. If the impact region radius is too
small (e.g., less than 0.2R), the overlapping fusion region
of two adjacent surveillance spots may not be exploited
to place shared sensors. If the impact region radius is
close to 2R, many shared sensors may be placed into the
small area of the shared fusion region of two surveillance
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Fig. F.3. The number of sensors vs. decaying factor.

spots that are nearly 2R meters apart from each other.
Both these two cases can lead to the inefficiency of
sensor placement. Moreover, we can see from Fig. F.2
that fewer sensors are needed to cover random spots.
Intuitively, if spots are randomly distributed, multiple
spots can be in the same impact region such that a few
sensors can cover them. In contrast, the regular spots
have evener spatial distribution than the random spots,
resulting more sensors placed.

F.2 Impact of Decaying Factor

In this section, we evaluate the impact of the decaying
factor k of the signal decay model on our algorithm.
In the experiment, 45 surveillance spots are randomly
chosen in the 30× 30m2 field. Fig. F.3 plots the number
of placed sensors versus the decaying factor k with and
without the QT clustering, respectively. We can see from
the figure that the number of placed sensors increases
with the decaying factor. This result is consistent with
the intuition that more sensors are required to cover the
surveillance spots if the sensors receive weak signals
from the target due to the fast attenuation of signal
energy. Moreover, we can see from the figure that the
cluster-based placement algorithm becomes more effec-
tive in reducing sensors when the decaying factor is
larger.

F.3 Visualization of Sensor Placements

In the first set of experiments, total 15 × 15 = 225
surveillance spots are regularly distributed, as shown in
Fig. 4(a) and Fig. 4(b). The sensor placements computed
by the cluster-based divide-and-conquer algorithm and
the greedy algorithm presented in Section 7.2 are also
shown in the two figures. Total 13 and 15 sensors are
placed by the two algorithms, respectively. In the second
set of experiments, total 196 surveillance spots randomly
scatter in the field, as shown in Fig. 4(c) and Fig. 4(d).
Total 11 and 15 sensors are placed, respectively.
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