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Abstract—Modern urban railways extensively use computer-
ized sensing and control technologies to achieve safe, reliable,
and well-timed operations. However, the use of these tech-
nologies may provide a convenient leverage to cyber-attackers
who have bypassed the air gaps and aim at causing safety
incidents and service disruptions. In this paper, we study false
data injection (FDI) attacks against railways’ traction power
systems (TPSes). Specifically, we analyze two types of FDI
attacks on the train-borne voltage, current, and position sensor
measurements – which we call efficiency attack and safety attack
– that (i) maximize the system’s total power consumption and
(ii) mislead trains’ local voltages to exceed given safety-critical
thresholds, respectively. To counteract, we develop a global
attack detection system that serializes a bad data detector and
a novel secondary attack detector designed based on unique
TPS characteristics. With intact position data of trains, our
detection system can effectively detect the FDI attacks on
trains’ voltage and current measurements even if the attacker
has full and accurate knowledge of the TPS, attack detection,
and real-time system state. Extensive simulations driven by
realistic running profiles of trains verify that a TPS setup is
vulnerable to the FDI attacks, but these attacks can be detected
effectively by the proposed global monitoring.

I. INTRODUCTION

In modern cities, safe, reliable, and well-timed operations
of urban railways are critical. A modern railway is a highly
complex cyber-physical system (CPS) consisting of diverse
subsystems including train motion control, traction power-
ing, signaling, and etc, where deeply embedded information
and communication technologies (ICTs) are used to operate
each train and connect trains to an operation center. The
extensive use of ICT may provide a convenient leverage
to attackers, however, who may aim to hurt passengers’
safety or cause widespread service disruptions. To date,
the cybersecurity of modern railways has relied on air
gaps that isolate their ICT systems from public networks.
However, recent high-profile intrusions such as Stuxnet [1]
and Dragonfly [2] have successfully breached the air gaps of
critical CPS infrastructures and resulted in physical damage.
For instance, the Stuxnet worm damaged nuclear centrifuges
by injecting false control commands and forging normal
system states. Its design and architecture are not domain-
specific – they can be readily customized against other
CPSes including transportation [1]. Insider attacks represent
another major threat to air-gapped systems; their severe
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consequences have likewise been well documented [3]. It is
thus critical to understand the cybersecurity risks of modern
railways as a mission-critical CPS, and develop effective
security countermeasures in their ICT design.

In this paper, we study the cybersecurity of direct cur-
rent (dc) traction power systems (TPSes) that are widely
deployed in urban electrical railways. The criticality of
TPS is evidenced by prior severe incidents caused by TPS
malfunctions. The 2014 Moscow metro derailment that led
to 24 dead and 160 injured was caused by sudden braking
of the train in question, when its traction voltage dropped
abruptly [4]. In Singapore, a system-wide metro service
disruption, triggered by TPS faults, affected almost half a
million commuters during rush hours on July 7, 2015 [5].
Moreover, the computerized sensing and control in an auto-
mated TPS could be prime targets for cyber-attackers, who
can sabotage the control and steer the system into inefficient
and unsafe states.

Motivated by Stuxnet-type attacks that forge physical sys-
tem states, in this paper, we study a general class of integrity
attacks called false data injection (FDI), which tampers with
train-borne sensor measurements required by TPS control.
In a TPS, the electricity power supplied by substations is
delivered by a network of overhead lines and third rails to
the trains. According to its operation mode, a train’s power
consumption can be highly dynamic. In traction mode, it
draws power from the TPS, causing a drop in the train’s
local voltage; in braking mode, it regenerates electricity from
kinetic energy and injects this electricity back to the TPS,1

causing a rise in the voltage. To prevent the voltage from
exceeding safety-critical thresholds, trains apply overcurrent
control and squeeze control [7] to throttle their power draw
and injection, respectively. As these controls are performed
based on train-borne voltage and current sensor measure-
ments, FDI attacks on the measurements may mislead the
train into erroneous power control decisions, which may
in turn produce damaging and even catastrophic physical
impacts on the train and the TPS. Recent results show
that the measurements can be compromised in practice by
precisely controlled electromagnetic interference in analog
sensors [8], hardware trojans in chips [9], and malware
infections in sensor firmwares [10]. Hence, FDI attack is

1In electrical railways, trains are often equipped with regenerative brakes
that generate electricity in deceleration [6].



a clear and present threat that requires immediate attention.
In this paper, we aim to answer the following two funda-

mental research questions:
(1) How to characterize the impact of FDI attacks on TPS

system’s efficiency and safety? Analysis of the impact based
on an essential TPS model will provide basic understanding
for developing countermeasures. However, the analysis is
difficult, due to complex system dynamics arising from the
trains’ motion. In particular, a moving train does not only act
as “load” and “generation” alternately over time, but also al-
ters the power network’s topology and electrical parameters
continually. Moreover, because different TPS components
(trains, substations, and etc) become physically intercon-
nected through a common underlying power network, effects
of an erroneous power control on a train during attack may
propagate to the neighboring TPS components. The analysis
must address these intricate and unique characteristics of
TPSes.

(2) How to develop effective approaches for detecting
the FDI attacks? Our thesis is that, because measurements
from different trains are inherently correlated through in-
terconnection over the same power network, for attack
resilience we can apply a global detection that cross-checks
the measurements collected from all trains based on an a
priori global TPS model. However, in contrast to alternating
current (ac) power grids that have well-established central-
ized monitoring and sensor data cross-check safeguards for
reliable holistic control [11], [12], TPS is mainly concerned
with individual trains’ local operation (i.e., the overcurrent
and squeeze controls), and therefore it is not traditionally
subject to any global sensor data checks across trains. Thus,
an existing dc TPS operation center seldom scrutinizes the
sensor measurements, beyond their display and presentation
for human operators. In this paper, we demonstrate the
importance of these global, but hitherto ignored, sensor data
cross checks in the TPS domain against FDI attacks.

In answering the above two research questions, our main
contributions in this paper are as follows:

First, based on essential models of power substations,
power flows, and train overcurrent and squeeze controls in
a TPS, we formulate two types of FDI attacks that we
call efficiency attack and safety attack. These attacks (i)
maximize the total instantaneous power consumption of the
TPS and (ii) mislead victim trains’ local voltages to exceed
given safety-critical thresholds, respectively. The efficiency
attack formulation models an aggressive attacker who aims
at maximizing the attack impact and provides insights into
understanding the performance degradation limit caused by
FDI attacks. Numerical results for a TPS section with two
substations and two trains show that the efficiency attack
can result in an instantaneous efficiency loss of about 20%,
whereas the safety attack on a single train can indeed lead
to significant safety breaches. These results substantiate the
potency of FDI attacks on train-borne sensor measurements.

Second, we propose to apply a global bad data detection
(BDD) method, similar to that widely used in ac power grids
[12], to detect FDI attacks in a dc TPS. Despite a known
vulnerability of the BDD – it can be bypassed by an attacker
who knows enough details of its design – our numerical
results show that, in order for an FDI attack to be stealthy
against the BDD, it will have to settle for a significantly
reduced damage on the system efficiency. Moreover, we
observe that, given intact position data of trains, solutions
of the BDD bypass condition will become discrete. Based
on this observation, we develop a novel secondary attack
detection (SAD) algorithm that can effectively detect the
onset of an FDI attack on trains’ voltage and current mea-
surements after it has bypassed the BDD. Hence, the BDD
and the SAD form in tandem a global attack detector under
the Kerckhoffs’s assumption (i.e., the attacker has full and
accurate knowledge of the system model, attack detection,
and real-time system state), provided that the integrity of
trains’ position information can be verified.

Third, we report extensive simulations, driven by realistic
profiles of trains in operation, to evaluate our solutions. For
a TPS with four trains each running over a distance of ten
kilometers for 800 seconds, our results show that, without
the global BDD, FDI attacks can increase the total system
energy consumption by 28.3% and breach the system’s
safety condition. After applying the BDD, the system’s total
energy consumption increases by no more than 6.2% under
the efficiency attack, and safety attacks become no longer
successful. Moreover, the proposed SAD algorithm achieves
a probability of 96% in detecting the onsets of the FDI
attacks that have successfully bypassed the BDD.

The balance of the paper is organized as follows. Sec-
tion II reviews related work. Section III describes our TPS
model. Section IV formulates the efficiency and safety
attacks. Section V analyzes the effectiveness of the BDD and
presents the proposed SAD algorithm. Section VI presents
simulation results. Section VII concludes.

II. RELATED WORK

Power flow analysis and optimization for TPS have re-
ceived increasing research interest. Power flow analysis is
a basic tool for TPS planning and operation. Prior work
has analyzed dc power flows [13]–[15] and addressed the
interactions between the dc TPS and a supporting ac power
grid [16], [17]. We adopt existing electrical models for
different TPS components [13]–[15] in this work. These
models provide sufficient accuracy generally [14], and they
are tractable for analysis. Based on power flow analysis,
recent research has tried to improve the energy efficiency
of railways by leveraging trains’ power regeneration [18].
Techniques such as synchronizing the trains’ speed profiles
[19] and real-time substation voltage control [20] have been
shown to provide efficient reuse of the regenerated power.
To the best of our knowledge, none of the existing studies



on TPS control have addressed it from a cybersecurity
perspective. The security problem is imperative, since TPS
is a form of critical infrastructure that renders it an attractive
target for attacks.

Different types of CPS can have vastly different proper-
ties and characteristics. Thus, their security concerns and
admissible detection strategies can be totally different. Typ-
ically, their cybersecurity analysis must be carried out in
a domain specific manner, with customized considerations
given to main details and semantics of specific systems.
Cybersecurity of various CPSes has been studied. Cárdenas
et al. [21] investigate the impacts of integrity and denial-of-
service attacks on a process control system of a chemical
reactor. Amin et al. [22] perform security threat assessment
of supervisory control and data acquisition systems for water
supply. Other efforts [12], [23] have analyzed FDI attacks
against ac utility power grids. They show that an attacker
capable of tampering with grid sensor measurements or
topology information can carefully construct attacks to by-
pass the detection by certain existing fault detectors. Recent
studies have investigated the impact of such stealthy attacks
on grid power flows [11], [24]. They show that maliciously
biased estimates of the system state can cause grid operators
to make erroneous decisions that will lead to degraded per-
formance or even safety breaches. This paper is the first to
analyze the efficiency and safety of TPS under FDI attacks.
We provide new and nontrivial domain specific modeling
and analysis to capture the targeted application’s unique
features and key properties. In particular, TPS involves real-
time and complex interactions between two highly dynamic
physical systems, namely a mechanical system of the trains’
motion and an electrical system that governs the trains’
power consumption and regeneration during this motion.
Attackers could exploit the interactions to strengthen their
attacks.

III. TRACTION POWER SYSTEM MODEL

In this section, we present a model of a dc TPS at a
certain time instant. The TPS is modeled as a power network
consisting of N nodes. Denote by N = {1, 2, . . . , N} the
set of nodes and L the set of resistive branches connecting
the nodes. The substations and the trains are connected to
different nodes. The sets of nodes for the substations, the
tractioning trains, and the regenerating trains are denoted
by Nsub, Ntra, and Nreg, respectively. We define Ntrains =
Ntra∪Nreg. The positions of the nodes 1, . . . , N are denoted
by a set s = {s1, s2, . . . , sN}, where s1 is zero and si is
the distance from node i to node 1. Fig. 1 illustrates a TPS
section with two substations at nodes 1 and 4, as well as
two trains at nodes 2 and 3. The train at node 2 is trac-
tioning and the train at node 3 is braking and regenerating.
Thus, N = {1, 2, 3, 4},L = {(1, 2), (2, 3), (3, 4)},Nsub =
{1, 4},Ntra = {2},Nreg = {3}. The electrical models for

Fig. 1: Illustration of a TPS section.

the power network, substations, and trains are described as
follows.

Power network: Let Vi and Ii denote the voltage and
current at node i, respectively, and v and i the vectors of the
nodal voltages and currents. For safe operations, all nodal
voltages must be within a safety limit, i.e.,

V min
i ≤ Vi ≤ V max

i , ∀i ∈ N , (1)

where V min
i and V max

i are the safety thresholds for node
i. By convention, we assume that the current injected into
the TPS is positive. The resistance of the branch connecting
the nodes i and j is denoted by Ri,j(s) and its conductance
by Gi,j(s), where Gi,j(s) = 1/Ri,j(s). Note that branch
resistance (and conductance) depends on the positions of
the trains, i.e., s. For instance, in Fig. 1, Ri,i+1 = γ(si+1−
si), where γ is a constant depending on the electrical wire
characteristics. From Kirchhoff’s circuit laws, we have

Y(s)v = i, (2)

where Y(s) ∈ RN×N is the nodal conductance matrix and
the (i, j)th element of Y(s), denoted by Yi,j(s), is given by

Yi,i(s) =
∑

j:(i,j)∈L

Gi,j(s),

Yi,j(s) =

{
−Gi,j(s), if j 6= i and (i, j) ∈ L,
0, if j 6= i and (i, j) /∈ L.

Substations: We consider inverting substations capable of
both supplying and absorbing power. They are modeled as
dc voltage sources governed by

Vi = VNL −RsIi, i ∈ Nsub, (3)

where VNL and Rs are the no-load voltage and the internal
resistance of the substation. When a substation supplies
power, Ii > 0; when it absorbs power, Ii < 0 and the
absorbed power is injected back to the supporting ac power
grid. This dc substation model has been widely adopted in
TPS analysis [14], [20].

Trains: Let Pi denote the power absorbed or injected by a
tractioning train or a regenerating train at node i. We have

Pi = ViIi. (4)

For safety, the trains adopt the following two local power
controls [7].
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Fig. 2: (a) Overcurrent control for accelerating trains. (b) Squeeze control
for regenerating trains.

Overcurrent control: A tractioning train absorbs power from
the power network, resulting in a drop in the train’s nodal
voltage. To prevent the nodal voltage from falling below the
safety threshold V min

i , the overcurrent control is activated
whenever the nodal voltage at the train node i drops below a
triggering voltage V min,Tr

i . Let P d
i denote the power demand

of a tractioning train at node i. The overcurrent control will
command the train to absorb Pi units of power, where Pi is
given by

Pi =


0, if Vi ≤ V min

i ;

P d
i

(
Vi−V min

i

V min,Tr
i

−V min
i

)
, if V min

i ≤ Vi ≤ V min,Tr
i ;

P d
i , if Vi ≥ V min,Tr

i .

This control law is illustrated in Fig. 2a. Specifically, if the
nodal voltage at the train is greater than the triggering volt-
age, the train draws a power equal to its demand. Otherwise,
the train curtails its power consumption according to the Vi.
If the voltage drops below V min

i , the train draws no power
to prevent safety incidents.
Squeeze control: A regenerating train injects power into the
power network, resulting in an increase in the train’s nodal
voltage. To prevent the voltage from exceeding the safety
limit V max

i , the squeeze control is activated whenever the
nodal voltage at the train node i exceeds a certain triggering
voltage level V Tr

i,max. Let P c
i denote the regeneration capacity

of the train. The squeeze control will command the train to
inject Pi units of power into the TPS, where Pi is given by

Pi =


P c
i , if V max

i ≤ V max,Tr
i ;

P c
i

(
V max
i −Vi

V max
i
−V max,Tr

i

)
, if V max,Tr

i ≤ Vi ≤ V max
i ;

0, if Vi ≥ V max
i .

This control law is illustrated in Fig. 2b. Specifically, if the
nodal voltage at the train is lower than the triggering voltage,
the train injects all the regenerated power. Otherwise, the
train curtails the power injection according to the Vi by
burning the remaining power in a rheostatic braking system
[7]. If the voltage drops below V max

i , the train does not
inject power into the TPS to prevent safety incidents.

The train’s power demand P d
i and regeneration capacity

P c
i depend on the train’s running profile and real-time

state. They can be provided by the train’s motion control
system. We note that the electrical models described in
this section address the steady-state voltages and currents.
They ignore the power transients of the trains due to
their internal feedback control systems that implement the

overcurrent/squeeze control decisions. However, it is safe
to ignore these transients, because they can settle quickly
before the next overcurrent/squeeze control action [25]. This
steady-state analysis approach has been widely adopted in
TPS power flow analysis [13]–[15].

IV. FALSE DATA INJECTION ATTACKS AGAINST TPS

In this section, we study how an attacker can mislead
the TPS into an inefficient or unsafe operating state. We
focus on FDI attacks that tamper with the measurements
of train-borne voltage and current sensors. Such an attack
will cause the TPS to make wrong decisions of power
absorption/injection, since a train’s overcurrent and squeeze
controls depend on the sensor measurements. We further
consider attacks of two different objectives: (i) to increase
the system’s total instantaneous power consumption, and (ii)
to cause breaches of the safety conditions in Eq. (1). We call
them efficiency attack and safety attack, respectively. In this
section, we first describe our threat model. Then, we analyze
the attacker’s approach to computing efficiency and safety
attacks. Lastly, we present numerical results to illustrate the
two kinds of attacks.

A. Threat Model

Real-world attackers against critical CPSes are often
smart, resourceful, and highly strategic. Their strategies can
be guided by detailed knowledge of their targets, which
can be obtained in practice by malicious insiders, long-term
data exfiltration [2], or social engineering against employees,
contractors, or vendors of the operators in question [1].
In this paper, we follow Kerckhoffs’s principle to consider
an attacker who has accurate knowledge of the targeted
system and read access to the system state. Knowledge of
the system includes the electrical models and parameters
given in Section III, as well as the system’s method of
attack detection. The system state includes present power
demands, regeneration capacities, as well as voltage, current,
and position measurements of all the trains. This information
can be leaked through a compromised operation center,
as in recent high-profile attacks [1], [2]. We assume that
the attacker can corrupt the voltage, current, and position
measurements of nodes in the set Na, where Na ⊆ N . Re-
cent studies have demonstrated that such unauthorized write
access can be obtained for analog sensors, traditional electro-
mechanical meters, and modern smart meters [8], [26], [27].
Analog sensors are vulnerable to controlled electromagnetic
interference [8]; measurement devices can be affected by
hardware trojans [9] and infected with malwares [10], [26].

Under the Kerckhoffs’s assumption on the attacker’s
knowledge, we will analyze his strategies of achieving
successful efficiency and safety attacks. Conversely, we will
also develop countermeasures by a defender to detect these
attacks. Our threat model is strong, but the conservative
analysis is necessary because any underestimation of the



attacker’s capability may have catastrophic consequences,
including extremely costly infrastructure damage and loss
of human lives.

We note that, alternatively, the attacker can launch FDI
attacks against the decisions of the local controls (i.e., the
Pi values for the trains). To detect such attacks, each train
can compare the Pi value in question with that computed
based on the train’s voltage and current measurements and
the a priori overcurrent and squeeze control laws. In the
rest of this paper, we focus on the analysis and detection of
FDI attacks on the voltage and current measurements only.
This problem is comparatively much more challenging since
information compromised right at the sources will preclude
its use for any subsequent sanity checks.

B. FDI Attack Construction

In the rest of the paper, we will use x′ to denote the
compromised version of a sensor measurement x. In this
section, we analyze how to compute an effective attack
vector, as a vector of false voltage and current measurements
to be injected into the sensing systems of the trains in Na.
Note that, in this section, we ignore position measurements
in the attack vector, because they will not affect the trains’
overcurrent and squeeze controls. In the following, we first
derive conditions for the attack vector to mislead the train
into absorbing or injecting a certain amount of power. With
the calculated power absorptions/injections of the trains, we
can determine the system’s total power consumption and
hence its safety status. Thus, we can formulate the attacker’s
problem of finding an attack vector to achieve his goal (e.g.,
to maximize the total power consumption), under conditions
that we will state presently for enforcing a certain amount
of power absorption/injection.

The following conditions are sufficient to enforce that a
train at node i ∈ Na will absorb or inject Pi units of power:

V ′i I
′
i = Pi, i ∈ Na; (5)

Pi ≥ P d
i , i ∈ Ntra; (6)

Pi ≤ P c
i , i ∈ Nreg; (7)

V ′i


≥ V min,Tr

i , if Pi = P d
i ,

= V min
i +

Pi(V
min,Tr
i

−V min
i )

Pmin
i

, if P d
i ≤ Pi ≤ 0,

≤ V min
i , if Pi = 0,

(8)

∀i ∈ Na ∩Ntra;

V ′i


≥ V max

i , if Pi = 0,

= V max
i − Pi(V

max
i −V max,Tr

i
)

P c
i

, if 0 ≤ Pi ≤ P c
i ,

≤ V max,Tr
i , if Pi = P c

i ,

(9)

∀i ∈ Na ∩Nreg.

The conditions in Eqs. (8) and (9) are obtained by
inverting the overcurrent and squeeze control laws given
in Section III, and replacing the true voltage Vi by the

compromised measurement V ′i . As a result, based on V ′i ,
the train will follow the overcurrent/squeeze control law
to regulate its power absorption/injection at the attacker’s
desired value Pi. This control process is often achieved in
a closed loop, with the measurements V ′i and I ′i acting as
the feedback and the desired value Pi as the setpoint. Under
the condition Eq. (5), the actual power absorption/injection
under the aforementioned closed-loop control will converge
to Pi. Moreover, the condition Eq. (5) can hide the attack for
trains that can directly measure the power consumption. The
conditions Eqs. (6) and (7) ensure the feasibility of inducing
the train to absorb/inject Pi units of power. Specifically, the
attacker’s desired Pi should not exceed a regenerating train’s
regeneration capacity. The condition Eq. (6), where both Pi

and P d
i are negative, prevents the mechanism from violating

the overcurrent control. In summary, if the compromised
measurements V ′i and I ′i satisfy the conditions in Eq. (5) to
Eq. (9), the train will control its power absorption/injection
to Pi. With this understanding, the attacker can carefully
plan the attack vector to achieve his goal. Without the
conditions in Eq. (5) to Eq. (9), the attacker cannot predict
the impact of his attack, and therefore cannot implement his
desired strategy.

Each sensor in the TPS may apply data quality checks
on its measurements. For instance, the measurements at
present time instant should not differ significantly from
those predicted based on the measurements at previous
time instant. Intuitively, if the compromised measurement
is bounded around the true measurement, the data quality
checks, designed to be insensitive to natural random noises
of measurement, will not raise an alarm. Thus, we assume
that the compromised measurements need to satisfy:

v −∆v � v′ � v + ∆v, (10)
i−∆i � i′ � i + ∆i, (11)

where ∆v = [∆V1, . . . ,∆VN ]T and ∆i =
[∆I1, . . . ,∆IN ]T are the maximum errors allowed by
the data quality checks; x � y means that each element of
x is no greater than the corresponding element in y. We
note that, if i /∈ Na, ∆Vi = 0.

Based on the above conditions for the compromised mea-
surements, we formulate the efficiency and safety attacks.

1) Efficiency Attack: An efficiency attack causes an in-
crease or decrease in the total instantaneous power injected
or absorbed by the substations. In particular, we consider an
aggressive attacker who aims to maximize or minimize such
injected or absorbed power. Formally, the attacker solves the
following constrained optimization problem to compute the
attack vector {V ′i , I ′i|∀i ∈ Na}:

max
{V ′

i
,I′

i
| ∀i∈Na}

∑
i∈Nsub

ViIi (12)

s.t. constraints in Eq. (2) to Eq. (11).



The above formulation captures the physical laws governing
the power network and the substations (i.e., Eq. (2) to
Eq. (4)), as well as how the attack vector induces the trains
to make erroneous power control decisions (i.e., Eq. (5) to
Eq. (9)). Specifically, for any {V ′i , I ′i |∀i ∈ Na} satisfying
Eq. (5) to Eq. (9), the attacker can predict the trains’ power
absorptions/injections {Pi = V ′i I

′
i |∀i ∈ Ntrains}. He then

uses the physical laws in Eqs. (2), (3), and (4) to determine
the actual voltages and currents of the substations (i.e.,
{Vi, Ii |∀i ∈ Nsub}) and predict the system’s total power
consumption

∑
i∈Nsub

ViIi.
Solving the constrained optimization problem in Eq. (12)

can be computationally intensive, mainly because the con-
straints in Eqs. (8) and (9) are non-smooth and non-
differentiable. Existing constrained non-linear optimization
solvers (e.g., the fmincon function of MATLAB) often
require smooth objective and constraint functions. To use
these solvers, the attacker can adopt a divide-and-conquer
approach that divides the problem Eq. (12) into multiple
subproblems, in which a piece of Eq. (8) or Eq. (9) is
selected as a constraint for a train. By comparing the
optimization results of all the subproblems, the attacker can
obtain a global optimal solution to the problem in Eq. (12).
Because each train has three choices in Eq. (8) or Eq. (9),
this approach will generate a total of 3|Na| subproblems,
where |Na| is the number of trains under FDI attacks. As
the subproblems are mutually independent, the attacker can
solve the subproblems in parallel, to reduce computation
time. The ability to solve the problem in Eq. (12) in real
time can be important to the attacker. This is because, to
accumulate large energy loss, the attacker needs to keep at
the FDI attacks by solving Eq. (12) continually, based on the
latest system state given by s, P d

i , and P c
i . The attacker will

need to procure sufficient computing resources for achieving
the real-time objective.

2) Safety Attack: For safety attacks, we model the space
of attack vectors that can cause the voltages at a subset of
the TPS nodes, denoted by Nunsafe, to cross the safety limits
in Eq. (1). The attack space is defined by all the constraint
conditions in the optimization problem Eq. (12), and Vi /∈
[Vi,min, Vi,max], i ∈ Nunsafe. As long as the attacker can find
an attack vector satisfying the above constraints, he will be
able to achieve the safety breaches.

We now discuss a heuristic approach that the attacker can
use to aggressively increase the extent of the safety breaches.
Specifically, the attacker maximizes the total power injected
into the TPS by the regenerating trains, i.e.,

∑
i∈Nreg

ViIi,
subject to all the constraints of the optimization problem in
Eq. (12). The intuition is that injecting more power into the
TPS will result in higher catenary voltages. This constrained
optimization problem can also be solved by the aforemen-
tioned divide-and-conquer approach. Our numerical results
in Section IV-C show that, under this heuristic approach,
tampering with the sensor measurements of a single train

Table I: TPS model parameters.

Parameters VNL γ Rs Vmax,Tr
i Vmax

i

Value 750V 30mΩ/km 29.56mΩ 850V 900V

can already lead to safety breaches.

C. Numerical Examples

We now present numerical examples to illustrate the
efficiency and safety attacks. These examples are based
on the TPS shown in Fig. 1, in which both trains are
decelerating and regenerating. The system model parameters
are given in Table I. We consider a time instant at which the
system state in the absence of attack is given by the first part
of Table II, where the total instantaneous power absorbed
by the substations and injected back into the supporting ac
power grid is 3.601 MW. In these examples, we assume that
the attacker can only compromise the voltage and current
measurements of the train at node 2.

1) Efficiency Attack: The attacker solves the constrained
optimization problem in Eq. (12) and tampers with V2 and I2
accordingly. We set ∆Vi = 50V and ∆Ii = 200A, ∀i ∈ Na.
The compromised measurements and the true state of the
system under attack are given in the second part of Table II.
We can see that the compromised voltage measurement at
node 2 is greater than the true value. Consequently, the
train injects less power into the TPS because of the squeeze
control, resulting in less power absorption by the substations.
Specifically, the total power absorption is 2.888 MW, a 20%
reduction compared with the case of no attack. Thus, the
power efficiency of the system is degraded.

2) Safety Attack: The attacker uses the heuristic approach
in Section IV-B2 to compute the safety attack. The com-
promised measurements and the true system state are given
in the third part of Table II. The compromised voltage
measurement at node 2 is lower than its true value. Thus,
the train at node 2 injects more power into the TPS because
of the squeeze control, causing the actual voltage at node
2 to exceed the safety limit. We can see that it is possible
for an attacker to tamper with the measurements of a single
train and already achieve a safety attack. In this example,
since both the trains are regenerating, the catenary voltages
are closer to the safety limit. This makes it easier for the
attacker to achieve the safety attack. Thus, for an attacker
with limited write access to the trains’ measurements (i.e., a
small set Na), he can continuously monitor the system and
wait for feasible moments for launching safety attacks.

V. GLOBAL ATTACK DETECTION

As discussed in Section I, dc TPSes mainly rely on trains’
local controls (i.e., overcurrent and squeeze controls) to
avoid unsafe states. The TPS does not otherwise cross-
check sensor data from different trains based on an a
priori TPS model to ensure the data’s global consistency.
However, such global monitoring is clearly advantageous,



Table II: System state and compromised measurements under efficiency and
safety attacks. Distance is measured in kilometers, voltage in volts, current
in amperes, and power in megawatts.

Node 1 2 3 4

TPS State
(Without
Attack)

si 0 0.9 1.2 2
P c
i - 5.5 1.8 -
Vi 815.6 875.5 867.7 815
Ii -2218.8 3079.2 1338 -2198.4
Pi -1.81 2.696 1.161 -1.792

Efficiency
Attack

V ′i - 888.6 - -
I′i - 1409.6 - -
Vi 801.1 847.7 850 805.2
Ii -1728.2 1477.6 2117.6 -1867.1
Pi -1.384 1.253 1.8 -1.503

Safety
Attack

V ′i - 862.9 - -
I′i - 4731.6 - -
Vi 828.9 901 884.2 824.1
Ii -2669.1 4531.6 643.2 -2505.7
Pi -2.212 4.083 0.569 -2.065

because anomalies in the data relationships, can help flag
the occurence of an FDI attack.

An attacker that wishes to remain stealthy under global
monitoring thus becomes more constrained, and his actions
may become less effective. In this section, we present the
design of a global monitor for detecting FDI attacks under
the Kerckhoffs’s assumption.

Fig. 3 overviews our global attack detection approach,
in which the trains’ voltage, current, and position mea-
surements are sent to a central TPS monitor periodically.
The TPS monitor applies state estimation (SE), bad data
detection (BDD), position integrity verification (PIV), and
secondary attack detection (SAD) in sequence to detect
attacks. In ac utility power grids, similar SE and related BDD
are widely used for detecting faulty data or reducing the
impact of noisy sensor measurements [28]. In Section V-A,
we propose a new BDD design specific to the application
domain of dc TPS. By checking the consistency among
measurements based on a TPS model, the BDD can detect a
range of FDI attacks. However, the detection is not complete
– an attacker under the Kerckhoffs’s assumption can bypass
it using his knowledge of the system. In Section V-B, we
provide numerical results to illustrate the impacts of these
stealthy attacks. To counter them, in Section V-C, we further
propose a novel SAD algorithm to supplement the BDD,
under an additional assumption that the trains’ position data
is intact, which is ensured by the PIV.

A. TPS Bad Data Detection and Its Vulnerability

Recall that in Section IV-B, the trains apply local controls
based on their own voltage and current measurements only.
Hence, the trains’ position information does not matter. Un-
der global detection, however, compromise of the trains’ po-
sition information becomes relevant, since it may enable the

Fig. 3: Global attack detection. SE: State estimation; BDD: Bad data
detection; PIV: Position integrity verification; SAD: Secondary attack
detection.

attacker to mislead the TPS monitor into deriving a wrong
TPS model that is consistent with the compromised voltage
and current measurements. Tampering with the position data
can thus help the attacker evade detection. Although in
practice it is extremely difficult for the attacker to hide the
compromise of train position data because multiple sources
of this data are often available (see Section V-C for the
details), in this section, for generality of analysis, we account
for possible compromise of the position data.

We use x̃ to represent a possibly compromised measure-
ment x, i.e., x̃ = x in the absence of attack and x̃ = x′ in the
presence of attack. The state of the TPS is a vector of the
nodal voltages, i.e., v. The set of measurements includes
nodal positions s̃ = [s̃1, . . . , s̃N ]T ∈ RN×1, and nodal
voltage and current readings z̃ = [ṽ, ĩ]T ∈ R2N×1. In the
absence of attack, the measurement vector z is related to the
system state v as z = H(s)v+n, where H(s) = [IN ; Y(s)]
is a measurement matrix depending on the positions s, IN
is an N -dimensional identity matrix, and n ∈ R2N×1 is
a random measurement noise vector. We assume that n
follows a multivariate Gaussian distribution. The maximum
likelihood (ML) estimate of v, denoted by v̂, is given by
v̂ = (H(s̃)TΣ−1H(s̃))−1H(s̃)TΣ−1z̃, where Σ is the
covariance matrix of n [28, Chap. 12]. The SE’s BDD
raises an alarm if (z̃ − H(s̃)v̂)TΣ−1(z̃ − H(s̃)v̂) > τ,
where τ is a constant threshold that can be determined to
meet a given false alarm rate under random measurement
noise. The BDD is originally designed to detect faulty sensor
data caused by natural malfunction of sensors. Thus, it is
effective in detecting a range of FDI attacks that are not
specifically designed to bypass it. However, the attacker
that we consider in this paper, following the Kerckhoffs’s
principle, can design FDI attacks to bypass the BDD. In the
following, we formulate these stealthy attacks.

From an existing result [12], if the compromised measure-
ment vector z′ is in the column space of the compromised
measurement matrix H(s′), z′ can bypass the BDD. Apply-
ing this result to the TPS, we have the following lemma.

Lemma 1: Any compromised measurements that satisfy

Y(s′)v′ = i′ (13)

can bypass the BDD.
Proof: Lemma 1 holds since any z′ that satisfies

Eq. (13) is in the column space of H(s′), i.e., z′ =
[v′, i′]T = [IN ; Y(s′)]v′ = H(s′)v′.

In addition to Eq. (13), the TPS monitor may use two



other sensor data checks. First, to meet the constraint in
Eq. (13), the attacker may need to compromise the voltage
and current measurements at the substations. The TPS
monitor may check the substation measurements, i.e., Vi and
Ii, ∀i ∈ Nsub, against the substation model in Eq. (3). To be
stealthy to this check, the attacker can impose an additional
constraint of

V ′i = VNL −RsI
′
i, ∀i ∈ Nsub. (14)

Second, the TPS monitor can also apply data quality checks
similar to those in Eqs. (10) and (11) to check the trains’
position measurements. Thus, if the attacker can compromise
the position measurements, he needs to satisfy

s−∆s � s′ � s + ∆s, (15)

where ∆s = [∆s1, . . . ,∆sN ]T are the maximum allowed
errors for position measurements and ∆si = 0 if i /∈ Na.

Therefore, the efficiency attacks that are stealthy to the
BDD can be computed by solving the constrained optimiza-
tion problem Eq. (12) with the additional constraints Eq. (13)
to Eq. (15). Similarly, the attack space for BDD-stealthy
safety attacks is characterized by the constraints of the opti-
mization problem Eq. (12), Vi /∈ [Vi,min, Vi,max], i ∈ Nunsafe,
and the additional constraints Eq. (13) to Eq. (15). Naturally,
BDD reduces the attack space since the attacker now needs
to satisfy additional constraints to remain undetected. In the
simulation results presented in Section VI, we show that,
under a realistic TPS setting, the BDD significantly reduces
the impact of attacks.

B. Numerical Examples

We now present numerical examples to illustrate the
efficiency and safety attacks that can bypass the BDD as
analyzed in Section V-A. The TPS model and parameters
are identical to those in Section IV-C. The true system state
and the compromised measurements are given in Table III.
We set ∆si = 0.6 km, ∀i ∈ Na. To illustrate a powerful
attacker, we assume that the attacker can corrupt the voltage
and current measurements of all the four nodes in Fig. 1, as
well as the positions of both the trains.

1) Efficiency Attack: Under the efficiency attack, the
total power injected back to the supporting power grid
by the substations is 3.431 MW, which is a reduction of
about 4.7% compared with no attacks. This reduction is
much less than the 20% caused by the efficiency attack
in Section IV-C, which was achieved by compromising the
voltage and current measurements of node 2 only in the
absence of BDD. This result illustrates the ability of the
BDD in limiting the impact of efficiency attacks.

2) Safety Attack: We observe that by compromising the
nodal measurements and the trains’ position information, the
attacker can increase the voltage at node 2 to 901.4 V while
bypassing the BDD. Furthermore, if the attacker can gain
write access to any one train (i.e., |Na| = 1), he cannot

Table III: System state and compromised measurements under efficiency
and safety attacks that have bypassed the BDD. Distance is measured in
kilometers, voltage in volts, current in amperes, power in megawatts.

Node 1 2 3 4

Efficiency
Attack

s′i 0 1 1 2
V ′i 812 874.9 874.9 812
I′i -2096.7 3159 1034.5 -2096.8
Vi 813.2 871 861.7 811.6
Ii -2138.8 3173.2 1050.4 -2084.8
Pi -1.739 2.764 0.905 -1.692

Safety
Attack

s′i 0 0.43 1.8 2
V ′i 835 872.3 847.3 830.9
I′i -2876.8 3487.8 2124.5 -2735.4
Vi 829.1 901.4 895.1 830.1
Ii -2676.8 3375.3 2010.9 -2709.4
Pi -2.219 3.043 1.8 -2.249

launch a successful safety attack. This is in contrast to the
example in Section IV-C, where the attacker could launch a
successful safety attack by compromising the measurements
of a single train only.

In summary, the above examples suggest that the global
monitoring and BDD can significantly limit the impact
of stealthy FDI attacks on the TPS even if the attacker
can compromise the measurements of multiple trains. To
accomplish a safety attack, the attacker needs to compromise
more trains compared with no BDD.

C. Secondary Attack Detection

In this section, we propose a novel secondary attack
detection (SAD) algorithm that can effectively detect the
onset of an FDI attack that has bypassed the BDD. SAD
requires that the trains’ position data communicated to the
TPS monitor is intact. It is feasible for the TPS monitor to
verify the integrity of the position data. For example, real-
world railway systems invariably provide multiple sources
of train position information including train-borne wheel
sensors, GPS, track-side Balise [29], etc. By cross-checking
position measurements from the multiple sources, we can
readily identify FDI attacks on the position data unless
the attacker succeeds in compromising all the data sources,
which is highly challenging. Such cross checks constitute
the PIV illustrated in Fig. 3. If FDI attacks on the position
data are identified, the TPS should immediately apply attack
mitigation approaches. Due to space limitation, the details
of attack mitigation are omitted in this paper and can be
found in [30].

The analysis in the previous sections is for a particular
time instant, and the attacker can use the techniques in
Sections IV and V-A to launch attacks continually over
time. Once the SAD detects an attack’s onset, the system
can activate the attack mitigation to render subsequent FDIs
ineffective. Thus, in this section, we focus on analyzing the
property of the system and designing the SAD accordingly



for the onset time instant only of an attack.
1) A Discrete Solution Property: The requirement of

intact position data and the design of the SAD algorithm
are based on a key observation as follows. If the attacker
can compromise the trains’ position data, the three equality
conditions Eqs. (5), (13), and (14) that the attacker must
obey form an underdetermined problem with 3N variables
and 2N equations. Since the other conditions that the
attacker needs to follow (i.e., Eqs. (6) to (11), and (15))
are inequalities, the attacker’s problem of finding stealthy
FDI attack vectors most likely has infinitely many solutions
that are continuous. However, if the trains’ position data is
intact, the three equality conditions Eqs. (5), (13), and (14)
with s′ replaced by the known s, will form a determined
problem with 2N variables and 2N equations. As a result,
the attacker’s problem most likely has a finite number of
discrete solutions2 and the attacker must choose one of them
that is different from the true measurement vector. The SAD
algorithm uses this discrete solution property to detect the
onset of a BDD-stealthy attack.

2) SAD Algorithm: Based on the discrete solution prop-
erty, we design the SAD algorithm as follows.

Algorithm 1 (Secondary Attack Detection Algorithm):
Inputs: Trains’ true positions s, possibly compromised
measurement vector z̃, intact nodal voltage vector vpr at
the previous time instant
Output: Attack onset detection result

1. Using z̃, compute Pi = ṼiĨi, i ∈ Ntrains.
2. Solve the following constrained optimization problem

J∗ = min
va 6=vb

||va − vb||p (16a)

s.t. Y(s)va = ca, (16b)
Y(s)vb = cb, (16c)

where ||x||p represents the p-norm of a vector x and
the kth element of cx ∈ RN×1 is given by

cx[k] =

{
VNL−vx[k]

Rs
, if k ∈ Nsub;

Pk

vx[k]
, if k ∈ Ntrains,

(17)

where the label x is a or b.
3. Extract ṽ from z̃. If ||ṽ−vpr||p ≤ J∗, report no attack;

Otherwise, report onset of attack.

In Step 1 of the algorithm, given the possibly compro-
mised measurement vector z̃, the TPS monitor computes
the actual power absorption or injection of each train. This
follows from Eq. (4). Based on the trains’ true positions
s and powers, in Step 2, the TPS monitor solves the con-
strained optimization problem Eq. (16). The constraints in

2As the determined problem is non-linear, it could yield infinitely many
solutions that are continuous. However, this is not the case for any of the
numerical examples and extensive simulations we conducted. Confirmation
of the discrete solution property by rigorous analysis is left for future work.
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Fig. 4: Simulation setup. Sub - Substations, TS - Train stations, W - Trains
departing from the west, E - Trains departing from the east.

Eqs. (16b) and (16c) are compact representations of the BDD
bypass condition given by Eqs. (13) and (14), for two distinct
solutions va and vb. By the observation that the BDD
bypass condition given the trains’ true positions has discrete
solutions, the J∗ given by Eq. (16) is the minimum distance
defined in p-norm between any two distinct solutions.

In Step 3, the TPS monitor compares the J∗ with the
p-norm distance between the possibly compromised voltage
measurement vector and the intact nodal voltage vector vpr
at the previous time instant, to determine the possible onset
of an attack. This step is based on that, if the attacker
launches a BDD-stealthy attack without tampering with the
trains’ position information, the p-norm distance between
the compromised voltage vector and the voltage vector in
the absence of attack must be no less than J∗. As the
voltage vector in the absence of attack is unknown to the
TPS monitor, a practical approach is to use the vpr that is not
compromised before the onset of the attack. Since the TPS
monitor can run the SAD periodically and frequently (e.g.,
every second), the TPS state will not change significantly
over one monitoring time interval. In Section VI, extensive
simulations demonstrate the effectiveness of this practical
approach by comparing it with an oracle approach that uses
the voltage vector at the present time instant in the absence
of attack in Step 3. If and when the onset of an attack is
detected, the TPS switches to an attack mitigation mode [30]
to prevent safety breaches.

VI. SIMULATIONS

Our analyses in the previous sections address a partic-
ular time instant only. In this section, we conduct time-
domain simulations with realistic running profiles of trains
to illustrate the impact of FDI attacks. We also show the
effectiveness of the BDD in reducing the impact of the
attacks, and that of the SAD in detecting those attacks that
are BDD-stealthy.

A. Simulation Settings and Methodology

As Fig. 4 illustrates, we simulate a TPS consisting of
four trains (labeled “W1”, “W2”, “E1”, and “E2”), four
substations (labeled “Sub1”, . . . , “Sub4”), and six train
stations (labeled “TS1”, . . . , “TS6”). The parameters of the
TPS are identical to those in Table I. The positions of the
substations and the train stations are shown in Fig. 4. The
trains “W1” and “W2” start their journeys from “TS1” and
travel from west to east, whereas the trains “E1” and “E2”
start their journeys from “TS6” and travel from east to west.



The trains “W1” and “E1” depart at time zero and the trains
“W2” and “E2” depart at the 170th second. At each of the
train stations, the trains stop for a duration of 20 seconds.
Each train follows the same speed profile as shown in the
top part of Fig. 5. The second plot of Fig. 5 shows the trains’
positions over time. Each train switches between traction and
braking modes during the simulation, and its power demand
and regeneration capacity over time are shown in the bottom
plot of Fig. 5. This plot is derived based on mechanical
energy consumption of the train under the specified running
profile, and with an efficiency ratio of 70% for the traction
mode [19] and 40% for the braking mode [31] of converting
kinetic energy into electrical energy. We simulate the TPS
for 800 seconds at a time granularity of one second.

To simulate attacks, the attacker injects an attack vector
computed using the methods given in Sections IV and V
every second. In the absence of BDD, the attacker compro-
mises the voltage and current measurements of all the train
nodes. In the presence of BDD, the attacker tampers with
the voltage and current measurements of all the train and
substation nodes as well as the position information of the
train nodes. The position information of substations cannot
be compromised since their locations are fixed and known a
priori. The maximum errors that the attacker can introduce
to the voltage, current, and position measurements, as de-
scribed in Eqs. (10), (11), and (15), are set as ∆Vi = 50 V,
∆Ii = 200 A, and ∆si = 500 m for i ∈ Na, unless
otherwise specified.

The simulations are carried out in MATLAB. The
constrained optimization problems are solved using the
fmincon function of MATLAB with the MultiStart
algorithm. In the absence of attack, to compute the sys-
tem state, we use the fmincon with a constant objective
function and the electrical models and trains’ local control
laws presented in Section III as the constraints. We also use
the function to compute the safety attack vectors under the
heuristic approach and the optimal efficiency attack vectors.
If at any time instant, the fmincon function returns an
attack vector that is the same as the true system state, the
attacker does not launch an attack. Step 2 of the SAD
algorithm is also implemented using the fmincon function.

Although our analysis in this paper is general and appli-
cable to a TPS network of arbitrary size and topology, for
simulations, we consider a small-scale TPS in Fig. 4. The
rationale is two fold. First, the attacker may find it difficult
to coordinate his attacks on a large number of geographically
distributed trains. Computing resources may present another
barrier for large-scale attacks. A more credible scenario is
for the attacker to focus on one or a few trains in a TPS
section. Second, since real-world TPS networks are mostly
radial [16], the impact of a focused and localized attack will
not propagate over long distances. In view of these factors,
we use the small-scale TPS to represent well a TPS section
in a large system.

Time (s)
0 100 200 300 400 500 600 700 800S

p
e

e
d

 (
m

/s
)

0

10

20

Time (s)
0 100 200 300 400 500 600 700 800P

o
s
it
io

n
 (

k
m

)

0

5

10
W1

W2

E1

E2

Time (s)
0 100 200 300 400 500 600 700 800P

o
w

e
r 

(M
W

)

-2

0

2

Fig. 5: Train speed (top plot), position (middle plot), power demand and
regeneration capacity (bottom plot) over time. Power demand is negative
and regeneration capacity is positive.

Moreover, to simplify our simulations, we do not con-
sider overcurrent control. Specifically, we set the triggering
threshold V Tr

i,min to a low value, so that overcurrent control
will not be activated. As a result, the trains’ speed profiles
will not change because the trains need not curtail their
power consumption. Therefore, at any time instant, a train’s
power consumption equals its power demand during accel-
eration. Because of this simplification, we do not simulate
attacks on tractioning trains, which would alter the trac-
tioning trains’ power consumption and change their running
profiles. Although we can simulate overcurrent control and
attacks on tractioning trains by extending our simulator to
admit changeable running profiles, the simulations reported
in this paper already provide interesting understanding and
insights into the impact of attacks and the effectiveness of
countermeasures.

B. Simulation Results

1) Efficiency Attacks: The first set of simulations eval-
uates the impact of efficiency attacks on the TPS without
BDD. Fig. 6 shows the power absorbed/injected by the train
“E1” in the presence and absence of attacks. We can see
that the efficiency attacks induce the regenerating trains to
inject less power into the power network (e.g., from 302th
to 315th second for the train “E1”). To calculate the loss in
system efficiency, we ignore the time instants when all the
trains are in traction mode, since we do not simulate attacks
on the tractioning trains as discussed in Section VI-A. As a
result, the efficiency attacks cause a reduction of 28.3% in
the total energy adsorbed by the substations compared with
the case of no attacks, during the time periods when there
is at least one regenerating train under attack.

The second set of simulations evaluates the impact of
efficiency attacks on the TPS with BDD. Fig. 7 shows
the power absorbed/injected in the absence and presence
of attacks. Although the efficiency attack can still induce
the regenerating trains to inject less power to the power
network, it causes a reduction of 6.2% only in the total
energy adsorbed by the substations, during the time periods
when there is at least one regenerating train under attack.
This is in contrast to the 28.3% for the TPS without BDD.
This result is consistent with our discussion in Section V-B
that the BDD can reduce the impact of efficiency attacks.
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Fig. 6: Effect of efficiency attacks on Train E1 in the absence of BDD.
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Fig. 7: Effect of efficiency attacks on Train E1 in the presence of BDD.
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Fig. 8: Effect of efficiency attacks on the TPS with BDD under different
settings of ∆si and ∆Vi.

We also examine the effect of efficiency attacks on the
TPS with BDD under different settings of ∆si and ∆Vi
in Fig. 8a and Fig. 8b, respectively. From these figures,
we can see that, under smaller settings of ∆si and ∆Vi,
the efficiency loss caused by the FDI attack diminishes.
For instance, the efficiency loss is as low as 1.37% when
∆si = 0.1 km. In practice, the TPS monitor can estimate
the present train position based on the train’s speed and its
position at the previous time instant when it was known
that there were no attacks. The present position reading can
be compared with the estimated position using Eq. (15).
The setting of ∆si should consider natural errors of train
positioning systems and the estimation error. Existing train
positioning systems such as GPS and Balise can achieve
an accuracy of five to ten meters [32], [33]. Thus, it is
reasonable to assume that the combined effect of the train
positioning system error and the estimation error is less
than 0.1 km. Our results show that by properly tuning the
BDD’s attack detection parameters (e.g., ∆si and ∆Vi), the
efficiency loss caused by FDI attacks can be significantly
reduced.

2) Safety Attacks: The first set of simulations evaluates
the impact of safety attacks on the TPS without BDD. Under
safety attacks, the regenerating trains inject more power into
the power network than that under no attacks, resulting in
increased voltages. We say that the TPS experiences a safety
breach when at least one node in the TPS experiences a
safety breach. In the simulations, we observed that the TPS
experiences safety breaches for a total of eight seconds. The
prolonged overvoltage may cause safety incidents.

The second set of simulations evaluates the impact of
safety attacks on the TPS with BDD. In these simulations,
the TPS experiences safety breaches for a total of four

Table IV: Time duration while the TPS experiences safety breaches under
different settings of ∆si in the presence of BDD.

∆si (km) 0.1 0.2 0.3 0.4 0.5

Time duration of safety breaches(s) 0 0 0 1 4
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Fig. 9: The ||ṽ − vpr||p and the adaptive threshold J∗ computed by the
Step 2 of the SAD algorithm with p = 2. Top figure: Oracle approach;
Bottom figure: Practical approach.
seconds, compared with eight seconds in the absence of
BDD. Table IV summarizes the time durations of safety
breaches under different settings of ∆si. When ∆si is in
the range of 0.1 km to 0.3 km, the attack causes no safety
breaches during the simulations. As discussed previously,
the setting ∆si = 0.1 km is appropriate in practice. Hence,
this set of results shows that by appropriately setting the
BDD parameters, safety breaches can be nearly eliminated.

3) SAD Algorithm: The last set of simulations evaluates
the effectiveness of SAD in detecting attacks that have
bypassed the BDD. For each time instant, the attacker
tactically chooses the attack vector closest to the true sys-
tem state in the sense of the p-norm distance, among the
discrete solutions to the BDD bypass condition discussed in
Section V-C. We compare our practical approach where the
vpr is the nodal voltage vector at the previous time instant
(cf. Algorithm 1), with an oracle approach where the vpr
is the nodal voltage vector at the present time instant in the
absence of attack. Fig. 9 shows the J∗ computed by Step
2 of Algorithm 1 during the entire simulation, as well as
the ||ṽ − vpr||p under the oracle approach and the practical
approach, where p = 2. In Fig. 9, we skip plotting a data
point for a time instant when the attacker cannot bypass
the BDD. For the oracle approach, from the top figure of
Fig. 9, the ||ṽ−vpr||p is consistently higher than the J∗ for
the entire simulation. This suggests that the oracle approach
can detect the onset of a BDD-stealthy attack launched at
any time instant. For the practical approach, from the bottom
figure of Fig. 9, the ||ṽ − vpr||p is higher than the J∗

for 96% of the simulation time. For the remaining 4% of
simulation time, the practical approach will miss the attack
onset because of a significant change of v from the previous
time instant to the present. This shows that the practical
approach can detect the attack onset with a high probability.

VII. CONCLUSIONS

In this paper, we studied FDI attacks on train-borne
sensor measurements used in railway TPSes. To the best



of our knowledge, ours is the first effort studying TPSes
from a cybersecurity perspective. To account for the safety-
criticality of TPS, we adopted the Kerckhoffs’s principle and
addressed two fundamental problems of importance, namely,
characterization of the impact of FDI attacks on TPSes, and
development of detection techniques for these attacks. We
formulated and analyzed the efficiency and safety attacks
that aim to minimize the system energy efficiency and
breach system safety conditions, respectively. To detect these
attacks, we proposed a global detection system that serializes
the proposed BDD and SAD algorithms, both of which may
be implemented at a central TPS monitor. Our simulation
results verified the susceptibility of a TPS setup to the FDI
attacks, but these attacks can be detected effectively by the
proposed global detection system.
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