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Abstract—Recent years have seen the growing deployments of Cyber-Physical Systems (CPSs) in many mission-critical applications

such as security, civil infrastructure, and transportation. These applications often impose stringent requirements on system sensing

fidelity and timeliness. However, existing approaches treat these two concerns in isolation and hence are not suitable for CPSs where

system fidelity and timeliness are dependent on each other because of the tight integration of computational and physical resources. In

this paper, we propose a holistic approach called Fidelity-Aware Utilization Controller (FAUC) for Wireless Cyber-physical Surveillance

(WCS) systems that combine low-end sensors with cameras for large-scale ad hoc surveillance in unplanned environments. By

integrating data fusion with feedback control, FAUC can enforce a CPU utilization upper bound to ensure the system’s real-time

schedulability although CPU workloads vary significantly at runtime because of stochastic detection results. At the same time, FAUC

optimizes system fidelity and adjusts the control objective of CPU utilization adaptively in the presence of variations of target/noise

characteristics. We have implemented FAUC on a small-scale WCS testbed consisting of TelosB/Iris motes and cameras. Moreover,

we conduct extensive simulations based on real acoustic data traces collected in a vehicle surveillance experiment. The testbed

experiments and the trace-driven simulations show that FAUC can achieve robust fidelity and real-time guarantees in dynamic

environments.

Index Terms—Real-time detection, data fusion, CPU utilization control, cyber-physical systems.

Ç

1 INTRODUCTION

CYBER-PHYSICAL System (CPS) is a new class of embedded
systems that tightly integrate computational and

physical resources. Recent years have seen the growing
deployments of CPSs in many mission-critical applications
such as security, civil infrastructure, and transportation.
These applications often impose stringent performance
requirements including sensing fidelity and timeliness. In this
work, we define fidelity as a system’s capability of reaching
correct conclusions even when the sensing results from the
dynamic physical environment are noisy. In addition to
fidelity, timeliness is another fundamental requirement as
many computational tasks in a CPS must complete within
tight deadlines in order to avoid undesirable or even
catastrophic consequences.

In this work, we investigate the problem of addressing
both fidelity and timeliness requirements of Wireless
Cyber-physical Surveillance (WCS) systems. A typical
WCS system consists of battery-powered cameras, sensors,

and embedded computers that communicate through
wireless networks. Without the reliance on wired power/
communication infrastructure, WCS systems can be rapidly
deployed in an ad hoc manner for large-scale surveillance
in unplanned environments. This is a key advantage for
many critical domains such as security, transportation, and
natural/physical hazard monitoring. In 2008, a number of
wirelessly connected cameras were deployed for real time
and high-fidelity surveillance over a 26-mile course of the
Boston Marathon which attracted over 20,000 runners and
more than one million spectators [1]. In other scenarios like
border security, WCS systems need to provide surveillance
and intruder detection during an extended period of time
up to several years. Because of the tight budget on power
resources and network bandwidth, WCS systems often
operate in an on-demand fashion where low-end (e.g.,
acoustic/infrared/magnetic) sensors serve as “sentinels”
that wake up high quality but power consuming sensors
(e.g., pan-tilt-zoom cameras) once a possible target is
detected. High-quality sensing results (e.g, images) are
then transmitted to an embedded computer for high-fidelity
object detection and recognition.

Both fidelity and timeliness are essential requirements of
the WCS systems described above. As an example, users
may require any target of interest to be detected “at high
fidelity (both missing and false alarm rates lower than
1 percent) and in real time (delay within 5 seconds).”
However, a key challenge is that the timeliness and fidelity
of a WCS system are tightly dependent on each other. First,
the performance of low-end sensors is extremely sensitive
to dynamics in the physical environment. It is shown in [2]
that individual dual-axis magnetometers on Mica2 motes
[3] can exhibit up to 60 percent false alarm and missing
rates. As low-end sensors trigger image capture and
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processing, their poor fidelity can significantly affect the
workload and real-time performance of the system. For
instance, the false alarms from low-end sensors not only
lead to energy waste of cameras but also generate extra
computation workload for image processing. On the other
hand, reducing CPU workload and camera activity un-
necessarily may lead to the increased target missing rate.

In this paper, we argue that the fidelity and real-time
concerns of WCS systems must be jointly addressed because
of the tight integration of system computational and physical
components. Numerous real-time scheduling algorithms
have been proposed to achieve real-time guarantees for
computing systems. However, many of them require detailed
knowledge of CPU workload while WCS systems are subject
to stochastic workload because of the impact of physical
dynamics. Several recent approaches [4], [5], [6] can handle
variable system workload. However, they are incognizant of
system fidelity requirements. On the other hand, although
sensor calibration [7] and signal processing [8] techniques are
available to improve the fidelity of a sensing system, they do
not account for the impact on system timeliness. For instance,
minimizing target missing rate often leads to a high false
alarm rate [8], which in turn poses undesirable CPU workload
for a WCS system as discussed earlier.

In this work, we propose a novel approach to holistically
addressing the fidelity and timeliness requirements of WCS
systems. Our approach integrates multisensor data fusion
[8] with feedback control to achieve adaptive fidelity and
real-time guarantees for WCS systems operating in dynamic
environments. Specifically, we make the following major
contributions in this paper:

1. We propose a novel problem formulation for the
fidelity-aware utilization control problem where a
given upper bound on the CPU utilization is enforced
while system detection error rate is minimized. Our
formulation is based on two rigorous performance
models that characterize the fusion-based detection
performance and the expected CPU utilization in-
duced by processing stochastic detection results.

2. We develop Fidelity-Aware Utilization Controller
(FAUC) that adaptively adjusts the data fusion
threshold to bound the CPU utilization according
to user requirement. At the same time, FAUC
minimizes the system detection error rate while
ensuring real-time schedulability.

3. We have implemented FAUC on a small-scale WCS
testbed consisting of TelosB motes, Iris motes, and
cameras. Our extensive experiments on light and
acoustic target detection show that FAUC can
achieve robust fidelity and utilization control in the
presence of significant physical dynamics and
unreliable wireless links.

4. We conduct extensive simulations based on real
acoustic data traces collected in a military vehicle
surveillance experiment. The simulations evaluate
the performance of FAUC under a wide range of
settings of network size and signal-to-noise ratio.

The rest of the paper is organized as follows: Section 2
reviews related work. Section 3 presents the background on
sensing and data fusion models. Section 4 describes our
problem and provides an overview of our approach.
Sections 5 and 6 model system performance and present the

design of FAUC, respectively. Sections 7 and 8 present the
testbed experiment results and trace-driven simulation
results, respectively. Section 9 concludes the paper.

2 RELATED WORK

Data fusion [8] is an effective signal processing technique
that improves the fidelity of sensing systems by mitigating
the impact of noise. Most previous studies [8] focus on
analyzing the optimal fusion strategy of a given sensing
system. In our earlier work [9], [10], we study the impact of
data fusion on spatial and temporal coverage of large-scale
sensor networks. Sensor calibration can also improve system
fidelity by correcting sensor biases. In [11], the biases of light
sensors are estimated by solving the equations that correlate
their measurements. Similarly, in [7], the parameters of
ranging sensors are estimated based on pairwise range
measurements. In [12], sensors are jointly calibrated to
improve the system-level performance of fusion-based
sensor networks. The above approaches calibrate sensors
according to known ground-truth inputs and hence work in
an open-loop fashion. In our recent work [12], we develop a
feedback-based calibration algorithm that maintains system
sensing fidelity in the presence of environmental dynamics.
However, data fusion and sensor calibration are not
concerned with meeting timing constraints.

Feedback control techniques have shown great promise
in providing real-time guarantees for CPSs by adapting to
workload variations based on dynamic feedback. For
instance, feedback-based CPU utilization control [4], [5],
[6] has been demonstrated to be an effective way of meeting
the end-to-end deadlines for real-time systems. However,
most of these algorithms rely on task rate adaptation and
hence cannot handle unpredictable task rate variations that
may be caused by low system fidelity. Different from these
studies, we aim to jointly address the requirements on
system fidelity and CPU utilization of WCS systems.

3 PRELIMINARIES

In this section, we present the preliminaries of our work,
which include sensor measurement and data fusion models.

3.1 Sensor Measurement Model

We assume that sensors measure the energy of received
signals for event detection. Let si denote the signal energy
received by sensor i, which is affected by several factors and
varies for different sensors. First, each sensor may have its
hardware bias. Second, the measurement value is stochastic
as it inevitably contains environmental noise. Third, the
signal path loss between the event and sensor varies with
distance and terrain. Depending on the hypothesis that the
target is absent (H0) or present (H1), the measurement of
sensor i, denoted by yi, is given by

H0 : yi ¼ ni; H1 : yi ¼ si þ ni;

where ni is the energy of noise in sensor i’s measurement.
We assume that the noises of sensors are independent and
follow the normal distributions, i.e., ni � Nð�i; �2

i Þ, where
�i and �2

i are the mean and variance of ni, respectively. The
sensor measurement model described above has been
widely adopted in the literature of event detection [13]
and also has been empirically verified [14], [15]. However,
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many previous studies assume that the parameters of the
above model, i.e., si, �i, and �i, are known a priori.
Unfortunately, this assumption often does not hold in
reality because of the stochastic nature of sensing. In this
paper, we assume that these parameters are unknown.

3.2 Data Fusion Model

Data fusion [8] has been proposed as an effective signal
processing technique to improve the system performance of
sensing systems. A system based on data fusion is usually
organized into multiple clusters. Each cluster has a cluster
head that gathers information from member sensors and
makes the system decision regarding the presence of the
target. We adopted a simple data fusion model where the
system decision is made by comparing the sum of member
sensors’ measurements against a threshold T , which is
referred to as the fusion threshold hereafter. The cluster head
makes a positive decision if the sum of measurements
exceeds the threshold. Such a model has been adopted by
several previous studies [9], [12]. Suppose there areN sensors
in a cluster. The sum of measurements, denoted byY , is given
by Y ¼

PN
i¼1 yi. Let eH0 and eH1 represent the detection

decisions that the target is absent and present, respectively.
Denote S ¼

PN
i¼1 si, � ¼

PN
i¼1 �i and �2 ¼

PN
i¼1 �

2
i . Depend-

ing on whether the target is present, the sum of sensor
measurements follows the normal distribution, i.e., Y jH0 �
Nð�; �2Þ or Y jH1 ¼

PN
i¼1 � Nð�þ S; �2Þ. A target is detected

only if the sum of sensor measurements is greater than the
threshold T , i.e., Y > T . The detection of a target is inherently
stochastic because of the random noises in sensor measure-
ments. The system detection performance is characterized by
two metrics, namely, the false alarm rate (denoted byPF ) and
missing probability (denoted by PM ). PF is the probability of
deciding eH1 when no target is present, and PM is the
probability of deciding eH0 when a target is present. PF and
PM can be computed by PF ¼ QðT��� Þ and PM ¼ Qð� T���S

� Þ,
where QðxÞ is the Q-function of the standard normal
distribution, i.e., QðxÞ ¼ 1ffiffiffiffi

2�
p
Rþ1
x expð� t2

2Þdt.

4 PROBLEM STATEMENT

In this section, we describe the problem of fidelity-aware
utilization control. We first discuss the system model in
Section 4.1. We then formulate our problem and provide a
brief overview of our approach in Section 4.2.

4.1 System Model

We assume that a Wireless Cyber-physical Surveillance
system consists of a base station and multiple sensor clusters.
Each cluster is composed of low-end and high-quality sensors.
The low-end sensors (e.g., acoustic and infrared sensors)
usually have a low manufacturing cost and low energy
consumption. As a result, their sensing capability is often
limited. As we discussed in Section 3.2, the system
performance can be improved by employing data fusion
on the measurements of low-end sensors. The high-quality
sensors (e.g., pan-tilt-zoom cameras [16] and active radars
[17]) can provide high-accuracy sensing and detection at the
price of higher manufacturing cost and energy consumption.
In this paper, we assume that there is only one high-quality
sensor in each cluster. However, our approach can be easily

extended to the case of multiple high-quality sensors, where
they may fuse their measurements to yield a detection result.

In accordance with the heterogeneous system architec-
ture, we adopt a two-phase target detection process. Initially,
the low-end sensors periodically sense the environment
while the cameras remain asleep because their power
consumption is typically several orders of magnitude
higher than low-end sensors [3]. The cluster head fuses
data from low-end sensors and makes a decision according
to the threshold T . If it is a positive decision, the cluster
head then activates the camera to capture an image of the
surveillance region, and sends the image to the base station.
Finally, a target recognition algorithm is executed by the
base station to process the images and detect whether a
target of interest is present. The key advantage of such a
two-phase target detection scheme is that the system power
consumption can be significantly reduced without sacrifi-
cing the detection performance. In particular, most false
alarms can be filtered out by the data fusion of low-end
sensors and hence the high-quality sensors (i.e., cameras)
can sleep for most of the time and be switched on only
when the probability of target presence is high. As a result,
the system can achieve high-fidelity surveillance for
extended lifetime in unplanned environments without
wired power infrastructure. We note that, our approach is
not restricted to the particular WCS system architecture
described above. It can be applied to similar heterogeneous
system architectures where computation intensive tasks are
triggered by the sensing results of low-power sensors.

4.2 Problem Formulation

Our objective is to achieve satisfactory timeliness and fidelity
of WCS systems. We now describe the formulation of our
problem and provide a brief overview of our approach.

To guarantee the end-to-end timeliness required by a
WCS system, the delay of each stage of the entire process of
sensing, communication, and computing must be carefully
considered. In previous studies [18], achieving real-time
sensor sampling, data fusion, and wireless communications
in surveillance systems has been extensively studied. In this
paper, we focus on providing the real-time guarantee on
target detection in base station that must run computation-
intensive tasks to process high-quality sensor data such as
images. Specifically, we control the CPU utilization to
enforce appropriate schedulable utilization bounds, e.g., the
Liu and Layland bound for rate-monotonic scheduling [19],
despite significant uncertainties in system workloads. In the
meantime, utilization control can also enhance system
survivability by providing overload protection against
workload fluctuation [20]. Our approach can be integrated
with previous solutions [18] to ensure the end-to-end
timeliness of a WCS system. For instance, the deadline of
target detection can be ensured by enforcing subdeadlines
for sensing, communication, and computing separately. We
note that the delay of computation is often significant when
complex sensing data such images need to be processed.

Several challenges must be addressed to satisfy both
timeliness and fidelity requirements simultaneously for WCS
systems. First, the timeliness and fidelity performance of a
system are highly dependent on each other. For instance,
although the false alarms of low-end sensors can be dealt with
by turning on the camera more frequently, it inevitably
increases CPU workload and impedes system timeliness. On
the other hand, reducing CPU workload and camera activity
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aggressively may lead to an increased target missing rate.
Second, system CPU workloads are highly variable because
of several factors such as uncertain image processing time
and stochastic detection performance of low-end sensors. The
probability that the camera is activated and an image needs to
be processed is highly dependent on the data fusion results,
which in turn are affected by time-varying noise and target
characteristics in dynamic environments.

In this paper, we propose a control-theoretic solution
called Fidelity-Aware Utilization Controller to address
these challenges. FAUC employs a feedback controller to
enforce the specified upper bound on CPU utilization of
base station while minimizing the overall system detection
error rate. By taking advantage of the adaptivity of the
controller, FAUC allows a WCS system to achieve robust
assurance on timeliness and fidelity in dynamic environ-
ments. We formally formulate our problem as follows:

Problem 1 (Fidelity-Aware Utilization Control). To find a
stable and converging control algorithm for the fusion
threshold T at the cluster head based on the feedback of the
base station, such that the expected CPU utilization IE½u� is
upper bounded by us while the detection error rate Pe is
minimized, where us is a constant that ensures system’s real-
time schedulability.

In the above formulation, the CPU utilization bound us is
a predefined user input to the controller, and we focus on
the utilization control of only one cluster. When there exist
multiple clusters in the system, their CPU utilization
bounds can be determined by schedulability analysis [19]
and then separately enforced by multiple FAUC controllers.
The detection error rate Pe in Problem 1 is the probability
that the system makes a wrong detection decision, which
jointly accounts for false alarms and misses. Such a metric is
widely adopted in the literature of sensing systems [8]. We
choose fusion threshold T as the control input as it affects
both the system detection performance and timeliness.
Specifically, when T is lower, the missing rate is lower
while more false alarms may be triggered by noise leading
to higher system workload. On the other hand, a higher T
reduces both false alarm rate and system workload while a
target is more likely to be missed.

Fig. 1 illustrates the architecture of FAUC and a WCS
system. We now describe the three main components in the
system architecture. 1) Two-phase fusion-based target detection
(Section 5). The measurements of low-end sensors are first
fused by the cluster head. If a positive decision is made, the
camera is activated and the captured image is then processed
by the base station for target recognition. 2) Utilization feedback
control loop (Sections 6.1 and 6.2). The FAUC utilization

controller adaptively calibrates the fusion threshold T to
enforce a user-specified utilization upper bound when the
system workloads vary significantly as a result of stochastic
camera activations and uncertain image processing time. The
utilization monitor measures the average CPU utilization
and provides feedback for calibrating the fusion threshold.
The controller design is based on analytical models of CPU
utilization and system fidelity. 3) Detection performance
optimization loop (Sections 6.3 and 6.4). FAUC employs the
k-means clustering algorithm [21] to periodically estimate
system parameters (e.g., target and noise models) from
sensor measurements. The results are used to optimize the
fusion threshold and adjust the control objective of CPU
utilization. In the presence of physical dynamics (e.g.,
variations of target/noise energy), such an optimization
mechanism adapts utilization control objectives and main-
tains satisfactory system fidelity.

5 PERFORMANCE MODELING

In this section, we formally model the performance of WCS
systems. The results provide a foundation for the design of
FAUC controller in Section 6. We first model the system
detection error rate in Section 5.1. The impact of commu-
nication packet loss is analyzed in Section 5.2. Finally, we
model system CPU utilization in Section 5.3.

5.1 System Detection Performance

Before formally modeling the system detection perfor-
mance, we first make the following assumptions. First, the
probability that a target is present at any time instance is Pa,
which is unknown but can be estimated from detection
history. Second, the false alarm rate and missing probability
of the high-quality sensor, denoted by PFH and PMH , are
known. PFH and PMH can often be measured via offline
experiments. Because of the high accuracy of the high-
quality sensor, both PFH and PMH are close to zero. In
addition, we let PFL and PML denote the false alarm rate
and missing probability of low-end sensors. The system
detection error rate Pe is the weighted sum of the joint false
alarm rate and missing probability of high-quality and low-
end sensors. Specifically,

Pe¼ð1�PaÞ�PFL �PFHþPa � PMLþð1�PMLÞ�PMHð Þ; ð1Þ

where PFL � PFH corresponds to the case that both the low-

end sensors and the camera raise a false alarm, and PML þ
ð1� PMLÞ � PMH corresponds to the case that the low-end

sensors make a correct detection but the activated camera

misses the event. We now discuss how to achieve the

minimal Pe. In Section 3.2, we have derived the expressions

for the false alarm rate and missing probability of low-end

sensors, i.e., PFL ¼ QðT��� Þ and PML ¼ Qð� T���S
� Þ. By

replacing PFL and PML in (1) with these expressions and

solving the condition for minimal Pe, i.e., @Pe
@T ¼ 0, the

optimal fusion threshold Topt that minimizes Pe is given by

Topt ¼
� � �2

2S
þ �þ S

2
;

where � ¼ 2 lnð1�PaPa
� PFH

1�PMH
Þ. Note that the performance

modeling above is based on the assumption that all the

packets sent by low-end sensors are correctly received.
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5.2 Impact of Packet Loss

Packet loss due to unreliable wireless communication can
cause the system detection performance of low-end sensors
to deviate from the theoretical results derived in Section 5.1.
We propose to address the impact of packet loss by
exploiting temporal sampling, where the number of samples
each low-end sensor transmits to the cluster head is
determined by the quality of communication links. In this
section, the quality of a communication link from a sensor
to the cluster head is characterized by the end-to-end packet
reception rate. Suppose sensor i samples m times in a
detection process. Let yij denote the jth noisy measurement
of sensor i in a detection, pi denote the end-to-end packet
reception rate of the path from sensor i to the cluster head,
and uij 2 f0; 1g denote the packet delivery state of
measurement yij. Hence, uij is a Bernoulli random variable
with success probability of pi. In the temporal sampling
scheme, the cluster head fuses all measurement received
during a detection process to make a decision, where the
fusion statistic Y is given by Y ¼

PN
i¼1

Pm
j¼1 uij � yij. In the

absence of target, the mean and variance of Y are given by

IE½Y jH0� ¼
XN
i¼1

Xm
j¼1

IE½uij � yijjH0�

¼
XN
i¼1

Xm
j¼1

IE½uij� � IE½yijjH0� ¼ m �
XN
i¼1

pi � �i;

Var½Y jH0� ¼
XN
i¼1

Xm
j¼1

Var½uij � yijjH0�

¼
XN
i¼1

Xm
j¼1

IE
�
u2
ij � y2

ij

��H0

�
� IE½uij � yijjH0�
� �2

¼
XN
i¼1

Xm
j¼1

�
IE
�
u2
ij

�
� IE
�
y2
ij

��H0

�
� p2

i � �2
i

�

¼ m �
XN
i¼1

pi � �2
i þ �2

i �
�
pi � p2

i

�
:

Note that IE½�2
ij� ¼ pi and IE½y2

ijjH0� ¼ �2
i þ �2

i . Similarly, in
the presence of target, the mean and variance of Y jH1 are
given by

IE½Y jH1� ¼ m �
XN
i¼1

pi � ðsi þ �iÞ; ð2Þ

Var½Y jH1� ¼ m �
XN
i¼1

pi �
�
�2
i þ ðsi þ �iÞ

2�� p2
i � ðsi þ �iÞ

2

¼ m �
XN
i¼1

pi � �2
i þ ðsi þ �iÞ

2 � ðpi � p2
i Þ:

ð3Þ

Note that IE½y2
ijjH1� ¼ �2

i þ ðsi þ �iÞ
2. AsY is the sum ofN �m

independent random variables, according to the Central
Limit Theorem (CLT), Y follows the normal distribution
when N �m is large enough. Although N is often limited in
practice, we can increase the number of samples during a
detection to satisfy the condition of CLT. Denote
�0 ¼ m �

PN
i¼1 pi � �i, S0 ¼ m �

PN
i¼1 pi � si, �0H0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½Y jH0�

p

and �0H1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½Y jH1�

p
. The system false alarm rate and

missing probability of low-end sensors are given by PFL ¼
QðT��0�H0

Þ and PML ¼ Qð� T��0�S0
�H1
Þ, respectively. Therefore,

when the impact of packet loss cannot be ignored, we need
to separately estimate the variances for the cases of target
absence and presence, respectively. By replacing PFL and
PML in (1), the equation @Pe

@T ¼ 0 has two roots, which are

�2
H0
S0 � �2

H1
�0 þ �2

H0
�0 � �H1

�H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0�2

H1
� �0�2

H0
þ S02

q
�2
H0
� �2

H1

;

where �0 ¼ 2 ln
ð1�PaÞPFH�H1

Pað1�PMHÞ�H0
.1 The optimal fusion threshold

Topt that minimizes Pe is one of the above roots that gives

the smaller Pe.

5.3 System CPU Utilization

To guarantee the real-time schedulability (e.g., by rate-
monotonic scheduling [19]), the CPU utilization of each task
at the base station shall be maintained at a certain level. In
this section, we derive the CPU utilization model. The CPU
workload of the base station is mainly generated by
processing the images captured by the camera. As the
camera is activated by the stochastic decisions of data
fusion, the CPU workload is hence subject to change over
time. We define that a control cycle consists of m detections. In
each detection, low-end sensors send their measurements to
the cluster head for data fusion. We now derive the
expected CPU utilization in m detections of a control cycle,
denoted by IE½u�, by accounting for the workload generated
by both correct decisions and false alarms.

We define the following notations subject to a control
cycle: 1) nf1 and nd1 are the numbers of false alarms and
correct detections made by the cluster head, respectively.
Note that they are unknown to the system, 2) nf2 and nd2

are the numbers of positive decisions made by the cluster
head but regarded as false alarms and correct detections by
the camera, respectively. These two numbers can be
counted by the base station after processing the images of
the camera. We have the following relationships:

nf1 þ nd1 ¼ nf2 þ nd2; ð4Þ

nf2 ¼ nf1 � ð1� PFHÞ þ nd1 � PMH; ð5Þ

nd2 ¼ nf1 � PFH þ nd1 � ð1� PMHÞ: ð6Þ

Equation (4) holds because either a correct decision or false
alarm from data fusion would trigger an image processing
task at the base station. The result of image processing can
then again be classified as correct decision or false alarm. In
(5), nf1 � ð1� PFHÞ represents the number of false alarms
that are correctly identified by the high-quality sensor, and
nd1 � PMH represents the number of correct detections that
are incorrectly decided as false alarms. In (6), nf1 � PFH
represents the number of false alarms that are incorrectly
decided as correct detections, and nd1 � ð1� PMHÞ represents
the number of detections that are correctly identified. From
(5) and (6), the unknown nf1 and nd1 can be estimated as
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1. We assume �0�2
H1
� �0�2

H0
þ S02 � 0 such that there exists optimal

fusion threshold minimizing Pe; otherwise, Pe will be a monotonically
decreasing function of T and there is no optimal fusion threshold.



nf1 ¼
nf2ð1� PMHÞ � nd2PMH

1� PFH � PMH
;

nd1 ¼
nd2ð1� PFHÞ � nf2PFH

1� PFH � PMH
:

Therefore, the estimates of PFL and PML, denoted by ePFL
and ePML, respectively, are given by

ePFL ¼ nf1

m�m � Pa
; ePML ¼

m � Pa � nd1

m � Pa
: ð7Þ

The high-quality sensor sends the data to the base station
for image processing, which consumes the CPU resource.
We assume that the average CPU execution time with or
without processing an image is e or e0, respectively. Note
that e0 may equal zero if no processing is required when the
data fusion produces a negative result. Let Td represent the
duration of a control cycle and u represent the CPU
utilization of the base station. The expected CPU utilization,
denoted by IE½u�, is given by

IE½u� ¼ ðnf1 þ nd1Þ �
e

Td
þ ðm� nf1 � nd1Þ �

e0

Td
: ð8Þ

By replacing nf1 and nd1 in (8) with (7), we have

IE½u� ¼ m � e
0

Td
þm � ðe� e

0Þ
Td

ðð1� PaÞ � ePFL þ Pa � ð1� ePMLÞÞ

’ K1þK2 ð1�PaÞQ
T � �
�

� 	
þPaQ

T � �� S
�

� 	� 	
; ð9Þ

where K1 ¼ m�e0
Td

and K2 ¼ m�ðe�e0Þ
Td

. When the impact of

packet loss cannot be ignored, ePFL and ePML should be

replaced by PFL ¼ QðT��
0

�H0
Þ and PML ¼ Qð� T��0�S0

�H1
Þ, respec-

tively, where S0, �0, �H0
and �H1

are derived in Section 5.2.

From (9), the expected CPU utilization monotonically

decreases with T because both PFL and 1� PML decrease

with T .

6 FIDELITY-AWARE CPU CONTROLLER

Based on the performance modeling presented in Section 5,
we first design the fidelity-aware CPU controller in
Section 6.1 and discuss its stability and convergency in
Section 6.2. After that, we discuss the estimation of system
parameters in Section 6.3 and the approach to optimizing
the detection error rate in Section 6.4.

6.1 The Design of FAUC

The objective of Problem 1 is to ensure IE½u� � us while
minimizing system detection error rate Pe, where IE½u� is a
function of the fusion threshold T given by (9) and us is a
user-specified utilization bound. As the threshold T is
calibrated every control cycle, Problem 1 is a typical
discrete-time control problem, in which us is the reference,
T is control input and IE½u� is the controlled variable. In the
following, we present the design of Fidelity-Aware Utiliza-
tion Controller. We first discuss how FAUC ensures the
utilization bound, i.e., IE½u� � us. In Section 6.4, we discuss
how to minimize the system detection error rate Pe under
the given utilization bound.

The block diagram of the FAUC feedback control loop is
shown in Fig. 2. The key challenge of deriving the transfer

function GpðzÞ is that QðxÞ in (9) is a nonlinear function. In
this paper, we adopt the linear approximation of (9), which
is given by

IE½u�ðT Þ ’ IE½u�ðT0Þ þ
@IE½u�
@T

����
T0

� ðT � T0Þ;

where the derivative @IE½u�
@T is given by

@IE½u�
@T

¼ � K2

�
ffiffiffiffiffiffi
2�
p



ð1� PaÞ � e�

ðT��Þ2

2�2 þ Pa � e�
ðT���SÞ2

2�2

�
: ð10Þ

T0 is referred to as the operating point, which greatly affects the
control performance. We will discuss how to choose T0 in
Section 6.3. Hereafter, we denote F ðT0Þ ¼ @IE½u�

@T jT0
. By taking

z-transform to the linear approximation, we have
GpðzÞ ¼ F ðT0Þ. Therefore, the system to be controlled is a
zero-order system. We can estimate IE½u� based on the
samples of CPU utilization at the base station in a control
cycle. This estimate is then fed back to compare with the
reference us. As the estimation takes one control cycle,
HðzÞ ¼ z�1 which represents a delay of one cycle. We now
designGcðzÞ to solve Problem 1. AsGpðzÞ is zero order, a first-
order controller is sufficient to meet stability and conver-
gence requirements. Therefore, we let GcðzÞ be

GcðzÞ ¼
a

1� b � z�1
; ð11Þ

where a > 0 and b > 0. The coefficients a and b should be
chosen to ensure the system stability and convergence. The
conditions of system stability and convergence are analyzed
in Section 6.2.

6.2 Stability and Convergence

We first analyze the system stability. The closed-loop

transfer function, denoted by TcðzÞ, is given by TcðzÞ ¼
GcðzÞGpðzÞ

1þGcðzÞGpðzÞHðzÞ ¼
a�F ðT0Þ�z

z�ðb�a�F ðT0ÞÞ . The closed-loop system has a

pole at z ¼ b� a � F ðT0Þ. From control theory [22], if the

pole is within the unit circle centered at the origin, i.e.,

b� a � F ðT0Þj j < 1, the system is stable. As F ðT0Þ is always

negative, the sufficient condition for stability is bþ1
F ðT0Þ <

a < b�1
F ðT0Þ .

We then analyze the steady-state error of the system. The

open-loop transfer function, denoted by ToðzÞ, is given by

ToðzÞ ¼ GcðzÞGpðzÞHðzÞ ¼ a�F ðT0Þ
z�b . By letting b ¼ 1, the sys-

tem is a type I system [22], in which the controlled variable

IE½u� can converge to the reference us provided that the

system is stable. Hence, by replacing b with 1, the condition

for both stability and convergence is 2
F ðT0Þ < a < 0.

According to Fig. 2, we have GcðzÞ ¼ T ðzÞ
us�HðzÞIE½u�ðzÞ . By

replacingGcðzÞwith (11) and lettingHðzÞ ¼ z�1, we have the

z-domain equat ion T ðzÞ ¼ b � T ðzÞ � z�1 þ a � ðus � z�1 �
IE½u�ðzÞÞ, which is equivalent to the equation in time-domain
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Fig. 2. The closed-loop system to control the fusion threshold according
to the CPU utilization feedback.



as T ½n� ¼ b � T ½n� 1� þ a � ðus � IE½u�½n� 1�Þ, where IE½u�½n�
1� is the average CPU utilization measured in the ðn� 1Þth

calibration cycle, T ½n� and T ½n� 1� are the fusion thresholds

for the nth and ðn� 1Þth control cycle, respectively.

6.3 Online System Parameter Estimation

There exists a fundamental tradeoff between the stability
and transient response performance of a control system
[22]. In our problem, the system converges faster for a larger
a at the price of greater system oscillations. Therefore, the
best setting for a is a value close to its lower bound 2

F ðT0Þ .
The stability can be enforced if we can online estimate the
F ðT0Þ. We now discuss how to choose T0 and estimate
F ðT0Þ. According to (10), in order to compute F ðT0Þ, several
parameters, i.e., e, e0, �, �, and S, need to be estimated.
Because e and e0 are subject to change because of the
stochastic task execution time, we calculate the average
execution time for the tasks for the estimation. Assuming
that �, �, and S can slowly change over time because of the
uncertainty of the environment, we employ the k-means
[21] clustering algorithm to estimate these parameters.
Specifically, the k-means algorithm iteratively constructs
two clusters of sensor measurements which correspond to
the cases of target absence and presence, respectively. The
noise mean � is estimated by averaging the measurements
in the cluster representing the noise. The target energy S
can be calculated by subtracting � from the average of
measurements in the cluster representing the case of target
presence. Note that if the impact of packet loss can be
ignored, the variance �2 is estimated by averaging the
variances from two clusters; otherwise, we use the separate
variances from the two clusters. As the CPU utilization shall
be controlled around us, the operating point T0 of the
linearization is obtained by solving IE½u� ¼ us where IE½u� is
given by (9) with the estimated �, �2, and S. With the
chosen T0, we can compute F ðT0Þ.

6.4 Optimizing Detection Error Rate

So far, our discussion is only concerned with controlling the
utilization bound while the impact on detection error rate is
not considered. Although such a solution can meet the
deadline once a target is detected, it may lead to low system
fidelity such as excessive false alarms and consume
unnecessary energy. In this section, we discuss how to
optimize system detection performance without violating
the utilization bound.

According to our performance modeling in Section 5.1,
the detection performance is optimized if the fusion
threshold T is set to Topt. However, we cannot simply
adjust the current threshold to Topt without accounting for
the impact on CPU utilization. FAUC addresses this issue
by implementing a dual cycle control strategy. In each control
cycle, CPU utilization is enforced to the utilization bound u
that is initially set to the user-specified constant us. Each
optimization cycle consists of multiple control cycles. The
system parameters are estimated every optimization cycle
as discussed in Section 6.3 and then used to update Topt and
compute the expected utilization u	 according to our
utilization model (9). If the estimated utilization is lower
than the initial utilization bound, i.e., u	 < us, it will be set
as the new control objective for the following control cycles

until the start of next optimization cycle. Therefore, the
optimization process opportunistically lowers the utiliza-
tion bound if the system detection performance can be
optimized. In other words, the CPU utilization never
exceeds the initial value specified by user. Hence, the real-
time schedulability is always satisfied.

7 TESTBED EXPERIMENTS

To evaluate the performance of FAUC, we have conducted
two testbed experiments for detecting light and acoustic
targets, respectively. The results allow us to evaluate the
effectiveness of our approach for different sensor modal-
ities. Section 7.1 discusses the experimental methodology.
Sections 7.2 and 7.3 present the experimental results of
detecting light and acoustic targets, respectively. Sections 7.4
and 7.5 evaluate the impact of packet loss and number of
sensor nodes to the system by using the light spot detection
experiment. Section 7.6 shows a multicluster system that
works with FAUC to have all the clusters’ utilization well
controlled.

7.1 Experimental Methodology

We adopt a baseline approach referred to as fixed-step closed-
loop heuristic for performance comparison. In this heuristic
algorithm, the expected CPU utilization IE½u� is fed back to
compare with the reference us. As IE½u� is a decreasing
function of threshold T , if IE½u� > us, the new threshold T ½n�
is calculated by adding a fixed step �T to the previous
threshold T ½n� 1�; otherwise, �T is subtracted from
previous T ½n� 1� to calculate new threshold T ½n� if
IE½u� < us. However, this approach does not consider
system stability and convergence. In the experiment, we
employ different �T for this approach to evaluate the
impact of step size on the system performance.

Our evaluation focuses on two performance metrics:
utilization error and average detection error rate. The
utilization error is the error between the measured CPU
utilization and the reference in each control cycle. In order
to calculate the detection error rate, we log the ground-truth
information regarding the target appearance to compute
the system false alarm and missing rates in each control
cycle. The detection error rate is then computed as the
weighted sum of the false alarm and missing rates, with
weights ð1� PaÞ and Pa, respectively.

7.2 Light Spot Detection

In the light spot detection experiment, four TelosB motes [3]
and a webcam are attached against the LCD screen of a
desktop computer to detect a light spot that is randomly
displayed on the screen (see Fig. 3). The display of the light
spot is controlled by a computer program, simulating the
random presence of the target at a probability of Pa ¼ 50%
in each 1 second time slot. Note that a similar method has
been adopted by previous work [12]. We vary the light
intensity of each pixel on the LCD screen to simulate the
changeable characteristics of noise and target. To create
noise in sensor measurements, each pixel is assigned a
small random light intensity value IN with the mean of �.
IN varies over time to simulate the changing environmental
noise. To create the target, a constant light intensity value IT
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is added to the noise for each pixel. Note that IT decreases
with the distance from the center of the light spot. Similarly,
IT varies to simulate the change of target profile. The TelosB
motes measure the light intensity every 250 milliseconds via
the on-board Hamamatsu S1087-01 light sensors [3] and
transmit the measurements to the cluster head that is
connected to a base station laptop. The cluster head fuses
the readings received within every 250 milliseconds and
detects the light spot. When the cluster head makes a
positive decision, the webcam is triggered to take an image
and compare the average intensity over all pixels with a
threshold. The false alarm and missing rates of the webcam
are 5.1 and 3.9 percent, respectively, which are estimated in
a separate offline experiment. We evaluate the utilization
control algorithms under a variety of settings. Moreover,
each experiment consists of two phases. Specifically, in the
first phase, the mean of IN as well as IT remain at their
initial values. The second phase starts after 12 control
cycles, where we vary the mean of IN or IT to simulate the
changes of noise or target profile.

7.2.1 Sensor Measurement Performance

We first verify the Gaussian noise assumption made in
Section 3. Fig. 5 plots the Cumulative Distribution Function
(CDF) of a light sensor’s measurements in office environ-
ment. We can see from the figure that the sensor
measurements well match the normal distribution. We then
evaluate the performance of the k-means algorithm that is
used to estimate the online noise and target profiles. Note
that the FAUC adjusts the control reference based on the
estimates given by the k-means algorithm. Therefore, the
estimation accuracy can affect the performance of FAUC.
Fig. 6 plots the CDF of relative errors of the estimated �, �2,
and S with respect to their ground truths, respectively. We
can see that all of them can be estimated accurately. For

instance, about 40 percent of the estimated �2 has a near-
zero error and the maximum error is only about 2 percent.

7.2.2 Stability and Convergence

We now evaluate the stability and convergence of FAUC in
dynamic environments. Fig. 9 shows the temporal evolution
of the system when noise mean is increased at the 12th

control cycle. Each optimization cycle comprises five
control cycles. The initial CPU utilization reference is set
to be 0.62. Based on this setting, FAUC computes an initial
fusion threshold T , which is very low as shown in the top
sub figure in Fig. 9. As a result, the noise occasionally
exceeds the fusion threshold causing a false alarm rate of
about 5 percent. At the end of the first optimization cycle,
i.e., the 5th control cycle, FAUC computes the optimal
fusion threshold Topt based on the estimated target/noise
parameters. As Topt > T , there exists an opportunity to
reduce system false alarms. FAUC thus computes a new
utilization bound of 0.38 based on Topt, which causes the
controller to increase T . The bottom two sub figures in Fig. 9
show that the measured utilization quickly converges to the
new reference and system error rate drops to zero.

When the noise energy is increased at the 12th control
cycle, the CPU utilization increases accordingly because false
alarms from low-end sensors trigger extra image processing
tasks. FAUC then attempts to lower the utilization by
increasing T . At the next optimization cycle, i.e., the 15th
control cycle, FAUC estimates the target/noise parameters
and computes a new Topt that is lower than T . As the
utilization reference (about 0.6) that corresponds to the new
Topt is still lower than the initial bound 0.62, FAUC increases
the reference to reduce false alarms, as discussed in Section
6.4. At the next optimization cycle, i.e., the 20th control cycle,
Topt exceeds the current T . FAUC then lowers the utilization
reference again, which frees more CPU resources. The above
results demonstrate several salient features of FAUC when it
operates in dynamic environments. First, it yields satisfactory
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Fig. 3. Testbed for light spot detection. Four TelosB motes and a
webcam detect the light spot.

Fig. 4. Testbed for acoustic target detection. Three Iris motes and a
webcam detect the moving toy car.

Fig. 5. The CDF of the light intensity measurements of a TelosB mote.

Fig. 6. The CDF of the estimation errors of noise and target profiles.



control performance as the CPU utilization quickly converges

to the reference even when false alarms introduce unpredict-

able system workloads. Second, FAUC can effectively adapts

the utilization reference to minimize system error rate.

7.2.3 Effectiveness

We now compare the performances of various approaches

in seven groups of experiments with a variety of target and

noise dynamics. In the first four groups of experiments, we

increase the noise mean from 20 to 80 with a step of 20. In

the last three groups of experiments, we decrease the target

signal by 30, 50, and 70, respectively. Fig. 7 shows the

average detection error rate in different group of experi-

ments. We can see that all three approaches can maintain

small detection error rates when the noise increases.

Although the increasing noise causes more false alarms

for low-end sensors, the false alarms can be effectively

filtered out by the image-based target detection. When the

target signal decreases, all three approaches yield higher

error rates. In particular, the heuristic algorithm with a step

size of 5 misses about 16 percent targets. When the step size

is 20, it has fewer misses because the controller settles faster.

FAUC achieves the minimal error rate under all settings.
Fig. 8 plots the CDF of the utilization errors in the seven

groups of experiments. We can see that FAUC significantly

outperforms the heuristic algorithm with various settings.

In particular, about 80 percent of errors of FAUC fall within

10 percent. In contrast, the heuristic algorithm does not

exploit the relationship between the control input and the

controlled variable and hence yields considerable steady-

state errors. We can conclude from Figs. 7 and 8 that FAUC

yields excellent control performance while maintaining

satisfactory fidelity even when target/noise have dynamic

characteristics.

7.3 Acoustic Target Detection

In the second set of testbed experiments, we use three Iris
motes [3] and a webcam to detect a radio-controlled toy car.
Fig. 4 illustrates the setup of the experiments. The cluster
head is connected to the base station laptop. The micro-
phone of MTS300 sensor board [3] on Iris mote samples at
100 Hz to detect acoustic signals from the toy car. Each mote
calculates the acoustic signal energy every 50 samples and
transmits to the cluster head every 500 milliseconds. The
cluster head fuses the measurements received from the Iris
motes and activates the webcam to capture an image if a
positive decision is made. The base station compares the
image with the stored background image to detect the target
using the ImageMagick tool [23]. Note that another webcam
connected to another computer records the ground-truth
information. It is challenging to detect the toy car using the
low-cost Iris motes because of the significantly dynamical
characteristics of the toy car. Specifically, as the toy car
moves through the surveillance region quickly, the acoustic
signal emitted by the car varies significantly with the car’s
location and speed.

Fig. 10 shows the evolution of system performance over 16
control cycles. The CPU utilization reference is set to be 0.3.
We intentionally adopt such a low reference to study the
tradeoff between utilization and detection performance.
Each optimization cycle comprises four control cycles and
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Fig. 7. The average detection error rate under different target/noise
dynamics.

Fig. 8. The CDF of the absolute CPU utilization error.

Fig. 9. The temporal evolution of the light spot detection in dynamic
environments.

Fig. 10. The temporal evolution of the acoustic target detection in
dynamic environments.



each control cycle comprises 70 detections. The toy car moves

along a circular path that crosses the surveillance region. The
target appearance probability varies during the experiment

as shown in the bottom sub figure of Fig. 10. The fusion

threshold is initially set to a low value, which leads to many
false alarms and image processing tasks. This in turn causes

higher CPU utilization which exceeds the required CPU
utilization reference. In response, FAUC increases the fusion

threshold and hence the CPU utilization quickly drops to the
reference at the second control cycle. Afterward, the CPU

utilization is well controlled at the reference. The slightly

changing target appearance probability leads to slightly
changing CPU utilization and fusion threshold. In addition,

the car’s acoustic signal happens to decrease at the 13th cycle,
which causes a higher false alarm rate and may increase the

CPU utilization. However, the target appearance probability
is slightly reduced at that time so that the CPU utilization

does not increase substantially. To adapt to this change, the

threshold also slightly decreases. Overall, the results of this
experiment show that the system is robust to the variations of

target energy and appearance probability.

7.4 Impact of Packet Loss

As shown by the analysis of impact of packet loss on FAUC
in Section 5.2, we can improve the performance by
increasing the number of sensor nodes or number of
samplings per detection in the packet loss. Based on this
result, we design an improved FAUC (iFAUC) and evaluate
it in light detection experiment. In FAUC, each sensor takes
one sample every 250 milliseconds and sends to the cluster
head for data fusion. On the contrary, each sensor in iFAUC
samples every 25 milliseconds and transmits to the cluster
head once every 10 samples. Taking each sample as a packet,
we apply different packet loss rates to iFAUC and FAUC for
evaluation. The experiments are conducted in the same way
as described in the Section 7.2. Fig. 11 shows the average
detection error rate comparison between iFAUC and FAUC
under the different packet loss rates. Although both
methods achieve low average detection error rate, iFAUC
significantly outperforms FAUC under all the packet loss
rates. Due to the better accuracy, iFAUC has more chances to
reduce the CPU utilization reference, thus releasing more
CPU resources. Comparison of camera switched-on times
between iFAUC and FAUC shows iFAUC always switch the
camera on less frequently than FAUC in all packet loss rates
(Fig. 12). As the camera switched-on times is proportional to
the CPU utilization in (8), iFAUC outperforms FAUC again
regarding average CPU utilization.

7.5 Impact of the Number of Sensor Nodes

In CPSs that adopt sensor data fusion, the number of sensors
may affect the performance of the system. Based on the light
detection experiment, we conducted experiments with
different number of sensors to evaluate the resulted
performance. We vary the number of sensor from one to
four and conduct experiment described in Section 7.2. From
Fig. 13, the average error rate doubles when there is only one
sensor compared to two sensors. We can see from Fig. 13
that the error rate of four sensors is slightly higher than that
of three sensors. In the experiment, the fourth sensor
receives the lowest signal-to-noise ratio (SNR). As the data
fusion rule adopted in this work treats all sensors with equal
weight, fusing the reading from a sensor with low SNR may
not be beneficial. We note that if we adopt more effective
data fusion rule that accounts for sensors’ SNRs [8], system
detection performance would not degrade even if low-SNR
readings are fused.

7.6 Multicluster CPSs

We now extend our evaluation to the case of multiple
clusters that may exist for large CPSs. In order to assure the
real-time performance of the base station whose resources
are shared by all clusters, the CPU utilization of the base
station shall be carefully maintained according to the real-
time scheduling strategy. In this experiment, we deploy two
clusters, each of which is used to monitor a light spot. Two
light spots are generated by computer program, separately,
with a target present probability of 50 percent. One high-
quality camera is used for each cluster to confirm the
presence of the light spots, respectively. However, we
deploy different number of sensor nodes and apply the
different control and estimation cycle length for the two
clusters. Cluster 1 contains two sensor nodes and comprises
100 samples per control cycle with 400 samples per
estimation cycle. On the other hand, the cluster 2 contains
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Fig. 13. Average error rate under different number of sensor nodes.

Fig. 11. Average detection error under different packet loss rate. Fig. 12. Average camera switched-on times under different packet loss
rate.



only one sensor nodes and comprises 80 samples per
control cycle with 320 samples per estimation cycle. We
conduct the experiment with changeable noise for both light
spots. Based on the real-time scheduling strategy, we set the
base station CPU utilization’s upper bound to be 78 percent
and then assign 39 percent utilization for each cluster.

Fig. 14 shows the time evolution for cluster 1 in light spot
detection. It performs similarly as in the previous light spot
detection experiment. In the first 12 control cycles, CPU
utilization is controlled around 39 percent. We can see the
system tries to reduce the CPU utilization reference for
cluster 1 at the fourth cycle. At the 12th cycle, the noise
increases, hence the CPU utilization consumed by cluster 1
increases due to the higher false alarm rate of low-end
sensors. This change on the CPU utilization of cluster 1 is
also reflected in the total CPU utilization. Then the system
quickly adapts the threshold to reduce the CPU utilization
of cluster 1 to the set point within three cycles. Accordingly
the total CPU utilization of base station reduces to a lower
level than the reference 78 percent. At the 16th cycle, the
estimated Topt requires higher CPU utilization. However
this higher utilization is still lower than the original user
setpiont for cluster 1. As a result, the system increases the
CPU utilization reference accordingly. The system then
controls the CPU utilization of cluster 1 on this reference for
the rest of time. Similarly, Fig. 15 shows the time evolution
for the cluster 2. As there is only one sensor node in the
cluster, it is more likely to have higher false alarm rate and
missing probability. However, from the 5th, 20th, 25th, and
37th cycle, we can see the system adapts to the CPU
utilization changes very quickly by adjusting the threshold
under the environment dynamics. From the time evolutions
of the two clusters, we can see that the individual CPU
utilization of each cluster is well controlled at the reference,
and the average CPU utilization of the base station is
always quickly controlled to around 70 percent, which
meets the real-time requirement.

8 TRACE-DRIVEN SIMULATIONS

In addition to the testbed experiments, we also conduct
trace-driven simulations to extensively evaluate the

performance of FAUC under a wide range of settings
including network size and signal-to-noise ratio.

8.1 Simulation Methodology and Settings

The data traces used in the simulations were collected in the
DARPA SensIT military vehicle localization experiment [24],
where 75 WINS NG 2.0 nodes are deployed to localize
Amphibious Assault Vehicles (AAVs) driving through a
three-way intersection. We refer to [24] for detailed setup of
the experiment. The data set used in our simulations includes
the ground-truth data andthe acoustic time series recorded by
17 nodes at a frequency of 4960 Hz. The ground-truth data
include the positions of sensors and the trajectories of AAV
runs recorded by GPS devices. However, as the vehicle
localization experiment [24] only comprises a limited number
of AAV runs, the data set cannot be readily used to evaluate
the detection performance of FAUC. We note that, in order to
evaluate the average error rate, the system needs to conduct
enough detections in both cases of target presence and
absence. To address this issue, we reuse the data traces as
follows. In the simulations, we assume that the target appears
at a fixed location within the deployment region. For each
detection, an AAV run is randomly selected. In the presence of
target, a sensor’s measurement is set to be the sum of random
noise and the real measurement when the AAV in the selected
run is closest to the fixed location. In the absence of target, the
sensor’s measurement is only set to the random noise. Such a
simulation methodology accounts for many realistic affecting
factors such as terrain and the dynamical characteristics of the
vehicle. Moreover, we can evaluate the performance of FAUC
under different SNRs by changing the parameters of the noise
generator. The target appearance probability Pa is set to be
50 percent. As there is no extra high-quality sensor such as
camera in the SensIT experiment [24], we use a pseudocamera
in the simulations, which generates random detection results
based on the ground truth. The pseudocamera’s false alarm
rate and missing probability, i.e., PFH and PMH are set to be
2 percent. If the pseudocamera is activated in a detection, the
CPU utilization in the detection follows a normal distribution
with mean of 40 percent and standard deviation of 10 percent.
The utilization bound us is set to be 35 percent.
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Fig. 15. The temporal evolution of the light target detection in dynamic
environments of cluster 2. CPU utilization reference is set to 39 percent.

Fig. 14. The temporal evolution of the light target detection in dynamic
environments of cluster 1. CPU utilization reference is set to 39 percent.



8.2 Simulation Results

We first evaluate the temporal evolution of FAUC in the
case of changing noise. The change of noise mean over time
is shown in Fig. 16. The standard deviation of noise is
initially set to be 0.1 and increased by 0.1 at the 200th and
350th control cycle. As we select a relatively high-utilization
upper bound, the low-end sensors are allowed to raise more
false alarms and the system can minimize the error rate. As
a result, from Fig. 16, we can see that the calibrated
threshold is around the noise mean. From the figure, we can
also see spikes in utilization and error rate, which are
caused by the changes of noise profile. However, the system
can adapt to these changes within 20 control cycles.

In the second set of simulations, we evaluate the impacts
of the number of sensors and SNR on the performance of
FAUC. Fig. 17 shows the system error rate versus the
number of sensors used in the simulations. Other settings
are the same as in Fig. 16. We can see from the figure that the
system detection performance increases with the number of
sensors. Fig. 18 shows the system error rate versus SNR.
Note that SNR is defined as 10 log10 S=�. We can see that the
system detection performance increases with SNR. For both
Figs. 17 and 18, the CPU utilization can be controlled to meet
the upper bound us. Therefore, FAUC can work in wide
range of settings of network size and SNR.

9 CONCLUSION

In this paper, we propose a holistic approach called
Fidelity-Aware Utilization Controller to address both fidelity
and timeliness requirements of Wireless Cyber-physical

Surveillance systems. FAUC integrates data fusion with
feedback control to enforce CPU utilization upper bound
although system workloads vary significantly at runtime
because of stochastic detection results. FAUC also
optimizes system fidelity and adjusts the control objective
of CPU utilization adaptively in dynamic environments.
We have implemented FAUC on a small-scale WCS
testbed consisting of TelosB/Iris motes and cameras. Our
experiments on light and acoustic target detection show
that FAUC can achieve robust fidelity and enforce desired
utilization bounds in the presence of significant variations
of target/noise characteristics and unreliable wireless
links. Moreover, extensive simulations based on real
acoustic data traces collected in a vehicle surveillance
experiment show that FAUC can work in a wide range of
settings including network size and SNR.
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