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Mobile Element Assisted Cooperative Localization for
Wireless Sensor Networks with Obstacles

Hongyang Chen, Qingjiang Shi, Rui Tan, H. Vincent Poor, Fellow, IEEE, and Kaoru Sezaki

Abstract—In this paper, a cooperative localization algorithm
is proposed that considers the existence of obstacles in mobility-
assisted wireless sensor networks (WSNs). An optimal movement
scheduling method with mobile elements (MEs) is proposed to
address limitations of static WSNs in node localization. In this
scheme, a mobile anchor node cooperates with static sensor
nodes and moves actively to refine location performance. It
takes advantage of cooperation between MEs and static sensors
while, at the same time, taking into account the relay node
availability to make the best use of beacon signals. For achieving
high localization accuracy and coverage, a novel convex position
estimation algorithm is proposed, which can effectively solve the
problem when infeasible points occur because of the effects of
radio irregularity and obstacles. This method is the only range-
free based convex method to solve the localization problem when
the feasible set of localization inequalities is empty. Simulation
results demonstrate the effectiveness of this algorithm.

Index Terms—Mobility-assisted wireless sensor networks, mo-
bile elements, convex localization algorithm, optimal movement
scheduling.

I. INTRODUCTION

LOCALIZATION algorithms for wireless sensor networks
(WSNs) have been designed to find per-node location

information, which is a key requirement in many applications
of WSNs. Generally speaking, based on the type of informa-
tion required for positioning, protocols can be divided into two
categories: (i) range-based and (ii) range-free protocols. Due to
the hardware limitations and power constraints of sensors, so-
lutions of range-free localization are often preferable and can
be considered as cost-effective options when compared with
more expensive and energy-consuming range-based schemes
[1]. In this paper, we focus on the investigation of range-free
localization algorithms for mobility-assisted WSNs.

Some previous works have focused on exploiting sensor
mobility for node localization in WSNs. Luo et al. [2]
proposed a localization algorithm based on time difference
of arrival (TDOA) for sensor networks with mobile sensors.
Similarly, two localization algorithms that are based on radio
frequency (RF) and receiver signal strength indication (RSSI)
were presented in [3] and [4], respectively. Priyantha et al. [5]
presented a range-based mobile-assisted localization (MAL)
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approach, in which mobile nodes measure distances and
construct a globally rigid structure to achieve a unique local-
ization. Vivekanandan et al. [6] proposed a concentric anchor
beacon (CAB) localization algorithm for WSNs. Ssu et al.
[7] proposed a range-free localization scheme using mobile
anchor points. Semidefinite programming (SDP) [8] has also
been introduced and applied to sensor network localization.
However, most of the proposed methods deal with the range-
based sensor network localization problem [9].

An obstacle can be dynamically formed due to unbalanced
deployment, failure or power exhaustion of sensor nodes,
animus interference, or physical obstacles such as mountains
or buildings. In this paper, we consider only physical obstacles.
Most previous algorithms cannot work well in anisotropic
networks, where obstacles appear among sensor nodes.

In this work, we propose a multi-power-level mobile anchor
assisted range-free algorithm for WSNs with obstacles, in
which the node localization problem is formulated as a convex
optimization problem. By using a relay node, our scheme
can effectively reduce the effects of obstacles on node local-
ization. Furthermore, our scheme can calculate the positions
of infeasible points caused by a complex radio transmission
environment, which is recognized as a problem when the
feasible set for localization inequalities is empty. Based on
the derived localization error bound, an optimal movement
scheduling method is proposed to reduce the total moving
distance of the mobile element (ME) while assuring high
localization performance, which can efficiently extend the
lifetime of the ME.

The rest of the paper is organized as follows. Section II
describes the cooperative localization scheme, including its
derivation. Section III derives the localization error bound. In
Section IV, simulation results are reported and a comparative
study of the localization performance is conducted. Section V
gives concluding remarks.

II. COLLABORATIVE LOCALIZATION USING MOBILE

ELEMENT

In this section, we propose a collaborative node localiza-
tion approach using an ME. We first introduce the technical
preliminaries of our algorithm in subsection A and then
formulate the localization problem as an optimization problem
in subsection B. We propose an algorithm for decreasing
the impact of obstacles in subsection C and the movement
scheduling algorithm for the MEs in subsection D.

A. Background

In WSNs, a node can determine whether it is in the
transmission radius of an anchor node according to a beacon
signal received from the one-hop anchor. The anchor node
can adjust its transmission radius by tuning its transmission
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power. For example, the TelosB mote is equipped with an
IEEE 802.15.4 compliant Chipcon CC2420 radio, which has
31 transmission power levels between -25 and 0 dBm.

We assume an anchor node has 𝑀 levels of transmission
power, and the corresponding transmission radii are 𝑅𝑖, 𝑖 =
1, 2, . . . ,𝑀 . Normally, the ME is assumed to have a global
positioning system (GPS) receiver and knows its position [10]
[11]. During the moving period, the ME transmits beacon
signals at varying power levels consecutively including its ID,
current position, transmission power and transmission radius.
After receiving these beacon signals, an unknown-position
sensor can construct an effective constraint on its position.

For example, we assume that the current position for the
ME is 𝑎 and its transmission radius is 𝑅. If the unknown-
position sensor, at position 𝑥, receives the beacon signal,
we can conclude that the distance between the two nodes
satisfies ∣∣𝑥− 𝑎∣∣ ≤ 𝑅. Otherwise, ∣∣𝑥− 𝑎∣∣ > 𝑅. Using
the multiple transmission radius of the ME by tuning the
transmission power at each position, the unknown-position
sensor can obtain a set of inequalities on 𝑥:

𝑟𝑖 < ∣∣𝑥− 𝑎𝑖∣∣ ≤ 𝑅𝑖, 𝑖 = 1, 2, ..., 𝑛 (1)

where 𝑎𝑖 is the position of the ME at the time 𝑖, 𝑟𝑖 (it might
be zero) and 𝑅𝑖 are valid radii for that time. Herein, the valid
constraint radii denote the corresponding lower and upper
bounds, for the tightest constraint among all of the constraints
that are constructed by all of the transmission powers for the
mobile anchor node at position 𝑎𝑖.

Hence, the localization problem based on an ME with
multiple transmission radius can be converted into the problem
of solving a set of quadratic inequalities (1). Some algorithms
(e.g., [6] [16]) are also based on the solution of a set of
quadratic inequalities. However, their methods all assume that
the set of quadratic inequalities (1) must have solutions. But,
because of the complex transmission environment, there are
two different location scenarios: the set of quadratic inequali-
ties has a solution (i.e., the feasible set is nonempty); and the
set of quadratic inequalities have no solution (i.e., the feasible
set is empty). For these two different scenarios, we propose a
novel localization algorithm based on convex optimization to
solve the problem whether the feasible set is empty or not. To
the best of our knowledge, our proposed method is the only
range-free algorithm using convex optimization to solve the
problem when the feasible set is empty.

Note that the communications between wireless terminals
are affected by several phenomena in practice, such as signal
path loss, channel fading and shadowing [12]. The trans-
mission radius and the location accuracy are affected by
such phenomena. However, it is very difficult to quantify
these effects as these practical factors are often unknown and
complicated. Thus, in this paper, we assume deterministic
transmission radii, i.e., two wireless terminals cannot commu-
nicate if they are farther apart than the transmission radius. We
note that such a deterministic model has been widely adopted
in previous work on localization in WSNs, e.g. [6] [7] [16],
and it is a reasonable approximation to actual communication
behavior. We can use a numerical example to illustrate the
impact of these phenomena. We use the link model in [13]
with the settings of the MICA2 mote to compute the packet
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Fig. 1. The packet reception ratio (PRR) vs. the distance between two
MICA2 motes under various transmission powers.

reception ratio (PRR) between two sensors. The link model in
[13] accounts for signal path loss and channel fading. Fig. 1
plots the PRR versus the distance between the two sensors
under various transmission powers. Denote by 𝑃𝑇𝑥 the trans-
mission power of the ME. When 𝑃𝑇𝑥 = 0 dBm, we set the
transmission radius to be𝑅0 dBm = 9m. When 𝑃𝑇𝑥 = 15 dBm,
we set the transmission radius to be 𝑅15 dBm = 18m. We
note that the ME is more powerful than the deployed low-
cost motes and hence the transmission power of the ME can be
much larger than that of the low-cost motes. We now compute
the probability that a mote located in the ring region from
𝑅0 dBm to 𝑅15 dBm centered at the ME is successfully localized
in the ring region. We note that a mote is localized in the ring
region if it cannot hear the beacon packet when 𝑃𝑇𝑥 = 0 dBm
and it can hear the beacon packet when 𝑃𝑇𝑥 increases to
15 dBm. From Fig. 1, the average probabilities that a mote
located in the ring region cannot and can hear beacon packets
when 𝑃𝑇𝑥 = 0 dBm and 𝑃𝑇𝑥 = 15 dBm are 0.936 and 0.888,
respectively. Therefore, the average probability that a mote
located in the ring is successfully localized in the region is
0.936 × 0.888 = 0.831. We note that we can improve this
success probability by adopting a larger transmission power
interval, e.g., we can use 0 dBm and 20 dBm. However, doing
so will introduce larger range estimation error, i.e., 𝑒 given
by (11) below. In practice, we can balance such a trade-off to
meet different requirements on localization performance.

B. Localization Algorithm using Convex Optimization

In real environments, the actual transmission radius varies
in different directions of radio propagation because of the non-
isotropic properties of the propagation medium and the het-
erogeneous properties of devices, as noted above. According
to the model of [1], to model this radio irregularity all nodes
within half of the maximum transmission radius of anchors
are guaranteed to hear from the anchor. If nodes are beyond
the maximum transmission radius, they cannot hear from
the anchor. If nodes are between the maximum transmission
radius and half of that radius, three scenarios are possible:
(1) symmetric communication, (2) unidirectional asymmetric
communication, and (3) no communication. Therefore, it is
possible that there is no communication between two nodes
although their relative distance is smaller than their ideal
transmission radius. In this case, the inequalities for the
original optimization problem will have no solutions and an
infeasible case would occur.

In order to deal with the case with an empty feasible set, we
propose a novel convex position estimation algorithm, which
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Fig. 2. The single constraint case.

can provide good position estimation accuracy in both the
feasible case and the infeasible case.

As shown in Fig. 2, for the single constraint case (𝑟 <
∣∣𝑥− 𝑎∣∣ < 𝑅), it is easy to see that an efficient position
estimate lies on the circle with center 𝑎 and radius 𝑅+𝑟

2 . In
the figure, the square indicates the possible position for the
optimal position estimate and the black dot denotes the anchor
node with position 𝑎.

The position estimate can be found by minimizing the
following expression:

(∣∣𝑥− 𝑎∣∣ − 𝑟)2 + (∣∣𝑥− 𝑎∣∣ −𝑅)2.

Inspired by the single constraint case, for the inequalities
under multiple constraints, we can seek an optimal position
estimate by solving the following problem:

min
𝑥

∑
𝑖

[
(∣∣𝑥− 𝑎𝑖∣∣ − 𝑟𝑖)

2 + (∣∣𝑥 − 𝑎𝑖∣∣ −𝑅𝑖)
2
]
. (2)

Obviously, the problem (2) is nonconvex. Moreover, this
problem cannot be directly approximated by using convex
relaxation techniques like that of [9]. To approximately solve
the problem via convex relaxation techniques, we note that it
is equivalent to the following problem1:

min
𝑥

√∑
𝑖

[(∣∣𝑥 − 𝑎𝑖∣∣2 − 𝑟2𝑖 )
2 + (∣∣𝑥− 𝑎𝑖∣∣2 −𝑅2

𝑖 )
2] . (3)

Although, the problem (3) is still nonconvex, we can turn it
into a convex problem by using a convex relaxation technique.
Firstly, we write the problem as follows:

min
𝑥,𝑦

√√√⎷∑
𝑖

[
(𝑦 − 2𝑎𝑇𝑖 𝑥+ ∥𝑎𝑖∥2 − 𝑟2𝑖 )

2

+(𝑦 − 2𝑎𝑇𝑖 𝑥+ ∥𝑎𝑖∥2 −𝑅2
𝑖 )

2

]

𝑠.𝑡. 𝑦 = ∥𝑥∥2.
(4)

Then by relaxing the equality constraint in (4) into an inequal-
ity constraint, we obtain the following convex problem:

min
𝑥,𝑦

√√√⎷∑
𝑖

[
(𝑦 − 2𝑎𝑇𝑖 𝑥+ ∥𝑎𝑖∥2 − 𝑟2𝑖 )

2

+(𝑦 − 2𝑎𝑇𝑖 𝑥+ ∥𝑎𝑖∥2 −𝑅2
𝑖 )

2

]

𝑠.𝑡. ∥𝑥∥2 ≤ 𝑦.

(5)

Using epigraph form[8], we can further transform it into a

1The possible case where there is only the lower bound 𝑟𝑖 or the upper
bound 𝑅𝑖 is not considered in this formulation. However, such a case can
still be handled by using the same convex relaxation technique.

standard linear cone programming problem:

min
𝑥,𝑦,𝑣,𝑡

𝑡

s.t. ∣∣𝑣∣∣ ≤ 𝑡

𝑦 − 2𝑎𝑇𝑖 𝑥+ ∥𝑎𝑖∥2 − 𝑟2𝑖 = 𝑣𝑖1

𝑦 − 2𝑎𝑇𝑖 𝑥+ ∥𝑎𝑖∥2 −𝑅2
𝑖 = 𝑣𝑖2 ∀𝑖

∥𝑥∥2 ≤ 𝑦 (6)

where 𝑣 =
[
𝑣11 𝑣12 ⋅ ⋅ ⋅ 𝑣𝑖1 𝑣𝑖2 ⋅ ⋅ ⋅ 𝑣𝑛1 𝑣𝑛2

]𝑇
.

Herein, in order to write in the standard form, we introduce a
dummy variable 𝑡. 𝑡 is also introduced in the epigraph model
of the problem; please refer to [8]. All vector variables in
this paper are column vectors. The resulting problem can be
solved by using efficient interior-point algorithms, e.g., the
solver SeDuMi [26].

C. Algorithm for Decreasing the Impact of Obstacles

In this paper, we assume that boundary nodes around the
obstacle have been discovered by some boundary recognition
algorithms [14], so that each sensor node knows whether
it is a boundary node or not. Only boundary nodes can
participate in contention for relaying beacons from the ME
because their rebroadcasts may cover some blind areas as
shown in Fig. 3. Hearing a beacon from the ME, boundary
nodes will compete to relay this location information through a
distributed contention process. The probability that a candidate
node wins the contention depends on the node’s remaining
energy and the number of neighboring sensors. The node with
greater remaining energy and greater number of neighbors has
higher priority to be the optimal relay node. The proposed
selection scheme for the optimal relay node is concluded as
follows: Receiving a beacon from the ME, a boundary node
sets a backoff timer which defines the amount of time that the
node must wait before rebroadcasting the location information.
The backoff time 𝛿 is calculated as

𝛿 = (𝛼(𝑢𝑠𝑒𝑑_𝑒𝑛𝑒𝑟𝑔𝑦/𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑒𝑛𝑒𝑟𝑔𝑦) +

𝛽/𝑛𝑢𝑚_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) ∗𝑚𝑎𝑥_𝑑𝑒𝑙𝑎𝑦 (7)

where 𝛼 and 𝛽 are the modification coefficients to provide
different weights for different parameters. We can see that a
greater remaining energy and a greater number of neighbors
will lead to a shorter backoff time. If a candidate boundary
node does not hear any beacon signal from other sensors
during its backoff time, it will rebroadcast the beacon signal
and other boundary nodes will cancel their contentions if
they receive the rebroadcast of the beacon. As a result, the
node with the highest priority will rebroadcast first and win
the competition to serve as the relay for the ME’s beacon
signal. Note that this distributed relay node selection process is
triggered by the reception of a beacon message from the ME.
Therefore, we do not require an explicit time synchronization
protocol among the candidate relays. They are implicitly
synchronized by the beacon message. However, due to the
existence of propagation delay and receive-to-transmit switch
time, the relay selection may fail when one relay cannot hear
the best relay’s rebroadcast of the beacon message. This is the
case when the backoff timer of a candidate relay expires before
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Fig. 3. A sensor network with an obstacle.

the rebroadcast of the best relay arrives at it. However, such
a case is rare according to the analysis in [15]. For example,
selecting 𝑐/𝜆 = 1/200 will result in a collision probability less
than 0.6% where 𝑐 is the propagation delay and switching time
and 𝜆 is the max delay in equation (9). Typically 𝑐 = 5𝜇𝑠;
this means the max delay can be 1 ms, which implies the
best relay will be selected within 1 ms. In this way, we
can deliver the ME’s location information to some areas that
cannot receive the ME’s direct communication. Similarly to
(3), the unknown-position sensor in these special areas can
obtain a set of inequality constraints on 𝑥 :

∣𝑅𝑖 −𝑅𝑟𝑒𝑙𝑎𝑦 ∣ ⩽ ∥𝑥− 𝑎𝑖∥ ⩽ 𝑅𝑖 +𝑅𝑟𝑒𝑙𝑎𝑦, 𝑖 = 1, 2, . . . , 𝑛 (8)

where 𝑅𝑟𝑒𝑙𝑎𝑦 is the current transmission radius for the relay
node and ∣⋅∣ represents the absolute value operator. We can
also use the proposed convex localization algorithm to solve
the problem (8). Based on this scheme, we can efficiently
decrease the impact of the obstacle on node localization and
improve the location accuracy.

Note that the beacon signal transmission is affected by
several affecting phenomena such as signal path loss and
channel fading. It is difficult to solve this problem well in
WSNs due to hardware constraints. The sensors that cannot
be covered directly by the ME due to physical obstacles will
have larger localization errors than the requirement since (10)
gives a looser bound than (3). Due to fading and shadowing
of wireless channels, it is possible that the relay node cannot
successfully relay the beacon signal to the unknown-position
sensor within the area that cannot receive the ME’s direct
communication. However, the ME will transmit beacon signals
at varying power levels consecutively when it is stationary.
With different beacon signals at a given position of the ME,
the selected relay node will differ. Thus it will increase the
probability of covering the unknown-position sensor within
the area that cannot receive the ME’s direct communication.
In the worst case, if the relay node still cannot cover a node,
we will consider it to be a blind node that cannot be localized.

D. Movement Scheduling for Mobile Elements

Several types of MEs capable of free movement are cur-
rently available, e.g., Packbot [17] and Robomote [21]. In
practice, the ME cannot visit some positions due to physical
obstacles. We assume that the regions that the ME cannot visit
are known. We only consider the minimal set of hexagons that
cover the visitable region. Due to power constraints, the ME
is capable of only low-speed and short-distance movement
in practical deployments. For instance, the normal speed of

several mobile sensor platforms (e.g., Packbot and XYZ) is
only 0.5 ∼ 2𝑚/𝑠. An XYZ mobile sensor node that is
powered by two AA batteries can move only about 165 meters
before exhausting its power. Therefore, the movement trace
of the ME must be efficiently planned in order to maximize
the number of localized unknown-position sensors with the
required localization accuracy.

The optimal movement schedule for MEs in our algorithm
needs to achieve the shortest path length so that the ME
covers the entire area with the shortest time and consumes
the minimum energy. Based on the derived localization error
bound (which will be derived in Section III), we propose an
optimal movement schedule for MEs as follows:

When the ME has no prior information about sensors’
positions, in order to guarantee that each sensor is localized
with error 𝜖, the entire geographical region should be covered
by disks with radii 𝑟𝑑 centered at the beacon points of the
ME. The most efficient coverage is the hexagonal tiling of
the entire region, in which the edge length of each hexagon
is 𝑟𝑑 and each beacon point is at the center of each hexagon.
In the optimal movement schedule of the ME, the center of
a hexagon is visited by the ME once. Obviously, the shortest
length of a path that crosses a hexagon is

√
3𝑟𝑑. In the line-

by-line scan as shown in Fig. 4, the shortest path length
is achieved. Therefore, the line-by-line scan is an optimal
movement schedule of the ME.

When each sensor has coarse prior information about its
position, the ME does not need to cover the entire region.
Suppose there are 𝑁 sensors and sensor 𝑖 is in region 𝐴𝑖

with high probability. Let {𝐻𝑖} denote the minimal set of
hexagons that covers the united regions

∪𝑁
𝑖=1 𝐴𝑖, where 𝐻𝑖

is one of the hexagons in the hexagonal tilings of the entire
geographical region. Note that {𝐻𝑖} can be found by checking
whether each hexagon has intersection with

∪𝑁
𝑖=1𝐴𝑖, and

hence in polynomial time. Construct a undirectional graph
𝐺 = (𝑉,𝐸), where 𝑉 is the set of centers of {𝐻𝑖} and 𝐸
is the set of Euclidean distances between any two points in
𝑉 . The movement schedule of the ME can be formulated as
the shortest Hamiltonian path problem. Specifically, given a
starting point that is a vertex in 𝑉 , find the shortest path that
visits each vertex in 𝑉 exactly once. We note that the problem
of finding a Hamiltonian path is NP-complete and therefore
the problem of finding the shortest Hamiltonian path is also
NP-complete [18].

We now propose a heuristic algorithm to solve the move-
ment scheduling problem formulated above by using any
solver of the travelling salesman problem (TSP). Note that
the optimal solution to the TSP is the shortest Hamiltonian
cycle for the given graph 𝐺. Our basic idea is as follows.
We first connect a vertex 𝑣 and the starting point with an
edge of large negative cost, and then apply the TSP solver
to the modified graph. Heuristically, this added edge will be
included in the TSP solution and the shortest Hamiltonian path
that ends at 𝑣𝑖 can be found by removing the added edge from
the TSP solution. By iterating 𝑣 ∈ 𝑉 , we can find the shortest
Hamiltonian path. Algorithm 1 shows the pesudo code of the
heuristic algorithm. In the pesudo code, INT_MAX represents
the maximum integer of the programming language, and ∣𝑃∖𝑒∣
represents the cumulative cost of the path 𝑃∖𝑒.
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Algorithm 1 Find the shortest Hamiltonian path
Input: 𝐺 = (𝑉, 𝐸), starting point 𝑣0
Output: The shortest Hamiltonian path in 𝐺

1: 𝑐𝑜𝑠𝑡 = INT_MAX
2: for 𝑣 ∈ 𝑉 ∖𝑣0 do
3: creat edge 𝑒 that connects 𝑣0 and 𝑣 with cost of -INT_MAX
4: 𝐸′ = 𝐸

∪
𝑒, 𝐺′ = (𝑉, 𝐸′)

5: 𝑃 = TSPsolver(𝐺′)
6: if ∣𝑃∖𝑒∣ < 𝑐𝑜𝑠𝑡 then
7: ℎ𝑝𝑎𝑡ℎ = 𝑃∖𝑒
8: 𝑐𝑜𝑠𝑡 = ∣𝑃∖𝑒∣
9: end if

10: end for
11: return ℎ𝑝𝑎𝑡ℎ

Fig. 4. The optimal movement schedule of the mobile anchor when no
information about sensors’ positions is available. The triangles represent the
way points of the mobile anchor. The edge length of each hexagon is 𝑟𝑑.

III. PERFORMANCE ANALYSIS

A. Localization Error Bounds

Wang et al. [19] investigated the network coverage for
range-based target localization applications. We compare our
method with their method implemented in the ideal environ-
ment without obstacles. As the simulation results described in
subsection IV.C show, our algorithm outperforms their method.
Hence, based on their analytical localization error bound, it
is feasible to extend their analysis to the scenario of range-
free localization using an ME and thereby to derive a loose
localization error bound for our localization algorithm. In [19],
Wang et al. proved a sufficient condition for achieving a target
localization error of 4

√
3𝑒
3 , where 𝑒 is the maximal range

estimation error. The major limitation of their result is that
they consider only a specific value of localization error. In this
section, we will extend their result to the scenario of range-free
localization using ME with any required localization error.

We first derive the maximal range estimation error, i.e., 𝑒,
under the scenario of range-free localization.

Let 𝑅𝑖 denote the transmission radius when the ME broad-
cast beacon using the 𝑖th transmission power level. We assume
𝑅𝑖 < 𝑅𝑗 if 𝑖 < 𝑗. The ME can determine the distance from
a sensor, denoted by 𝑑, which satisfies 𝑅𝑖 ≤ 𝑑 ≤ 𝑅𝑖+1.
The optimal estimate of the sensor position lies on the
circle centered at the ME and with radius 𝑅𝑖+𝑅𝑖+1

2 . Hence,
the distance estimate made by the ME is 𝑅𝑖+𝑅𝑖+1

2 and the
maximal range estimation error is given by

𝑒 = max
𝑖

{
𝑅𝑖+1 −𝑅𝑖

2

}
. (9)

In [19], the network resolution is defined to facilitate
derivation of the localization error bound. We now extend this
definition to the scenario of range-free localization using an
ME.

Definition 1: Two points 𝑡 and 𝑡′ are distinguishable if the
ME can always distinguish whether a sensor is at point 𝑡 or
𝑡′ through the measurements provided by the ME at different

t′ tdt,t′

wi

di,t′

di,t

θ
φ

Rc

no beacon point
in this sector

Fig. 5. The ME cannot distinguish two points 𝑡 and 𝑡′.

locations. The network resolution is the minimal distance 𝑙,
such that the ME can distinguish any pair of points when the
distance between them is larger than 𝑙.

The following lemma gives the relationship between net-
work resolution and the localization error bound, which has
been proved in [19]. We refer interested readers to [19] for the
details of the proof. We note that it also holds for the scenario
of range-free localization using ME.

Lemma 1 ([19]): If the network resolution is better than√
3𝜖, the localization error is upper bounded by 𝜖.
The following theorem gives a sufficient condition for

achieving a localization error of 𝜖, which enables us to sched-
ule the movement of ME to satisfy the required localization
error.

Theorem 1: The localization error is upper bounded by 𝜖 if
there is at least one ME beacon point in any arbitrary sector of
radius 𝑅𝑐 and angle 𝜙, where 𝑅𝑐 is the maximal transmission
radius of the ME, 𝜙 is given by

𝜙 = 2 arccos

(
2𝑒√
3𝜖

)
, (10)

and 𝜖 > 2√
3
𝑒. Note that 𝑒 is the maximal distance estimation

error of the ME when the sensor is within 𝑅𝑐 meters from the
ME, which is given by (9).

Proof: From Lemma 1, a sufficient condition for the
localization error of 𝜖 is that the network resolution provided
by the ME is

√
3𝜖. We prove this theorem by contradiction.

Suppose the network resolution is worse than
√
3𝜖, i.e., we can

find at least one pair of points 𝑡 and 𝑡′ which are apart by more
than

√
3𝜖, and the ME cannot distinguish them. Now we will

prove that if the conditions for this theorem are satisfied, such
a network resolution cannot be true and hence the localization
error of 𝜖 is guaranteed.

Suppose two points, 𝑡 and 𝑡′, cannot be distinguished by
the ME and the distance between them is 𝑑𝑡,𝑡′ ≥ √

3𝜖. We
denote the sector of radius 𝑅𝑐 and angle 𝜙 by (𝑅𝑐, 𝜙). As
we assumed that there is at least one ME beacon point in
any sector of (𝑅𝑐, 𝜙), there must be at least one beacon point
within 𝑅𝑐 meters from 𝑡. Suppose this beacon point is 𝑤𝑖 as
shown in Fig. 5. A necessary condition for 𝑡 and 𝑡′ to be
indistinguishable is ∣𝑑𝑖,𝑡 − 𝑑𝑖,𝑡′ ∣ ≤ 2𝑒; otherwise, 𝑡 and 𝑡′ can
be distinguished by the ME at beacon point 𝑤𝑖. Moreover,
𝑡′ must be within 𝑅𝑐 meters from 𝑤𝑖, as otherwise 𝑡 and 𝑡′

can be distinguished by the ME. Without loss of generality, we
assume 𝑑𝑖,𝑡 ≤ 𝑑𝑖,𝑡′ and therefore 𝑑𝑖,𝑡′ ≤ 𝑑𝑖,𝑡+2𝑒 according to
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the above necessary condition. As shown in Fig. 5, according
to the law of cosines, we have

cos 𝜃 =
𝑑2𝑖,𝑡 + 𝑑2𝑡,𝑡′ − 𝑑2𝑖,𝑡′

2𝑑𝑖,𝑡𝑑𝑡,𝑡′

≥ 𝑑2𝑖,𝑡 + 𝑑2𝑡,𝑡′ − (𝑑𝑖,𝑡 + 2𝑒)2

2𝑑𝑖,𝑡𝑑𝑡,𝑡′

=
𝑑2𝑡,𝑡′ − 4𝑒2 − 4𝑑𝑖,𝑡𝑒

2𝑑𝑖,𝑡𝑑𝑡,𝑡′
.

As 𝑑𝑡,𝑡′ ≥ √
3𝜖 > 2𝑒, we have 𝑑2𝑡,𝑡′ − 4𝑒2 > 0. There-

fore, cos 𝜃 > − 2𝑒
𝑑𝑡,𝑡′

≥ − 2𝑒√
3𝜖

. Accordingly, 0 ≤ 𝜃 <

arccos
(
− 2𝑒√

3𝜖

)
= 𝜋−arccos

(
2𝑒√
3𝜖

)
and 𝜙 < 2(𝜋−𝜃) ≤ 2𝜋.

There is no beacon point within the sector of (𝑅𝑐, 2(𝜋 − 𝜃))
centered at 𝑡 and bisected by ray 𝑡′𝑡, otherwise, 𝑡 and 𝑡′ can
be distinguished. However, as 2(𝜋 − 𝜃) > 𝜙, this result is
a contradiction to the assumption that there is at least one
beacon point in any sector (𝑅𝑐, 𝜙).

From Theorem 1, when 𝜖 ∈
(

2√
3
𝑒,∞

)
, 𝜙 ∈ (0, 𝜋).

Theorem 1 can be extended to the disk coverage model as
follows.

Corollary 1: The localization error is upper bounded by 𝜖 if

disks of radius sin 𝜙
2

1+sin 𝜙
2

𝑅𝑐 centered at the ME’s beacon points

cover the entire field, where 𝑅𝑐 is the maximal transmission
radius of the ME and 𝜙 is given by (10).

Proof: A sector of (𝑅, 𝜙) contains an inscribed circle

of radius 𝑟𝑑 =
sin 𝜙

2

1+sin 𝜙
2

𝑅𝑐. Therefore, if the disks of radius 𝑟𝑑
centered at the ME’s beacon points cover the entire field, there
will be no sector (𝑅𝑐, 𝜙) that contains no sensor and hence
the location estimation error bound is guaranteed according to
Theorem 1.

We note that the disc coverage model has several advantages
over the sector coverage model. First, the disc coverage
problem has been extensively studied in the previous literature
[20]. The previous results and algorithms can be applied to
schedule the movement of the ME. Second, the disc model is
easier than the sector model in the geometric treatment due to
its simplicity. Therefore, we adopt the disc coverage model to
schedule the movement of the ME.

B. Communication Cost and Power Consumption

The number of messages that a sensor node needs to
transmit is used to gauge the communication cost in our
localization algorithm. In our localization process, the MEs
will perform the broadcasting operation at every time slot.
Thus the communication cost is related to the number of
beacon signals, which can be calculated as follows:

For the communication cost in the line-by-line case, on
letting 𝑙 be the width of the deployment area, the number of
hexagonal tilings in a row can be calculated as 𝑙/

√
3𝑟𝑑. In the

same way, on letting ℎ be the height of the deployment area,
the number of rows is ℎ/

√
3𝑟𝑑. For each hexagonal tiling,

we assume the ME will beacon twice. Therefore, the total
number of beacons is 2ℎ𝑙/3𝑟2𝑑. For the communication cost
in the TSP case, the number of beacon points is 2{𝐻𝑖}, i.e.,
two times the size of the set {𝐻𝑖}. Thus, it is upper bounded
by the communication cost of the line-by-line case. The ME

broadcasts to unknown-position sensors a hello message with
its ID, location and some recognize-bits which amounts to
only several bytes. For low beacon point density, this would
require roughly hundreds of bytes.

We can evaluate the corresponding energy consumption
of our approach. We account for the energy consumed in
locomotion of the ME, wireless communication, and idle
state at local sensors. We assume that the ME is a wheeled
robot such as the Robomote [21]. The energy consumed in
locomotion by a wheeled robot, denoted by 𝐸𝑀 (𝑑), can be
approximated by 𝐸𝑀 (𝑑) = 𝑘 ⋅ 𝑑 [22], where 𝑑 is the moving
distance and 𝑘 = 2 J/m if the ME moves at optimal speed. For
typical low-power transceivers such as CC2420, the energy
consumed in wireless communication, denoted by 𝐸𝐶(𝑑), can
be modeled as 𝐸𝐶(𝑑) = 𝑚 ⋅ (𝑎+ 𝑏 ⋅ 𝑑2) [23], where 𝑑 is the
transmission distance, 𝑚 is the number of bits transmitted, and
𝑎 and 𝑏 are constants. 𝑎 and 𝑏 can be set to be 0.6×10−7 J/bit
and 4× 10−10 J/m2 ⋅ bit according to the experiments in [23].
The power consumption of an idle node is set to be 21mW,
which is consistent with that of the TelosB mote [24]. We
assume that a node stays asleep when it is outside of the
communication range of the ME during the localization phase.
Moreover, we ignore the power consumption of a sleeping
node, as it is much less than the idle state power consumption.
For instance, a TelosB mote consumes 1𝜇W in sleep mode
[24].

In our line-by-line case, the energy consumed in wireless
communication by the ME is 𝐸𝑐(𝑅𝑖) = 𝑚⋅(𝑎+𝑏⋅𝑅2

𝑖 )⋅ 2ℎ𝑙3𝑟2𝑑
(𝐽),

the energy consumed in locomotion by the ME is 𝐸𝑚(𝑑) =

2
(

ℎ𝑙√
3𝑟𝑑

−√
3𝑟𝑑

)
(𝐽), and the average power consumption of

sensors in the ME radio coverage area is 𝐸𝑠 = 21 ⋅𝑁𝑠(𝑚𝑊 ),
where 𝑁𝑠 is the average number of sensors in the ME radio
coverage. Therefore, 𝑁𝑠 = 𝜌 ⋅ 𝜋𝑅2

𝑖 =
𝑁𝜋𝑅2

𝑖

𝐴 , where 𝑁 is the
total number of sensors and 𝐴 is the total area of the network.

For the method of [16], if it adopts the dense-straight-
line (DSL) movement pattern and the broadcasting interval of
the beacon is 0.25 meters, the energy consumed in wireless
communication of their method is 𝐸𝑐 = 𝑚 ⋅(𝑎+𝑏 ⋅𝑅2

𝑖 )(
ℎ𝑙
4𝑅2

𝑖
+

ℎ
2𝑅𝑖

) ⋅4(𝐽), the energy consumed in locomotion by the mobile

beacon is 𝐸𝑚 = 2
[
(𝑙 + 2𝑅𝑖) ⋅ ( ℎ

2𝑅𝑖
+ 1) + ℎ

]
(𝐽), and the

power consumption of sensors in the ME radio coverage area
is 𝐸𝑠 = 21 ⋅𝑁𝑠(𝑚𝑊 ).

By setting 𝜙 = 2𝜋
3 and 𝑅𝑖 = 45 𝑚, we have the following

conclusion. The energy consumed in wireless communication
by the ME in our approach is slightly smaller than that of the
method in [16]. However, the energy consumed in locomotion
of the ME in our method is significantly smaller than that of
the method in [16]. The power consumption of idle sensors is
almost the same for both methods.

IV. NUMERICAL RESULTS

In this section, simulation results are presented and ana-
lyzed. We consider a 2-dimensional region with a size of 100
m x 100 m. We assume the ME has two level transmission
power with the transmission radii 𝑟 and 𝑅 = 2𝑟, respectively.
First, we deploy 100 sensor nodes randomly and the trans-
mission radius 𝑟 is set to 15 meters. All simulation results are
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averaged over 100 network scenarios. The average localization
error is used to evaluate the performance for our localization
algorithm. The average localization error is defined as follows:

𝑒𝑟𝑟𝑜𝑟 =
1

𝑁

𝑁∑
𝑖=1

∥𝑥𝑖 − �̂�𝑖∥ × 1

𝑟
,

where 𝑥𝑖 is the actual position for node 𝑖, 𝑁 is the number
of unknown-position sensor nodes and �̂�𝑖 is the estimated
position of node 𝑖.

A. Performance in the Ideal Environment

In this subsection, we give the simulation results for dif-
ferent algorithms in the ideal situation, namely, there is no
obstacle in the sensing area. We use the degree of irregu-
larity (DOI) to indicate the radio irregularity characteristic.
Its value denotes the maximum range variation per unit
degree change in the direction of radio propagation. Simi-
larly to [16], we formally define the DOI model as follows:
𝐷𝑂𝐼 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑃𝑎𝑡ℎ 𝐿𝑜𝑠𝑠 = 𝑃𝑎𝑡ℎ 𝐿𝑜𝑠𝑠 ∗ (1 ± 𝑅𝑎𝑛𝑑 ×
𝐷𝑂𝐼). Fig. 6(a) and 6(b) show the simulation results in this
ideal situation, where the true nodes are denoted by circles, the
position estimates are denoted by asterisks, and the lines that
link the true nodes and the estimates represent the estimation
errors. It is clear from Fig. 6(a) and 6(b) that our algorithm
works better than the algorithm of [16] in terms of the average
localization error.

In practical environments, the actual transmission radius
varies in different directions of radio propagation because of
the non-isotropic properties of the propagation medium and
the heterogeneous properties of devices. In this experiment,
we investigate the impact of irregular radio patterns on the
precision of our proposed localization algorithm. Similarly to
[16], we use a random value to denote the variance of path
loss, and this random value follows a Weibull distribution. The
parameter DOI determines the maximum variance. Using this
DOI model, we not only obtain the property that the variance
of path loss is distinct in every direction but also show that
pass losses in the same direction may be varying due to the
dynamic environment. As shown in Fig. 7(a), the localization
accuracy of our algorithm decreases as the DOI increases.
When the DOI is smaller than 0.1, the localization error varies
slightly. Fig. 7(a) indicates that our method outperforms the
method of [16] in terms of the average localization error
with the various values of DOI. We evaluate the localization
accuracy of our localization algorithm in both the proposed
and random movement strategies for different values of DOI.
Fig. 7(b) indicates that our localization algorithm using the
proposed movement strategy outperforms that using the ran-
dom movement strategy.

B. Performance in the Non-ideal Environment

For the next set of experiments, we use a channel fading
model to indicate the effect of obstacles on localization
accuracy. Herein, we use a fading coefficient (f) that represents
the percentage of total mobile beacon points that cannot be
heard by the sensor at any given time. This models obstacles
encountered in the sensing area that limit the number of mobile
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Fig. 6. Performance comparison: (a) Localization error of our method
(DOI=0.2, error = 11.68%); (b) Localization error of method [16] (DOI=0.2,
error = 13.7%).
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Fig. 7. Performance comparison: (a) The average localization error vs. DOI;
(b) Impact of movement strategy.

beacon points that can be heard at any point. As Fig. 8(a)
and 8(b) illustrate, our algorithm outperforms the algorithm
of [16] in terms of the average localization error in this non-
ideal environment.

C. Performance Comparison with a Range-based Method

In this section, we employ the range-based localization
algorithm in [19] as the baseline. Fig. 9(a) and 9(b) show the
localization results obtained by our method and the baseline
algorithm, respectively, in the ideal environment without an
obstacle. We can see from these two figures that our method
outperforms the baseline algorithm in terms of average local-
ization error. Specifically, the average localization errors are
12.03% and 18.68%, respectively. Note that the settings of our
method can be configured to meet any required localization
error as discussed in section III.A. However, the baseline
algorithm can only achieve a specific localization error that
depends on the range estimation error of the ME. Therefore,
our method outperforms the baseline method.

V. CONCLUSIONS

We have presented a new cooperative localization scheme
that can achieve high localization accuracy in mobility-assisted
wireless sensor networks when obstacles exist. Considering
the complex localization scenario, namely, the feasible set is
empty, a convex localization algorithm has been presented to
address the effects of non-ideal transmission of radio signals.
We have developed an optimal movement schedule for MEs
that can achieve a shortest path under expected localization
accuracy. It has been shown via the simulation results that
the proposed cooperative localization scheme can achieve high
localization accuracy by including a mobile element. In future
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Fig. 8. Performance comparison in the non-ideal environment: (a) Localiza-
tion error of our method (DOI=0.25, f=0.1, error = 17.07%); (b) Localization
error of method [16] (DOI=0.25, f=0.1, error = 19.34%).
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Fig. 9. Performance comparison with a range-based method: (a) Localization
error of our method (DOI=0.25, error = 12.03%); (b) Localization error of
method [19] (DOI=0.25, error = 18.68%).

work, we intend to verify and improve the proposed coop-
erative localization scheme using real sensors in a mobility-
assisted wireless sensor network. We will extend our work to
address other limited mobility models of MEs, such as the
straight-line mobility model of the XYZ mobile sensor [25].
Using distributed space-time-codes [15] to reduce the impact
of channel fading on the cooperative localization algorithm is
also an important issue to be considered in the future.
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