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Sensor Placement Algorithms for Fusion-based
Surveillance Networks

Xiangmao Chang, Rui Tan, Guoliang Xing, Zhaohui Yuan, Chenyang Lu, Yixin Chen, Yixian Yang

Abstract—Mission-critical target detection imposes stringent performance requirements for wireless sensor networks, such as high
detection probabilities and low false alarm rates. Data fusion has been shown as an effective technique for improving system detection
performance by enabling efficient collaboration among sensors with limited sensing capability. Due to the high cost of network
deployment, it is desirable to place sensors at optimal locations to achieve maximum detection performance. However, for sensor
networks employing data fusion, optimal sensor placement is a non-linear and non-convex optimization problem with prohibitively
high computational complexity. In this paper, we present fast sensor placement algorithms based on a probabilistic data fusion model.
Simulation results show that our algorithms can meet the desired detection performance with a small number of sensors while achieving
up to 7-fold speedup over the optimal algorithm.

Index Terms—Data fusion, target detection, sensor placement, wireless sensor networks.

✦

1 INTRODUCTION

W IRELESS sensor networks (WSNs) for mission-
critical applications (such as target detection [1],

object tracking [2], and security surveillance [3]) often
face the fundamental challenge of meeting stringent per-
formance requirements imposed by users. For instance,
a surveillance application may require any intruder to
be detected with a high probability (e.g., > 90%) and
a low false alarm rate (e.g., < 1%). Sensor placement
plays an important role in the achievable sensing per-
formance of a sensor network. However, finding the op-
timal sensor placement is challenging because the actual
sensing quality of sensors is difficult to predict due to
the uncertainty in physical environments. For instance,
the measurements of sensors are often contaminated by
noise, which renders the detection performance of a
network probabilistic.
Most existing works on sensor placement and cover-

age maintenance are based on simplistic sensing models,
such as the disc model [4]–[6]. In particular, the sensing
region of a sensor is modeled as a disc with a certain
radius centered at the position of the sensor. A sensor de-
terministically detects the targets/events within its sens-
ing region. Although such a model allows a geometric
treatment to the coverage provided by sensors, it fails to
capture the stochastic nature of sensing. Moreover, most
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works based on the disc model do not take advantage
of collaboration among sensors.
Data fusion [7] has been proposed as an effective

signal processing technique to improve the performance
of detection systems. The key advantage of data fusion is
to improve the sensing quality by jointly considering the
noisy measurements of multiple sensors. For example,
real-world experiments using MICA2 motes showed that
the false alarm rate of a network is as high as 60% when
sensors make their detection decisions independently
while the false alarm rate can be reduced to near zero
by adopting a data fusion scheme [3]. In practice, many
sensor network systems designed for target detection,
tracking and classification have employed some kind of
data fusion schemes [1], [3], [8].
A key challenge to exploit data fusion in sensor place-

ment is the increased computational cost. When data
fusion is employed, the probability of detecting a target
is dependent on the measurements of multiple sensors
near the target. Therefore, the system detection perfor-
mance of a fusion-based sensor network has a complex
correlation with the spatial distribution of sensors as well
as the characteristics of target and environmental noise.
As a result, the computational complexity of determining
the optimal sensor placement is prohibitively high in
moderate to large-scale fusion-based sensor networks.
This paper is focused on developing fast sensor place-

ment algorithms for target detection sensor networks
that are designed based on data fusion. In particular, we
aim to minimize the number of sensors that for achieving
the specified level of sensing performance. The main
contributions of this paper are as follows:

• We formulate the sensor placement problem for
fusion-based target detection as a constrained op-
timization problem. Our formulation is based on a
probabilistic data fusion model and captures several
characteristics of real-world target detection includ-
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ing target signal decay, noisy sensor measurements,
and sensors’ spatial distribution.

• We develop both global optimal and efficient divide-
and-conquer heuristics for our sensor placement
problem. By exploiting the unique structure of the
problem, the divide-and-conquer heuristics can find
near-optimal solutions at significantly lower compu-
tational cost.

• We validate our approach through extensive nu-
merical results as well as simulations based on
the real data traces collected in a vehicle detection
experiment [8]. Our best algorithm runs up to 7-fold
faster than the global optimal algorithm while using
a comparable number of sensors in the placement.

The rest of this paper is organized as follows. Sec-
tion 2 reviews related work. Section 3 introduces the
background of data fusion. In Section 4, we formulate
our sensor placement problem for fusion-based target
detection. In Section 5, we present our sensor placement
algorithms. We evaluate our algorithms via trace-driven
simulations and numerical experiments in Section 6 and
Section 7, respectively. Section 8 concludes this paper.

2 RELATED WORK

A number of prior works on sensor placement are fo-
cused on minimizing the number of sensors or maxi-
mizing the sensing quality provided by a network [4]–
[6], [9]. However, most of these works adopted the disc
sensing model [4]–[6]. In contrast, we study the sensor
placement problem based on a data fusion model that
captures stochastic characteristics of target detection.
Clouqueur et al. [9] formulate the sensor placement

problem for moving target surveillance based on path
exposure, which is computed based on a data fusion
model. Different from their work, this paper is focused
on detecting stationary targets that may appear at a set
of locations. Moreover, we develop both optimal and
efficient heuristic sensor placement algorithms. More
recently, optimal or approximate algorithms have been
proposed to place sensors for monitoring spatially cor-
related phenomena (such as the temperature in a build-
ing) [10]–[12]. The sensing models adopted in these
works quantify the mutual information [10], [11] and
entropy [12] of a continuous phenomena that is observed
by sensors. Different from these works, our problem
is formulated based on the target detection model that
aggregates the noisy measurements of sensors.
There is vast literature on stochastic signal detection

based on multi-sensor data fusion. Early work [7] focuses
on analyzing optimal fusion strategies for small-scale
wired sensor networks (e.g., a handful of radars). Recent
work on data fusion [1], [8], [13] have considered the
properties of wireless sensor networks such as sensor’
spatial distribution and limited sensing capability. In
practice, many sensor network systems designed for
target detection, tracking and classification [1], [3], [8]
have incorporated some kind of data fusion schemes to
improve the system performance.

3 PRELIMINARIES

In this section, we describe the background of this work,
which includes a single-sensor sensing model and a
multi-sensor data fusion model.

3.1 Target and Sensing Models

For many physical signals (e.g., acoustic, seismic, and
thermal radiation signals), the energy attenuates with the
distance from the signal source. Sensors detect targets
by measuring the energy of signals emitted by targets.
Denote decreasing function W (d) as the signal energy
measured by a sensor which is d meters away from the
target. We adopt a signal decay model as follows:

W (d) =

{

W0

(d/d0)k
if d > d0,

W0 if d ≤ d0,
(1)

where W0 is the original energy emitted by the target, k
is a decaying factor which is typically from 2 to 5, d0 is
a constant determined by the size of the target and the
sensor. This signal attenuation model is widely adopted
in the literature [7], [8], [14].
The measurements of a sensor are corrupted by noise.

Denote the noise strength measured by sensor i is Ni,
which follows the zero-mean normal distribution with a
variance of σ2, i.e., Ni ∼ N (0, σ2). Suppose sensor i is di
meters from the target, the signal energy it measures is
given by Ui = W (di) + N2

i . In practice, the parameters
of target and noise models are often estimated using a
training dataset before deployment.

3.2 Multi-sensor Fusion Model

Data fusion [7], [9] is a widely adopted technique for
improving the performance of detection systems. A sen-
sor network that employs data fusion is often organized
into clusters. Each cluster head is responsible for making a
final decision regarding the presence of target by fusing
the information gathered by member sensors in the clus-
ter. We adopt a data fusion scheme as follows. Sensors
send their energy measurements to the cluster head,
which in turn compares the average of all measurements
against a threshold η to make a decision regarding the
presence of the target. The threshold η is referred to as
the detection threshold.
The performance of a detection system is usually char-

acterized by false alarm rate and detection probability.
False alarm rate (denoted by PF ) is the probability of
making a positive detection decision when no target is
present. Detection probability (denoted by PD) is the
probability that a target is correctly detected. Suppose n
sensors take part in the data fusion. Under the aforemen-
tioned value fusion scheme, the false alarm rate is given

by PF = P
(

1
n

∑n
i=1 N

2
i > η

)

= 1−P

(

∑n
i=1

(

Ni

σ

)2
≤ nη

σ2

)

.

As Ni/σ ∼ N (0, 1),
∑n

i=1(Ni/σ)
2 follows the Chi-square

distribution with n degrees of freedom whose Cumu-
lative Distribution Function (CDF) is denoted as Xn(·).
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Hence, PF can be calculated by:

PF = 1−Xn

(nη

σ2

)

. (2)

Similarly, the detection probability is given by PD =
P
(

1
n

∑n
i=1

(

W (di) +N2
i

)

> η
)

and can be derived as

PD = 1−Xn

(

nη −
∑n

i=1 W (di)

σ2

)

. (3)

4 SENSOR PLACEMENT PROBLEM FOR
FUSION-BASED TARGET DETECTION

In this section, we formulate the sensor placement prob-
lem for fusion-based target detection. In Section 4.1,
we introduce the network model and assumptions. In
Section 4.2, we formally formulate the problem.

4.1 Network Model and Assumptions

We assume that targets appear at a set of known physical
locations referred to as surveillance spots, or spots for brief.
We are only concerned with the sensor placement for
surveillance spots. Surveillance spots are often chosen
before network deployment according to application
requirements. For instance, in fire detection applications
using temperature sensors, the surveillance spots can be
chosen at the venues with inflammables. In acoustic in-
truder detection applications which require the surveil-
lance over a geographic region, the spots can be chosen
densely and uniformly in the region. In Appendix D1, we
briefly discuss an approach to handling the case where
the target does not appear at the spots exactly.
Due to the spatial decay of signal energy, the sensors

far away from the target experience low Signal-to-Noise
Ratios (SNRs) and hence make little contribution to the
detection. Therefore, we assume that only the sensors
close to a surveillance spot participate in the data fusion.
For any surveillance spot, we define the fusion region as
the disc of radius R centered at the spot. The radius
R is referred to as fusion radius hereafter. Fusion radius
plays an important role in the detection performance of
a network. On one hand, a conservative fusion radius
confines sensors’ detection capability despite they may
contribute to the surveillance spots outside the fusion
radius. On the other hand, a large fusion radius may
result in poor detection performance by fusing the irrel-
evant measurements from distant sensors. The optimal
fusion radius is dependent on network density and
characteristics of targets and noise. The detailed analysis
of the optimal fusion radius can be found in Appendix D.
Sensors within the fusion region of each surveillance

spot form a cluster to detect whether a target is present
at the surveillance spot by comparing the average of
all energy measurements of the sensors in the cluster
with a threshold, as described in Section 3.2. A cluster
head is selected to perform data fusion for each detection
cluster. For instance, the sensor closest to the surveillance

1. All appendices can be found in the supplemental file of this paper.

spot may serve as the cluster head. We introduce the
following definition.
Definition 1: A sensor is a dedicated sensor if it is only

within the fusion region of a surveillance spot; a sensor
is a shared sensor if it is within the fusion regions of at
least two surveillance spots.

4.2 Problem Formulation

We define the following notation before we formally
formulate the problem.

1) A represents the surveillance field where total K
surveillance spots are located. T = {tj|1 ≤ j ≤ K}
represents the set of surveillance spots, where tj =
(xj , yj) ∈ A is the coordinates of the jth spot.

2) Cj , nj and ηj are the fusion region of tj , the number
of sensors within Cj , and the detection threshold
for tj , respectively.

3) S = {si|1 ≤ i ≤ N} represents the sensor placement,
where si = (xi, yi) ∈ A is the coordinates of the ith

sensor and N is the total number of sensors. |S| is
the cardinality of S, i.e., |S| = N .

4) PFj
and PDj

are the false alarm rate and detection
probability of tj , which can be calculated by (2) and
(3), respectively.

We quantify the detection performance by a new
metric called (α,β)-coverage, which is defined as follows.
Definition 2 ((α,β)-coverage): Given two real numbers,

α ∈ (0, 1) and β ∈ (0, 1), the surveillance spot tj is (α,β)-
covered if PFj

≤ α and PDj
≥ β.

The (α,β)-coverage defines the sensing quality pro-
vided by the network at a surveillance spot. Our problem
is formulated as follows.
Problem 1: Given a surveillance field A and a set of

surveillance spots T, find a list of detection thresholds
{ηj|1 ≤ j ≤ K} and a sensor placement S such that the
number of sensors |S| is minimized subject to that each
surveillance spot in T is (α,β)-covered.
The solution of Problem 1 includes the number of

sensors, the coordinates of each sensor, and the detection
thresholds for all spots. Therefore, the total number
of variables is 1 + 2N + K . By exploiting the optimal
detection thresholds, the number of variables in the
problem can be reduced. Specifically, according to the
Neyman-Pearson lemma [7], PDj

is maximized when PFj

is set to its upper bound. Therefore, solving PFj
= α

yields the optimal detection threshold ηj =
σ2X−1

nj
(1−α)

nj
.

Using the optimal detection threshold, each surveillance
spot is (α,β)-covered if and only if the detection prob-
ability for each spot is greater than β, or equivalently,
min1≤j≤K{PDj

} ≥ β. Hence, only 1+ 2N variables need
to be determined, i.e., N and S = {(xi, yi)|1 ≤ i ≤ N}.
Accordingly, Problem 1 is simplified as follows.
Problem 2: Given a surveillance field A and a set of

surveillance spots T, find a sensor placement S such
that the number of sensors |S| is minimized subject to
min1≤j≤K{PDj

} ≥ β.
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We show that Problem 2 is a non-linear and non-
convex optimization problem. The details can be found
in Appendix A.

5 SENSOR PLACEMENT ALGORITHMS

A straightforward optimal solution for Problem 2 is to
incrementally iterate N from 1 to search for the optimal
sensor placement. In each iteration, min1≤j≤K{PDj

} is
maximized. Once the constraint min1≤j≤K{PDj

} ≥ β
is satisfied, the global optimal solution is found. As
shown in Appendix A, we need to solve a non-linear
and non-convex optimization problem in each iteration.
In this work, we apply a non-linear programming solver
based on the Constrained Simulated Annealing (CSA)
algorithm [15], which is a global optimal algorithm
that converges asymptotically to a constrained global
optimum (Theorem 1 of [15]). However, the complexity
of CSA, like other stochastic search algorithms, increases
exponentially with respect to the number of variables
[15]. Therefore, for a large-scale placement problem, the
global optimal solution becomes prohibitively expensive.
More details about the global optimal solution and its
complexity can be found in Appendix B. In this section,
we propose an efficient divide-and-conquer approach
and heuristic sensor placement algorithms.

5.1 Divide-and-Conquer Approach

A straightforward divide-and-conquer approach is to
cover surveillance spots one by one using the CSA
solver and then combine all local solutions into a global
solution. As the cost for finding each local solution is
small, the overall time complexity will be polynomial
with respect to the number of surveillance spots. How-
ever, a key challenge for implementing this approach
is that the local problems (i.e., sensor placements for
individual surveillance spots) are dependent, because the
shared sensors contribute to the detection performance
of multiple fusion regions. As a result, solving the local
problems separately without considering the interdepen-
dence between local solutions results in an inefficient
solution. We now illustrate this issue using an example.
In the example, we use the following parameters for

the target and sensing model (defined in Section 3.1):
W0 = 0.65, d0 = 1, k = 2, σ2 = 0.1. We aim to
achieve (0.01, 0.9)-coverage for each surveillance spot,
i.e., α = 0.01 and β = 0.9. If there exists only one spot t1,
two sensors are required, as shown in Fig. 1(a). Similarly,
if two spots t1 and t2 far away from each other are to be
covered, we need to place two sensors to cover each of
them. When t1 and t2 are 1.2 meters apart, their fusion
regions overlap. In such a case, three sensors are found
by the global optimal solution to cover t1 and t2, as
shown in Fig. 1(b). In the optimal placement, there are
two dedicated sensors (s2, s3) and one shared sensor (s1).
This example shows that the number of sensors can be
reduced by exploiting the overlaps between the fusion
regions of nearby surveillance spots. However, if the

t1

s1

s2

R

(a)

t1 t2s1

s2

s3

R R

(b)

t2

2R
R

t1

t3

s1

s2
s3

s4

surveillance spot
sensor

fusion range
impact region

(c)

Fig. 1. Numerical examples (W0 = 0.65, d0 = 1, k = 2,
σ2 = 0.1, α = 0.01, β = 0.9, R = 1.6m). (a) A spot is
covered by two sensors; (b) Two spots are covered by
only three sensors due to the fusion region overlap; (c)
An example of the divide-and-conquer approach.

coverage of each surveillance spot is treated separately,
four sensors will be placed. Such inefficiency is the result
of ignoring the interdependence between local solutions.

We now describe the basic idea of our divide-and-
conquer approach. We define the impact region of a
surveillance spot as the disc of radius 2R centered at
the spot, as illustrated in Fig. 1(c). We denote the impact
region of tj as Aj . Any surveillance spot that falls in the
impact region of tj shares part of the fusion region with
it. In our approach, the surveillance spots are covered
one by one in iterations. When tj is processed, we first
check if the sensors that are placed within Aj in previous
iterations can cover tj and all the surveillance spots
within Aj , and additional sensors are then placed if
necessary. The key idea of this approach is to reduce the
total number of sensors in the global solution by taking
advantage of the shared sensors that appear in multiple
local solutions. We now illustrate this approach using the
following example. Three surveillance spots need to be
covered in Fig. 1(c). We first compute a local solution for
the impact region of t1 so that both t1 and t2 are covered.
In the second iteration, we compute a local solution for
the impact region of t2 to cover t2 and t3. As t2 has been
covered by the previous local solution, we only need to
place additional sensors in the fusion region of t3.

5.2 Divide-and-Conquer Sensor Placement

In this section, we present our divide-and-conquer sen-
sor placement algorithm in detail. In the divide step, for
each surveillance spot tj , we find the set of spots within
the impact region of tj , which is denoted as Tj . In the
conquer step, for each surveillance spot tj , we place the
fewest additional sensors within the fusion region of tj
to cover tj and its neighboring spots in Tj . The opti-
mization is implemented by the aforementioned CSA
solver. The pseudo code of the algorithm can be found
in Appendix C. Note that shared sensors are favored
over dedicated sensors by the optimization process as
they can significantly reduce the number of sensors
required to cover multiple surveillance spots (including
tj and all spots within its impact region). However, as
these sensors are only placed in the fusion region of
tj , the detection performance of other surveillance spots
outside of Aj will not be affected.
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A key advantage of the divide-and-conquer placement
algorithm is that the sensors placed in previous iterations
can be reused by the current local solution. As a result,
the sensors that are already placed in the shared fusion
regions can be utilized for covering the current spot.
However, a shortcoming of this strategy is that the local
sensor placement of a surveillance spot may become
less efficient as more shared sensors are placed to cover
neighboring spots in later iterations. In the extreme case,
a dedicated sensor may become redundant if the shared
sensors placed in later iterations are enough to cover
the spot. The cause of this issue is the interdependence
between local solutions.
We now describe a refinement process to reduce ded-

icated sensors in the placement yielded by the divide-
and-conquer algorithm. In each iteration of the refine-
ment process, we treat each surveillance spot one by one.
Specifically, we first remove all dedicated sensors of tj
and then run the conquer step of the divide-and-conquer
algorithm to cover all spots in Tj , yielding a candicate
placement. The candicate placement is accepted if it
has fewer sensors than the previous placement. If the
number of sensors cannot be reduced after an iteration,
the refinement process terminates. We do not remove
any shared sensors in the placement, because otherwise
the coverage of neighboring surveillance spots may be
affected. The pseudo code and convergence analysis of
the refinement process can be found in Appendix C.

5.3 Cluster-based Divide-and-Conquer

In this section, we discuss a cluster-based divide-and-
conquer approach that improves the performance of the
algorithms presented in Section 5.2 in large-scale dense
sensor networks. Suppose the refinement process pre-
sented in Section 5.2 has M iterations before termination,
the CSA solver is invoked for total (1 + M) · K times,
which incurs high computational cost when the number
of surveillance spots (i.e., K) is large. Moreover, once a
sensor is placed within the shared fusion region between
two spots, its position remains unchanged. Although
this property is key to ensure the convergence of the
refinement process, it may result in inefficient sensor
placement. This is because the sensor placement that is
initially optimal for a spot may become suboptimal as
more shared sensors are placed within the fusion region
of the spot. To address these issues, surveillance spots
are grouped into clusters according to their proximity.
The CSA solver is then executed for each cluster of
spots. We employ a greedy clustering algorithm called
the Quality Threshold (QT) algorithm [16] to organize
the surveillance spots into clusters whose members are
geographically close to each other while minimizing the
total number of clusters. We define the impact region
of each cluster as the disc of radius 2R centered at the
cluster head (which is a spot identified by QT). Denote
L as the number of clusters, Al as the impact region of
the cluster whose cluster head is tl, and Tl as the set of
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Fig. 2. Sensor placement for a real vehicle detection
experiment [8]. The surveillance spots are chosen based
on the trajectories of three AAV runs (AAV3-5), which
cover the intersection of three roads. The dotted circles
are the impact regions of clusters.

surveillance spots in Al. We run the divide-and-conquer
algorithm and its refinement process for {Al|1 ≤ i ≤ L}
and {Tl|1 ≤ i ≤ L}. When the surveillance spots are
densely distributed, L is much smaller than K . Hence,
the number of invocations of the CSA solver is reduced
from (1+M)·K to (1+M)·L. Moreover, the surveillance
spots close to each other are always clustered together
and their sensor placement is jointly optimized, which
can significantly reduce the total number of sensors.

6 TRACE-DRIVEN SIMULATIONS

We conduct extensive simulations using the real data
traces collected in the DARPA SensIT vehicle detection
experiments [8]. We refer to [8] for detailed setup of
the experiments. The dataset used in our simulations
includes the ground truth data and the acoustic signal
energy measurements recorded by 17 nodes at a sam-
pling period of 0.75 seconds, when an Assault Amphib-
ian Vehicle (AAV) drives through a road. The ground
truth data include the positions of sensors and the track
of the AAV recorded by a GPS device.
The data traces used in our simulations include the

time series recorded for 9 vehicles (AAV3-11). We use the
data trace of AAV3 as the training dataset for estimating
the energy decay model. The estimated parameters of
the signal decay and noise models are: W0 = 0.51 (after
normalization), d0 = 2.6m, k = 2, σ2 = 0.05. The bounds
of false alarm rate and detection probability (i.e., α and
β) are set to be 1% and 90%, respectively. The fusion
range R is set to be 21m, which is the optimal value
obtained in Appendix D.
We choose the surveillance spots based on the tra-

jectories of three AAV runs (AAV3-5), which cover the
intersection of three roads as shown in Fig. 2. Specifically,
the surveillance spots are chosen regularly on the trajec-
tory of each AAV run with equal distance. The sensor
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placement computed using the clustered-based divide-
and-conquer approach is plotted in the figure, which
has total 49 sensors. Note that the sensor density of
our sensor placement is consistent with that of the real
deployment in the DARPA SensIT experiments [8].
To evaluate the effectiveness of our placement, we

check the coverage of each surveillance spot as follows.
For each surveillance spot, the AAV appears for 1000
times and the detection probability is calculated as the
ratio of the number of successful detections to the num-
ber of appearances of the AAV. As sensors’ positions are
different from the real deployment in [8], the real data
cannot be directly used in our simulations. When a sen-
sor in the simulation samples an energy measurement,
we compute the distance between the sensor and the
surveillance spot. The sensor’s measurement is then set
to be the real measurement gathered at the same distance
to the AAV. We note that such an approach accounts for
several realistic factors. For instance, there exists consid-
erable deviation between the measurements of sensors
and the analytical signal decay model estimated by the
training data. This deviation is due to various reasons
including terrain and changing noise levels caused by
wind. Moreover, we adopt a baseline sensor placement
algorithm. As only the sensors in the fusion region will
take part in data fusion, in the baseline algorithm, a
certain number of sensors are randomly placed in the
union area of the fusion regions of all spots.
Fig. 3 plots the Cumulative Distribution Function

(CDF) of the detection probabilities at the surveillance
spots shown in Fig. 2. The results of our divide-and-
conquer placement algorithm and the baseline algorithm
are labeled with “D&C” and “random”, respectively.
We can see from the figure that, with our divide-and-
conquer placement algorithm, about 90% surveillance
spots satisfy the required lower bound of detection
probability. There are two reasons for the remaining 10%
surveillance spots that do not satisfy the requirement on
detection probability. First, the aforementioned deviation
between the data traces and the estimated signal decay
model can lead to the breach of coverage. Second, al-
though we conduct a large number of detections at each
surveillance spot to estimate the detection probability,
there still exists deviation between the estimated value
and the true detection probability. We can see from
Fig. 3 that, when the baseline algorithm places the same
number of sensors as ours (i.e., 49 sensors), only 67%
surveillance spots satisfy the requirement on detection
probability. When the baseline algorithm places up to 80
sensors, its performance is comparable to our solution.
Fig. 4 plots the number of sensors placed by our

cluster-based divide-and-conquer approach versus the
requirement on detection probability, i.e., β. We can see
that the number of sensors increases with β. Moreover,
if sensors have higher noise level (i.e., greater σ2), more
sensors will be required for covering the spots. More
extensive evaluation results based on the real data traces
can be found in Appendix E.
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Fig. 5. The number of sensors vs. the number of spots.
(a) Regular spots; (b) Random spots.

7 NUMERICAL RESULTS

In this section, we conduct numerical experiments to
evaluate the performance of the sensor placement al-
gorithms proposed in Section 5. We first evaluate the
impact of surveillance spot clustering on our algorithms.
We then compare the divide-and-conquer placement al-
gorithm with the global optimal algorithm and a greedy
algorithm. More evaluation results on the impacts of
fusion radius, impact region radius and decaying factor
can be found in Appendix F.
The parameters of the signal decay and noise models

are set as follows: W0 = 400, d0 = 1, k = 2, σ2 = 1.
The surveillance field A is a 30× 30m2 square area. The
surveillance spots are chosen regularly (i.e., on regular
grid points) or randomly. The bounds of false alarm
rate and detection probability (i.e., α and β) are set to
be 1% and 90%, respectively. The data fusion range is
set to 7.76m, which is the optimal value derived in
Appendix D. The impact region radius is set to be 2R.

7.1 Impact of Clustering

We first evaluate the impact of the spot clustering. We
run the divide-and-conquer algorithm with and without
QT clustering for total 4 regular and 4 random layouts,
respectively. The results are shown in Fig. 5(a) and
Fig. 5(b). Fig. 5(a) plots the number of placed sensors
versus the number of surveillance spots regularly dis-
tributed. The curve labeled with “clustered” and “un-
clustered” represents the results computed by the divide-
and-conquer placement algorithm with and without QT
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Fig. 8. The number of sensors vs. the number of surveil-
lance spots. (a) Regular spots; (b) Random spots.

clustering, respectively. Fig. 5(b) shows the results for
random surveillance spots. We can see that the cluster-
based placement algorithm can effectively reduce the
number of required sensors. For instance, in Fig. 5(a),
when there are total 15 × 15 = 225 surveillance spots,
172 sensors are needed without clustering while only
13 sensors are needed when clustering is employed.
Another interesting observation is that the number of
sensors required does not increase considerably with the
number of surveillance spots. For instance, in Fig. 5(b),
total 7 sensors are enough to cover 100 surveillance
spots, and total 11 sensors are enough to cover 200
surveillance spots.

7.2 Sensor Placement Performance

We now compare our divide-and-conquer algorithm
against the global optimal algorithm for small networks.
Fig. 6 shows the execution time of different algorithms
versus the number of sensors placed for seven random
surveillance spot layouts. We can see that the divide-
and-conquer algorithm (labeled as D&C in Fig. 6) is
up to 7-fold faster than the global optimal algorithm.
Meanwhile, Fig. 7 shows that the divide-and-conquer
algorithm places a comparable number of sensors as the
optimal algorithm.
We also compare our divide-and-conquer algorithm

against a greedy algorithm in large-scale networks. In
the greedy algorithm, sensors are also organized into
detection clusters centered at surveillance spots. In each
iteration, we place a sensor randomly in the fusion

region of the surveillance spot that has the minimum
detection probability. The algorithm terminates when
every surveillance spot is (α,β)-covered. This algorithm
is similar to several greedy sensor placement algorithms
employed in previous work [9], [17]. Fig. 8(a) shows the
results of 4 random layouts with 4 × 4, 5 × 5, 10 × 10,
and 15 × 15 spots. Fig. 8(b) shows the results of four
random layouts with 20, 40, 100 and 200 spots. We can
see that our cluster-based divide-and-conquer algorithm
consistently outperforms the greedy algorithm in all
layouts. The average performance gain is about 30%.
The visualization of the sensor placements generated by
our algorithm and the greedy algorithm can be found in
Appendix F.

8 CONCLUSION

In this paper, we present both global optimal and effi-
cient divide-and-conquer heuristics for sensor placement
problem. By exploiting the unique structure of the prob-
lem, the divide-and-conquer algorithms can find near-
optimal solutions at significantly lower cost. We validate
our approach through extensive numerical results as
well as simulations based on the real data traces collected
in a vehicle detection experiment. Our best algorithm
runs up to 7-fold faster than the optimal algorithm while
using a comparable number of sensors in the placement.
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