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Abstract
Volcano monitoring is of great interest to public safety

and scientific explorations. However, traditional volcanic
instrumentation such as broadband seismometers are ex-
pensive, power-hungry, bulky, and difficult to install. Wire-
less sensor networks (WSNs) offer the potential to monitor
volcanoes at unprecedented spatial and temporal scales.
However, current volcanic WSN systems often yield poor
monitoring quality due to the limited sensing capability of
low-cost sensors and unpredictable dynamics of volcanic
activities. Moreover, they are designed only for short-
term monitoring due to the high energy consumption of
centralized data collection. In this paper, we propose a
novel quality-driven approach to achieving real-time, in-
situ, and long-lived volcanic earthquake detection. By em-
ploying novel in-network collaborative signal processing
algorithms, our approach can meet stringent requirements
on sensing quality (low false alarm/missing rate and precise
earthquake onset time) at low power consumption. We have
implemented our algorithms in TinyOS and conducted ex-
tensive evaluation on a testbed of 24 TelosB motes as well as
simulations based on real data traces collected during 5.5
months on an active volcano. We show that our approach
yields near-zero false alarm/missing rate and less than one
second of detection delay while achieving up to 6-fold en-
ergy reduction over the current data collection approach.

1 Introduction
In the last two decades, volcanic eruptions have led to

a death toll of over 30,000 and damage of billions of dol-
lars [1]. The recent eruptions of Volcano Eyjafjallajökull
in Iceland caused the disruption of air traffic across Eu-
rope. Traditional volcano monitoring systems often employ
broadband seismometers which, although can yield high-
fidelity seismic monitoring signals, are expensive, power-
hungry, bulky, and difficult to install. These limitations
have largely prevented them from wide deployment, even
for many threatening volcanoes. For instance, Mount St.
Helens, an active volcano in northwestern U.S., is currently
monitored by less than 10 stations [16] providing limited
coverage and coarse-grain monitoring.

The advances of wireless sensor networks (WSNs) have

made it possible to greatly improve volcanic monitoring
quality through numerous low-cost sensors. Moreover,
WSNs enable fast ad hoc system deployment that is largely
impossible in the past. Recent pilot deployments on sev-
eral active volcanoes [16, 20, 21] have demonstrated the
feasibility and scientific value of WSNs to volcano moni-
toring. However, the current efforts of these projects are
mostly focused on communication and networking issues
such as reliable data delivery, time synchronization, and net-
work management. In order to detect earthquake events,
sensory data are transmitted to the base station for central-
ized processing. However, due to the sheer amount of raw
data gathered at high sampling rates, such a data collection
approach leads to excessive energy consumption and short
system lifetime. Moreover, it has poor timeliness due to
the limited bandwidth of low-cost sensors. For instance, as
shown in [21], collecting one minute of seismic data over
a multi-hop link can take up to six minutes. Although data
transmission can be reduced by event-triggered data collec-
tion approaches [21], the existing earthquake detection al-
gorithms [9] are heuristic in nature and often lead to exces-
sive event misses. For instance, only about 5% of seismic
events were successfully detected in a recent WSN deploy-
ment at Volcań Reventador in northern Ecuador [21].

In this paper, we push state of the art to real-time, in-
situ, and long-lived volcano monitoring systems with as-
sured sensing performance. In particular, we aim to com-
pletely avoid raw data transmission by developing advanced
in-network signal processing algorithms for volcanic earth-
quake detection. To this end, the following challenges must
be addressed. First, volcanic earthquake is a sophisticated
physical process featured by highly dynamical magnitude
and variable source location. These unpredictable dynam-
ics must be properly dealt with in the sensing algorithms.
Second, compared with traditional expensive monitoring
instruments, low-cost wireless sensors often have limited
sensing capability such as low signal-to-noise ratio and nar-
row responsive frequency band. Therefore, they must effi-
ciently collaborate in signal processing to achieve the strin-
gent sensing quality requirements. Third, the computation
as well as inter-node communication overhead must be min-
imized to improve timeliness and extend system lifetime.

We make the following major contributions in this paper:



• We develop a novel quality-driven approach to detect-
ing volcanic earthquakes based on collaborative sig-
nal processing algorithms. Our fundamental method-
ology is to drive the system design based on user’s re-
quirements on system sensing quality while minimiz-
ing sensors’ energy consumption.

• We develop new sensing algorithms based on the ex-
tensive analysis of real data traces collected on Mount
St. Helens [16]. First, we propose a Bayesian detec-
tion algorithm based on a novel joint statistical model
of seismic signal energy and frequency spectrum. Sec-
ond, we develop a near-optimal sensor selection algo-
rithm that chooses the minimum subset of informative
sensors to yield system detection results. The above
two algorithms enable the system to achieve satisfac-
tory sensing quality in the presence of unpredictable
dynamics of volcanic earthquakes. Moreover, they
only generate light traffic from sensors to the base sta-
tion and completely avoid the transmission of raw data.

• We have implemented our algorithms on a testbed of
24 TelosB motes. We conduct testbed experiments
and extensive simulations based on real data traces col-
lected by 12 nodes on Mount St. Helens [16] that con-
tain more than 128 significant earthquake events. Ex-
perimental results show that our approach yields near-
zero false alarm/missing rate and less than one second
of detection delay while achieving up to 6-fold energy
reduction over the current data collection approach.
Moreover, our approach allows a system to configure
its sensing quality under different energy budgets.

The rest of this paper is organized as follows. Section 2
reviews related work. Section 3 provides an overview of
our approach. Section 4 presents the earthquake detection
algorithm run by sensors locally. Section 5 develops a near-
optimal sensor selection algorithm. Section 6 presents im-
plementation details and Section 7 evaluates our approach.
Section 8 concludes this paper.

2 Related Work

In 2004, four MICA2 motes were deployed on Volcań
Tungurahua in central Ecuador [20], which is the first mote-
based volcano monitoring system. The system lived for
three days and successfully collected the data of at least
9 large explosions. In 2005, the same group deployed
16 Tmote nodes equipped with seismic and acoustic sen-
sors at Volcań Reventador in northern Ecuador for three
weeks [21, 22]. The main objective of the above two de-
ployments is to collect high-resolution/fidelity sensor data
for domain scientists. A simple event-triggered data col-
lection approach based on the STA/LTA (short-term aver-
age over long-term average) [9] earthquake detection algo-
rithm is developed to reduce data transmission. However,

this heuristic approach cannot yield provable and satisfac-
tory detection performance. For instance, although the sys-
tems had zero false alarm rate, they suffered very low detec-
tion probabilities (about 5%) [21]. Moreover, collected data
are processed in a centralized fashion leading to significant
bandwidth requirement and energy consumption.

In the Optimized Autonomous Space In-situ Sensorweb
(OASIS) project [16], 15 iMote2-based nodes has been
aerial deployed into Mount St. Helens since July 2009.
In that project, significant research efforts have been put
into improving system longevity, network efficiency and
performance issues. The design has successfully deliv-
ered a long-term sustainable sensor network in challeng-
ing environment, and long-period (e.g., several months)
valuable real-world high-fidelity volcanic sensor dataset for
our research. To our best knowledge, the issue of real-
time quality-ensured in-network earthquake detection has
not been addressed, although the heuristic STA/LTA earth-
quake detection algorithm was adopted for data prioritiza-
tion in their design.

There exist a vast of well-established tools and tech-
niques for processing sensor data in seismology community
[4, 9, 15]. However, most of them are designed to centrally
process seismic signals collected from traditional seismo-
logical stations. Specifically, seismic data must be logged
at the stations and then transmitted or manually fetched to a
base station for centralized processing [21, 22].

3 Approach Overview

In this section, we provide an overview of our approach
to detecting volcanic earthquakes using a WSN. Our ap-
proach is designed to meet two key objectives of volcano
monitoring. First, the system sensing quality must sat-
isfy the Neyman-Pearson (NP) requirement [8] including
upper-bounded false alarm rate and lower-bounded detec-
tion probability. For instance, seismologists may request
that no more than 1% of detection reports are false alarms
and the system can successfully detect at least 90% earth-
quake events. Second, the computation and communication
overhead of sensors must be minimized to improve timeli-
ness and extend system lifetime.

We assume that the network comprises a base station and
a number of sensors distributed on the volcano. In this
paper, we assume that all sensors are of seismic modal-
ity, which is consistent with several first-generation vol-
cano monitoring WSNs [16, 21]. Our approach comprises
a group of detection algorithms that run at sensors and the
base station, respectively. They work together to achieve
the requirements on sensing quality. A system architec-
ture of our approach is shown in Figure 1. Each sensor
detects earthquake event every sampling period based on
seismic frequency spectrum. To handle the earthquake dy-
namics such as highly dynamical magnitude and variable
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Figure 1. System architecture. White blocks
are the components at a sensor; shadowed
blocks are the components at the base sta-
tion; solid line represents data flow; dotted
line represents control flow.

source location, each sensor maintains separate statistical
models of frequency spectrum for different scales of seis-
mic signal energy received by sensor. Our study shows that
the frequency-based detector typically has better detection
performance when the sensor receives higher signal energy.
Therefore, in our approach, the base station first selects a
minimum subset of informative sensors based on the signal
energies received by sensors while satisfying system sens-
ing quality requirements. The selected sensors then com-
pute seismic frequency spectrum using fast Fourier trans-
form (FFT) and make local detection decisions which are
then transmitted to the base station for fusion. In addition to
the detection of earthquake occurrences, node-level earth-
quake onset time is critical for localizing earthquake source.
In our approach, the base station first identifies an individual
earthquake and estimates a coarse onset time. The coarse
onset time is then fed back to sensors, which will pick the
P-phase (i.e., the arrival time of wavefront) from buffered
raw seismic data using existing algorithms, e.g., [15]. How-
ever, due to space limitation, we only focus on the detection
of earthquake occurrences in this paper. The details of the
onset time estimation are omitted and can be found in [17].

Our approach has the following advantages. First, differ-
ent from existing heuristic earthquake detection algorithms
such as STA/LTA, our model-driven approach can meet var-
ious sensing quality requirements including bounded false
alarm rate and detection probability. Second, by employing
novel in-network data fusion schemes, our approach incurs
low communication overhead. Specifically, in each sam-
pling period, only signal energy represented by an integer
needs to be sent to the base station. Only when the system
sensing quality meets user’s requirement, local decisions
made by sensors are transmitted to the base station. Third,
the sensor selection algorithm allows a network to achieve
desired trade-off between system sensing quality and com-
putational overhead at sensors. In particular, based on the
requirement on energy-efficiency, only a minimum number
of sensors are selected to execute the computation-intensive
signal processing algorithms such as FFT.
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Figure 2. Seismic signal energy.

4 Local Earthquake Detection at Sensors

In this section, we design a local earthquake detection
algorithm that runs at sensors locally. In order to achieve
satisfactory sensing performance, the following questions
must be addressed. First, what information does a sensor
need to sample? Due to the resource limitation of low-cost
sensors, the amount of sampled information must be mini-
mized while critical features of earthquake should be con-
served. Second, how to represent the sampled information
using a sensing model? The overhead of computing and
storing the model should be affordable for low-cost sensors.
Third, how to accurately detect earthquakes based on the
sensing model and real-time measurements? In the follow-
ing, we first present a case study of sensors’ measurements
in earthquakes and then address the above questions.

4.1 A Case Study of Earthquake Sensing

Detecting volcanic earthquakes using low-cost ac-
celerometers in WSN is challenging due to the dynamics
of earthquake, e.g., significantly variable magnitude and
source location. Moreover, as seismic signal attenuates
with the propagation distance, the sensors far away from
the earthquake source receive weak signals and hence have
lower detectabilities. Such a phenomenon is referred to as
the locality of earthquake in this paper. In this section, we il-
lustrate the locality of earthquake using a case study, which
motivates us to propose a novel sensing model for volcanic
earthquake detection.

The case study is based on the seismic data traces col-
lected by 12 nodes in the OASIS project on Mount St. He-
lens [16]. We examine micro-scale signal energy and fre-
quency spectrum which are two basic statistics computed
from sensors’ raw data. Figures 2(a) and 2(b) plot the sig-
nal energy received by Node1 and Node9 in two earthquake
events, respectively. From the figures, we can see that
Node9 receives higher signal energy than Node1 in Event
1, while Node1 receives significantly higher signal energy
than Node9 in Event 2. This example shows that the signal
energy received by a sensor varies significantly due to the
change of the earthquake source location as well as its mag-
nitude. Therefore, simple threshold detection approaches
based on signal energy [7, 13, 18] would not address the
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Figure 3. Frequency spectrum of Node1.
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Figure 4. Frequency spectrum of Node9.

dynamics of volcanic earthquakes. Figures 3(a) and 3(b)
plot the spectrum of Node1 in the two events, respectively.
As the signal energy of Event 1 is much stronger than that
of Event 2 (about 100 times), Node1 has significantly dif-
ferent frequency spectra in the two events. Specifically,
the received seismic energy is mainly distributed within
[0Hz, 5Hz] in Event 1 and [5Hz, 10Hz] in Event 2. Fig-
ures 4(a) and 4(b) plot the spectrum of Node9. We can
see that Node9 has insignificant frequency feature in Event
2 due to very weak signals. Moreover, from Figures 3(a)
and 4(a), we can see that Node1 and Node9 have differ-
ent frequency spectra in the absence of earthquake. We can
make two important observations from this case study for
constructing earthquake sensing model. First, in order to
achieve satisfactory sensing quality, signal energy and fre-
quency spectrum must be jointly considered for detecting
earthquakes. Second, the frequency spectra for different
scales of signal energy sensed by a sensor vary considerably
and hence require different mathematical representations.

4.2 Feature Extraction

To capture the significant temporal dynamics of earth-
quake, sensors have to perform detections at a short period,
e.g., per second. In the following, we discuss efficient sam-
pling schemes to obtain both frequency spectrum and signal
energy. The seismic waves emitted by an earthquake can be
classified as the primary wave (P-wave) and shear wave (S-
wave). The P-wave is faster than S-wave and its frequency
is typically from 1Hz to 10Hz, while the slower S-wave of-
ten has a frequency of lower than 1Hz [4]. Different from
the high-cost broadband seismometers that are traditionally
used by the seismological community, low-cost accelerom-
eters in WSNs, e.g., 1221J-002 from Silicon Designs [16],
are only responsive to P-wave. As a result, the seismic en-
ergy measured by these accelerometers in the presence of

earthquake is mainly distributed within [1Hz, 10Hz]. As
shown in Section 4.1, frequency spectrum is expected to
be a robust feature for detecting earthquakes using low-cost
accelerometers. Suppose the sampling rate is f Hz. By ap-
plying FFT to the raw seismic data received during one sec-
ond, a sensor obtains the frequency spectrum that ranges
from 0Hz to f/2Hz. Each component of the spectrum rep-
resents the percentage of signal energy that is located in the
corresponding frequency.

The sampling rate of accelerometers can be high (up
to 400Hz). In order to reduce the computation overhead
of sensors, we construct feature vector from the frequency
spectrum as follows. The frequency spectrum is evenly di-
vided into n bins. Let x denote the feature vector at a
sensor. The ith component of the feature vector, i.e., x[i],
is the sum of spectrum components in the ith bin. Hence,
x[i] is the percentage of signal energy that is distributed in
( i·f2n Hz, (i+1)·f

2n Hz], where i = 0, 1, . . . , n − 1. As the di-
mension of feature vector, i.e., n, determines the computa-
tion complexity of the training and detection algorithms at
sensors, n should be chosen to achieve satisfactory trade-off
between detection accuracy and computation overhead.

In addition to frequency spectrum, signal energy re-
ceived by sensors is also an important feature that quantifies
the earthquake magnitude. The signal energy at a sensor is
often estimated by the mean square of seismic intensities
during a sampling period [14]. To be consistent with the
frequency analysis, we let the sampling period be one sec-
ond in this work. Let yi denote the ith seismic intensity and
e denote the signal energy. For a sampling rate of f Hz, the
signal energy is computed by e = 1

f

∑f
i=1(yi − ȳ)2, where

ȳ is the mean of seismic intensities in a sampling period.

4.3 A Multi-scale Sensing Model

We now propose a multi-scale Bayesian model that
jointly accounts for signal energy and frequency spectrum
received by a sensor to deal with the dynamics and local-
ity of earthquakes that are discussed in Section 4.1. In the
multi-scale Bayesian model, the range of signal energy is
divided into K consecutive sub-ranges, denoted by {Rp|p ∈
[1,K]}. Each sensor maintains K+1 n-dimensional normal
distributions, which are denoted by {Np|p ∈ [0,K]}. Note
that n is the dimension of the frequency feature vector. The
distribution N0 represents the model of frequency feature
vector in the absence of earthquake and {Np|p ∈ [1,K]}
correspond to the cases when earthquake happens and the
received signal energy falls into the pth energy range, i.e.,
e ∈ Rp. Each normal distribution Np is characterized by
its mean vector and covariance matrix, which are denoted
by mp and Cp. Specifically, mp[i] = E[x[i]|e ∈ Rp] and
Cp[i, j] = cov(x[i]|e ∈ Rp,x[j]|e ∈ Rp), where x[i] is
the ith component of the frequency feature vector. With the
above model, the frequency spectra for different scales of



signal energy are characterized by separate normal distribu-
tions that carry sensing quality information. Such a model
allows us to precisely describe sensors’ performance in the
presence of earthquake dynamics and locality.

We now discuss how to divide the signal energy range.
The range of signal intensity measured by a sensor depends
on its bit-depth and calibration. Therefore, for different
sensor products, the range of signal intensity varies signif-
icantly. However, through proper normalization to signal
intensity, we can develop a universal scale scheme for sig-
nal energy. In this work, we employ a base-10 logarithmic
scale to represent the signal energy range, which is consis-
tent with many widely adopted earthquake magnitude scales
such as the Richter magnitude scale [10]. Specifically, we
let p = blog10 ec where e is the received signal energy.
Therefore, the pth energy scale range, Rp, is [10p, 10p+1)
and p is referred to as energy scale hereafter. For example,
the signal energy ranges from 10 to 106 for the data traces
collected in the OASIS project [16] and therefore the energy
scale is from 1 to 6.

In order to build the multi-scale Bayesian model, we
need to compute the mean vector mp and covariance ma-
trix Cp using enough samples. As both mean and covari-
ance can be updated efficiently with incremental algorithms
when a new sample is available, the model learning can be
performed on each sensor locally at low cost. Specifically, a
sensor learns its sensing model as follows. When no earth-
quake occurs, the sensor updates the distribution N0 using
the current extracted frequency feature vector; otherwise, it
first computes the energy scale p and then updates the corre-
sponding distribution Np. This model learning process can
be conducted offline with data traces. Alternatively, it can
be conducted online with the ground truth information from
high-quality sensors. Seismological monitoring infrastruc-
tures already deployed on active volcanoes can be used to
generate ground truth for training newly deployed low-cost
sensors. As these infrastructures are often power-hungry,
they can be turned off when the training completes.

4.4 Local Bayesian Detector

Based on the multi-scale Bayesian model presented in
Section 4.3, we design a Bayesian detector for each sensor
to achieve optimal local detection performance. The de-
tector makes a decision based on both the energy scale p
and frequency feature vector x. The local decisions of sen-
sors are then fused at base station to improve system sens-
ing quality, which will be discussed in Section 5. A sensor
makes a decision between the hypotheses that there is earth-
quake or not (denoted by Hp and H0, respectively):

H0 : x ∼ N (m0,C0); Hp : x ∼ N (mp,Cp).

Let I denote the local decision made by the sensor. Specif-
ically, if the sensor accepts the null hypothesis H0, I = 0;

otherwise, I = 1. The detection performance is usually
characterized by two metrics, namely, false alarm rate (de-
noted by PF ) and detection probability (denoted by PD).
PF is the probability that the sensor decides I = 1 when
the ground truth is H0. PD is the probability that the sen-
sor decides I = 1 when the ground truth is Hp. Among
many existing decision criteria, the minimum error rate
criterion is the most widely adopted one that jointly ac-
counts for false alarms and misses. Moreover, in contrast
to other complicated decision criteria, the minimum error
rate criterion has a closed-form decision function, which
can largely reduce the computation overhead at sensors.
Given the frequency feature x, the decision functions for
minimum error rate are [8] gi(x) = lnP(Hi)− 1

2 ln |Ci| −
1
2

(
(x−mi)

TC−1
i (x−mi)

)
for i ∈ {0, p}, where P(Hi) is

the prior probability of the ground truth Hi and |Ci| repre-
sents the determinant of Ci. The local detection decision I

is made by g0(x)
I=0

≷
I=1

gp(x). However, the matrix compu-

tations are too expensive for low-cost sensors when the di-
mension is high (e.g., up to 10). In our approach, if sensors
are trained in an online fashion as discussed in Section 4.3,
each sensor transmits the mean vectors and covariance ma-
trices to the base station, which computes the determinant
and inverse of the covariance matrices and then transmits
them back to sensors.

Under the above decision rule, the false alarm rate and
detection probability of the sensor are given by PF =∫
R φ(x|m0,C0)dx and PD =

∫
R φ(x|mp,Cp)dx, where

R = {x|g0(x) < gp(x)} and φ(x|mi,Ci) is the proba-
bility distribution function (PDF) of the normal distribution
N (mi,Ci). Specifically,

φ(x|mi,Ci)=
1

(2π)
n
2|Ci|

1
2

exp

(
− (x−mi)

TC−1
i (x−mi)

2

)
,

where n is the dimension of x. We note that each pair of
(H0,Hp) where p ∈ [1,K] gives a pair of (PF , PD). How-
ever, it is usually difficult to obtain the closed-form expres-
sion for the integral region R for computing PF and PD. In
our approach, the base station computes the PF and PD for
each pair of (H0,Hp) through Monte Carlo simulation. The
PF ’s and PD’s for each sensor are stored at the base station,
which will be used to select the most informative sensors to
detect earthquakes as discussed in Section 5.

5 Dynamic Sensor Selection for Decision Fu-
sion

As discussed in Section 4.4, sensors can yield local de-
tection decisions by a Bayesian detector. However, the
accuracy of these decisions may be poor due to the lim-
ited sensing capability of low-cost sensors. Therefore, a
system-wide detection consensus is often desired for high-



fidelity volcano monitoring. In our approach, the base sta-
tion generates system detection decision by fusing the local
decisions from sensors. As sensors yield different sensing
performances due to the dynamics and locality of volcanic
earthquake as discussed in Section 4, it is desirable for the
base station to select a subset of sensors with the best signal
quality to achieve maximum system detection performance.
Moreover, the sensor selection avoids unnecessary expen-
sive feature extraction at the sensors with low signal qual-
ity. In this section, we first introduce the decision fusion
model and analyze its performance. We then formulate the
sensor selection as an optimization problem and develop a
near-optimal solution.

5.1 Decision Fusion Model

As one of basic data fusion schemes [19], decision fu-
sion is preferable for WSNs due to its low communication
cost [7]. We use a widely adopted decision fusion model
called equal gain combining (EGC) [7,13,18] that fuses sen-
sors’ local decisions with equal weight. Suppose there are
n sensors taking part in the fusion and let Ii denote the lo-
cal decision of sensor i. The EGC compares the test statistic
Λ =

∑n
i=1 Ii against a threshold denoted by η. If Λ exceeds

η, the base station decides that an earthquake has occurred;
otherwise, it makes a negative decision.

We now analyze the system detection performance of the
EGC fusion model. In the absence of earthquake, the local
decision of sensor i, Ii|H0, follows the Bernoulli distribu-
tion with αi as success probability. As sensors have differ-
ent false alarm rates, the test statistic Λ|H0 follows a gener-
alized Binomial distribution. The probability mass function
(PMF) of Λ|H0 is given by

P(Λ = λ|H0) =
∑

||S||=λ,∀S

∏
i∈S

αi

∏
j∈SC

(1− αj), (1)

where S is any subset of sensors with size of λ and SC rep-
resents the complement of S. Hence, the cumulative dis-
tribution function (CDF), denoted by FΛ|H0

(x), is given by
FΛ|H0

(x) =
∑bxc

λ=0 P(Λ = λ|H0). Therefore, the system
false alarm rate can be computed as PF = 1 − FΛ|H0

(η).
Similarly, the system detection probability can be computed
as PD = 1−FΛ|H1

(η). Note that replacing αi in (1) with βi

yields the PMF of Λ|H1. However, computing the CDF of
Λ has a complexity of O(2n) and hence is infeasible when
the number of fused sensors is large.

We now propose approximate formulae for the sys-
tem detection performance of the EGC fusion model when
the number of fused sensors is large. As sensors inde-
pendently make local decisions, the mean and variance
of Λ|H0 are given by E[Λ|H0] =

∑n
i=1 E[Ii|H0] =∑n

i=1 αi, Var[Λ|H0] =
∑n

i=1 Var[Ii|H0] =
∑n

i=1 αi −
α2
i . Lyapunov’s central limit theorem (CLT) [5] is
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a CLT variant for independent but non-identically dis-
tributed variables. We have proved the Lyapunov con-
dition for a sequence of Bernoulli random variables in
[18]. Therefore, according to Lyapunov’s CLT, Λ|H0

follows the normal distribution when n is large, i.e.,
Λ|H0 ∼ N

(∑n
i=1 αi,

∑n
i=1 αi − α2

i

)
. Similarly, Λ|H1 ∼

N
(∑n

i=1 βi,
∑n

i=1 βi − β2
i

)
. Hence, the system false

alarm rate and detection probability are given by

PF 'Q

(
η −

∑n
i=1 αi√∑n

i=1 αi−α2
i

)
, PD'Q

(
η −

∑n
i=1 βi√∑n

i=1 βi−β2
i

)
,

where Q(·) is the Q-function of the standard normal distri-
bution, i.e., Q(x) = 1√

2π

∫∞
x

e−t2/2dt.

5.2 Dynamic Sensor Selection Problem

The case study in Sectin 4.1 shows that a sensor exhibits
different frequency patterns for different energy scales.
Moreover, sensors receive significantly different energy
scales due to the locality of earthquake. Our objective is
to select a subset of sensors with the best signal quality to
maximize system detection performance. To this end, we
first examine the sensing performance diversity of sensors
based on data traces collected in OASIS [16]. The result
motivates us to formulate a dynamic sensor selection prob-
lem to achieve satisfactory trade-off between system detec-
tion performance and computation overhead at sensors. For
each sensor, we compute the Bhattacharyya distance [8],
which is a widely adopted detectability measure, between
the pth distribution Np and the noise distribution N0 within
its multi-scale Bayesian model. Figure 5 plots the error
bars of Bhattacharyya distance and the corresponding de-
tection error rate versus the energy scale p. We can see that
the frequency-based detector has better performance when



a sensor receives stronger signal energy. Moreover, sensors
show significant performance variance for the same energy
scale. Figure 6 plots the maximum energy scale measured
by sensors in 40 earthquake events.

We can make two important observations from Figures 5
and 6. First, for a particular event, sensors have differ-
ent detection performances due to different received en-
ergy scales. As a result, sensors with poor sensing perfor-
mances should be excluded from participating in system de-
cision fusion. Moreover, if a sensor has sufficient sensing
performance for system decision fusion, it must make lo-
cal decisions by costly FFT to extract frequency features.
Therefore, it is desirable to select the minimum subset of
informative sensors to fuse their decisions. Second, each
sensor has unpredictable signal energy pattern due to the
stochastic nature of earthquake magnitude and source lo-
cation. Although the optimal sensor selection can be pre-
computed for all possible combinations of sensors’ energy
scales, both the time and storage complexities are exponen-
tial, i.e., O(KN ), where K is the number of energy scales
and N is the total number of sensors. Therefore, the sensors
that have the best sensing performances must be dynami-
cally selected in each sampling period.

We now formally formulate the sensor selection prob-
lem. We aim to select the minimum number of sensors
being involved in the feature extraction and decision fu-
sion processes, subject to bounded system detection perfor-
mance. We adopt the Neyman-Pearson (NP) criterion [8]
for characterizing system detection performance, i.e., we al-
low users to specify the upper and lower bounds on system
false alarm rate and detection probability, respectively. NP
criterion is useful when the two types of errors, i.e., false
alarms and misses, need separate considerations. There ex-
ists a fundamental trade-off between the two metrics for
any detection system, i.e., higher detection probability is
always achieved at the price of higher false alarm rate [19].
Depending on the characteristics of volcanoes to be mon-
itored, seismologists may have different requirements on
false alarm rate and detection probability. For instance,
for an active volcano with frequent tiny earthquakes, it is
desirable to reduce false alarms to avoid excessive sensor
energy consumption and prolong system lifetime. On the
other hand, for a dormant volcano, it is more critical to de-
tect every important earthquake event while a higher false
alarm rate can be tolerated. Note that our approach can be
extended to address other performance metrics such as er-
ror rate that jointly accounts for false alarms and misses.
Due to space limitation, the extension is omitted and can be
found in [17]. Based on the fusion model in Section 5.1, the
sensor selection problem is formally formulated as follows:

Problem 1. Given the local false alarm rates and detection
probabilities of all sensors, i.e., {αi, βi|i ∈ [1, N ]}, to find
a subset of sensors, S, and the decision fusion threshold at

the base station, η, such that ||S|| is minimized, subject to
that the system false alarm rate is upper-bounded by α and
the system detection probability is lower-bounded by β.

The brutal-force solution, i.e., iterating all possible sub-
sets of sensors, has an exponential complexity of O(2N ).
As the dynamic sensor selection is conducted every sam-
pling period (one second in our system), such a complex-
ity would impede the system timeliness. In the rest of this
section, we first reduce the complexity of Problem 1 with
approximations and then develop a near-optimal sensor se-
lection algorithm with polynomial complexity.

5.3 Dynamic Sensor Selection Algorithm

We adopt a divide-and-conquer strategy to solve Prob-
lem 1. The sub-problem of Problem 1 is to select n sensors
out of the total N sensors such that the system detection per-
formance is optimized. By iterating n from 1 to N , Prob-
lem 1 is solved once the optimal solution of the sub-problem
satisfies the detection performance requirement. The brutal-
force search for the optimal solution of the sub-problem has
a complexity of O

((
N
n

))
. The following analysis shows

that the sub-problem can be reduced to a sorting problem
with polynomial complexity.

We first analyze the condition for the NP criterion. Due
to the fundamental trade-off between false alarm rate and
detection probability [19], PD is maximized when PF is
set to its upper bound. Therefore, by letting PF = α, the
detection threshold at the base station is

η =

n∑
i=1

αi +Q−1(α) ·

√√√√ n∑
i=1

αi − α2
i , (2)

where Q−1(·) is the inverse function of Q(·). Hence, the
system detection probability is PD = Q(f), where

f =
Q−1(α)

√∑n
i=1 αi − α2

i +
∑n

i=1(αi − βi)√∑n
i=1 βi − β2

i

. (3)

As Q(·) is a decreasing function, PD is maximized if f
is minimized. Therefore, the sub-problem is equivalent to
minimizing f .

However, the function f has a complex non-linear re-
lationship with each sensor’s detection performance repre-
sented by αi and βi. We now propose a linear approxi-
mation to f . The Monte Carlo simulations show that f in-
creases with

∑n
i=1(αi−βi) with high probability (≥ 95%).

Due to the space limitation, the details of the simulations
are omitted and can be found in [17]. Therefore, the
sub-problem is reduced to selecting n sensor to minimize∑n

i=1(αi − βi), which can be easily solved by sorting sen-
sors ascendingly according to the value of (αi − βi).

Based on the above analysis, we now develop a dynamic
sensor selection algorithm to solve Problem 1, which is



Algorithm 1 Dynamic sensor selection algorithm
Input: local PF ’s and PD’s {αi, βi|i ∈ [1, N ]}, system performance require-

ments {α, β}
Output: minimum subset S, detection threshold η

1: sort sensors according to (αi − βi) ascendingly
2: for n = 1 to N do
3: S = { top n sensors }
4: compute f with S using (3)
5: if Q(f) ≥ β then
6: compute η with S using (2)
7: return S and η
8: end if
9: end for

10: exit with no solution

listed in Algorithm 1. With the solution given by Algo-
rithm 1, the base station will request the selected sensors to
perform FFT and make their local decisions. Finally, the
base station compares the sum of local decisions against the
detection threshold η to make a system detection decision.
In the absence of earthquake, Algorithm 1 would exit with-
out a solution (Line 10). As a result, no sensor will be se-
lected and hence costly seismic processing algorithms such
as FFT can be avoided.

6 Implementation

We have implemented the proposed detection algorithms
in TinyOS 2.1.0 on TelosB platform and conducted testbed
experiments in laboratory. In the future work, we plan to
deploy our implementation on the OASIS system [16] that
is currently monitoring Mount St. Helens. Our implemen-
tation uses 45.3KB ROM and 9.5KB RAM when a sensor
buffers 8 seconds of raw data for earthquake onset time es-
timation. Several important implementation details are pre-
sented as follows.
Data acquisition and seismic processing: To improve
the realism of testbed experiments, we create a volume of
320KB on mote’s flash and load it with the seismic data
traces collected in OASIS [16]. We implement a nesC mod-
ule that provides the standard ReadStream interface to read
seismic data from flash to simulate data acquisition in real
deployments. A node acquires 100 seismic intensities ev-
ery sampling period. When the sampling period is set to
be one second, the sampling rate is consistent with previ-
ous deployments [16,21]. We use the KissFFT [3] library to
compute the frequency spectrum of seismic signals. In par-
ticular, we use the fixed-point FFT routines that are suitable
for the 16-bit processor on TelosB mote.
Networking: Sensors are organized into a multi-hop tree
rooted at the base station. In order to achieve timeliness,
sensors are scheduled in a TDMA fashion. Specifically, a
sensor reserves 250ms for the FFT and Bayesian detector
in each sampling period. The remaining time is divided into
a number of slots, which are distributed among sensors for
transmitting energy scales and local decisions. In order to
reduce transmissions, the packets are aggregated along the

routing path to the base station. For instance, when a non-
leaf node has received all the energy scales from its chil-
dren, it aggregates them together with its own into a single
packet before forwarding. In our implementation, an energy
scale entry is 1 byte where node ID uses 5 bits and energy
scale uses 3 bits. Moreover, to improve reliability, a sensor
buffers energy scale or decision packets from its children
for at most 8 sampling periods. When a sensor has received
all packets from its children for the current sampling period,
it sends out the aggregated packets for the current and pre-
vious sampling periods. The sensor selection and decision
fusion algorithms presented in Section 5 are implemented
in Java on a desktop computer that serves as the base sta-
tion. The sensor selection algorithm typically takes 10ms
to 20ms, and hence has little impact on the timeliness of
event detection.

7 Performance Evaluation
We conduct testbed experiments as well as extensive

simulations based on real data traces collected by 12 nodes
in the OASIS project [16]. The data set used in our evalua-
tion spans 5.5 months (from October 1, 2009 to March 15,
2010) and comprises 128 manually selected segments. Each
segment is 10 minutes and contains one or more significant
earthquake events. In Section 7.1, we present the experi-
mental results on energy usage and communication perfor-
mance using a testbed of 24 TelosB motes. In Section 7.2,
we present the simulation results on detection performance
in TOSSIM.

7.1 Testbed Experiments

7.1.1 Methodology
The multi-scale Gaussian model of each sensor is trained
offline using randomly selected 64 data segments. The
ground truth information regarding the presence of earth-
quake event is generated by the STA/LTA algorithm using
the data traces of Node01 in the deployment. The STA/LTA
threshold is set to be 2, which is suggested by the volca-
nologists at U.S. Geological Survey [16]. We note that the
STA/LTA algorithm can yield detection errors.

In this section, our approach is referred to as decision
fusion with sensor selection (DFSS). We compare our ap-
proach with the following three baseline approaches. (1)
In the data collection approach, each node transmits com-
pressed raw data to the base station. We adopt incremen-
tal encoding to compress raw data, which can achieve 4-
fold data volume reduction for 32-bit seismic signal in the
absence of earthquake. Note that the OASIS system [16]
currently adopts data collection and analyzes collected data
offline at servers. (2) In the STA/LTA approach, each node
makes local detection decision by the STA/LTA algorithm
[9]. If more than 30% nodes make positive decisions, the
base station first waits 30 seconds and then downloads one
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minute of compressed raw data from all nodes. Note that
these settings are consistent with the detection approach
in [21]. (3) In the Chair-Varshney approach, each node
performs FFT and makes a local detection decision ev-
ery sampling period. The base station fuses the local de-
cisions by the Chair-Varshney’s rule [6] that is the opti-
mal decision fusion model. Specifically, the test statistic
is Λ =

∑n
i=1 log

βi(1−αi)
αi(1−βi)

· Ii. As the Chair-Varshney’s
rule inherently accounts for the diversity of sensors’ sens-
ing qualities by weighting their local decisions, it is unnec-
essary to perform sensor selection. However, the Chair-
Varshney’s rule has no closed-form formula for its detec-
tion performance. Hence, we use a brutal-force approach to
compute the CDF of Λ and find the detection threshold that
satisfies detection performance requirements. Note that the
brutal-force algorithm runs at the base station. The follow-
ing experiments are conducted in two network topologies:
an one-hop network composed of 12 TelosB motes and a
3-hop network composed of 24 TelosB motes.

7.1.2 Timeliness and Energy Consumption

In this section, 12 TelosB motes are organized into an one-
hop network and each one corresponds to a node in OA-
SIS [16]. We first evaluate the timeliness of our approach.
As the network makes a detection decision per second, the
delay bound of the system is one second. The average time
of each component of the system is as follows: computing
an energy scale for one second of seismic data take 6.7ms;
transmitting a TinyOS message with default size takes 9ms;
FFT and the local Bayesian detector take 164.7ms. There-
fore, our approach can achieve satisfactory timeliness on
low-cost sensors with limited computational capability.

We now evaluate the energy consumption of various ap-
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proaches. We measure the execution time of seismic pro-
cessing and count the transmitted and received packets. The
energy consumption is then estimated based on the mea-
sured current usage of processor and transceiver [12]. Fig-
ure 7 shows the energy consumption trace of Node 11 for
10 minutes. There is a significant earthquake event from
the 245th to 265th second. As the byte length of encoded
raw data increases in the presence of event, data collec-
tion has a spike during the earthquake. STA/LTA yields a
high spike after the event, as it transmits compressed data
at high speed after a detection. Note that STA/LTA has a
false alarm at around the 550th second. Figure 8 shows the
corresponding breakdown of energy consumption. We can
see that Chair-Varshney consumes a significant amount of
energy in seismic processing, as it performs FFT on every
node all the time. Suppose two carbon-zinc AA batteries
are used, which have a total of 4680 J of energy storage [2].
The projected lifetime of a node is 19 days and 3.9 months
for data collection and our approach, respectively.

7.1.3 Communication Performance
We now evaluate the communication performance of our
approach in a 3-hop network composed of 24 TelosB motes.
We adopt the naive forwarding as the baseline approach,
where an intermediate node forwards a received packet im-
mediately without aggregation. Figure 9 plots the reception
ratio of energy scale information at the base station versus
sampling period. Due to limited wireless bandwidth, we
observe low reception ratios when the sampling period is
shorter than 600ms. However, our approach can reach a
reception ratio of 93.5% when the sampling period is one
second which is consistent with the setting in real deploy-
ments [16, 21]. In contrast, naive forwarding only achieves
a reception ratio of 77%.

7.2 Trace-driven Simulations

In addition to the testbed experiments, we also conduct
simulations in TOSSIM [11] based on real data traces. The
trace-driven simulations allow us to extensively evaluate the
detection performance under a wide range of settings. Our
evaluation is mainly focused on two aspects. First, we ex-
amines the detection performance of various approaches in
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a long period of time (based on the data traces that span 5.5
months). Second, we evaluate the configurability of our ap-
proach with respect to system sensing qualities such as false
alarm rate.

Figure 10 plots the false alarm rate of the per-second
system detection results versus the requested false alarm
rate. We can see that when the requested PF is greater than
5%, the measured PF of our approach flats out, as Algo-
rithm 1 can find a solution with minimum size of two sen-
sors mostly. Moreover, as all sensors are always involved in
the fusion process, Chair-Varshney has poor configurability
as shown in Figure 10.

Figure 11 plots the number of selected sensors versus the
requested false alarm rate. The error bar shows one standard
deviation over 139 earthquake events. When lower perfor-
mance requirement is imposed (i.e., greater α), fewer sen-
sors will be selected, which means less energy consump-
tion. This result shows that our approach yields interesting
trade-off between energy consumption and detection perfor-
mance.

8 Conclusion
WSNs have been increasingly deployed for monitoring

active volcanoes. This paper presents a quality-driven ap-
proach to detecting highly dynamical volcanic earthquakes
based on in-network collaborative signal processing. In par-
ticular, we aim to minimize sensors’ energy consumption
subject to sensing quality requirements. Our approach is
evaluated through testbed experiments and extensive simu-
lations based on real data traces collected on Mount St. He-
lens. The results show that our approach can significantly
reduce energy consumption compared with state-of-the-art
approaches while providing assured system sensing quality.
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