
Impact of Integrity Attacks on 

Real-Time Pricing in Smart Grids 

Rui Tan1    Varun Badrinath Krishna1 

David K. Y. Yau1,2    Zbigniew Kalbarczyk3 

 
1Advanced Digital Sciences Center, Illinois at Singapore 

2Singapore University of Technology and Design 
3University of Illinois at Urbana-Champaign 



Cyber Attacks on Smart Grids 

• Communication and device vulnerabilities incur threats 

– A worm controls 15,000 emulated meters in 24 hours 

[Blackhat Demo 2009] 

– 40% of attacks on critical infrastructures target  power grids 

[US DHS 2012] 
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Existing Studies 

• False data injection 

– Bypass bad data detection [CCS’09] 

– Disorder grid operations 
• Generation dispatch [TSG’11] 

• Energy routing [ICCPS’12] 

• Wholesale pricing [TSG’11, ICSS’12] 

Measurement data in power systems (bus power meters)  

vs. 

Data to/from smart meters at end users 



Real-Time Pricing 
– (Sub-)hourly changing electricity prices 

– Reflect market condition and improve efficiency 

– Physical impact 
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Real-Time Pricing 
– (Sub-)hourly changing electricity prices 

– Reflect market condition and improve efficiency 

– Physical impact 

 

generators 

Wholesale markets 

large C&I 

customers 

Utilities 

[LBNL 2005] 

more accessible 

to attackers 

e.g., ComEd & 

Ameren in Illinois 

from 2007 

price signal 

residential 

customers 



Problem 

• Impact of malicious modifications to 

price signals 

– Can they destabilize the pricing system? 
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Problem 

• Impact of malicious modifications to 

price signals 

– Can they destabilize the pricing system? 

 

•  Closed loop 

– Mutually dependent price and demand 

– Difficult performance analysis 

– Harder with attacks 
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Outline 

• Background & Motivation 

• Formulation of Real-Time Pricing 

• Impact of Attacks 

• Simulations 



Pricing Model 

• System operator 

– Match supply and demand by periodic pricing 

– Same price for suppliers and consumers 

price for next period price for next period 

Profit-neutral 

system operator 

Consumers Suppliers 

ComEd: 

Households pay real-time wholesale price from system 

operator 



Supply and Demand Models 

• Scheduled supply 
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Supply and Demand Models 

• Scheduled supply 

 

 

– λ: price 

 

• Demand 

 

– Human-induced demand response 

– Smart appliances 
(e.g., ComEd’s price-based air conditioning cycling) 
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Principles of Current Schemes 

• Find ex-ante price λk for kth pricing period 
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• Find ex-ante price λk for kth pricing period 
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• Find ex-ante price λk for kth pricing period 
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– Unstable closed loop [Roozbehani 2012] 
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Unstable Real-Time Pricing 
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Unstable Real-Time Pricing 

• Oscillating or diverging price 

– Overloaded power networks 

– Increased operational cost 
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Unstable Real-Time Pricing 

• Oscillating or diverging price 

– Overloaded power networks 

– Increased operational cost 

• Stable solution is desirable 
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Control-Theoretic Solution 
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Attack Models 

RTP 

algorithm 

ρ% consumers 

Supply 

+ _ 
+ 

_ 
+ 

+ 

Feedback delay 

0 

Baseline 

demand 

rest consumers _ 

delayed by τ 
• Delay attack 

 

 

 

 

 

 

 

• Scaling attack (skip) 

ρ: capability of attacker 

τ: intensity of attack 
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Attack Realization 

• Follow certain rules (delay & scale) 

– Lower capability & resource requirements 

– Direct modifications to data packets 

– Launch indirectly 

Pricing 

Period 

Price 

($/MWh) 

[1pm, 2pm] 10 

[2pm, 3pm] 11 

meter clock 
true time 

Large-scale 

spoofing 

[CCS’12] 

time server 

GPS 

NTPd vulnerabilities 
CVE-2009-3563 

CVE-2009-1252 

CVE-2009-0159 

… 



Region of Stability 

• Region of η for stability under attack 

 

 

 

– Time-varying baseline demand tracking quality 
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Region of Stability 

• Region of η for stability under attack 

 

 

 

– Time-varying baseline demand tracking quality 

 

• Smaller region of stability 

– Less flexibility in tuning tracking performance 

subject to stability under attacks 
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Analytical Results 
• Closed-form region of stability 
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Analytical Results 
• Closed-form region of stability 

 

If less than half of consumers are under delay attack, 

system is stable. 

- Break this condition, system can be unstable 

- Attacker/operator focus on critical infrastructures 
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Simulation Methodology 
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– Physical aspects, emergency events 
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No Attacks 

• Result price tracks the clearing price 
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65% smart meters compromised 



Volatility 

• Volatility = std(scheduling errors) 

– 0: stable & converging 

– Else: increased operation cost 
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Conclusion and Future Work 

• Impact of integrity attacks on real-time 
pricing 

– Region of stability 

– Delay more than half of smart meters 

 

• Future work 

– Other realistic factors 
(e.g., a portion of consumers use fixed price) 

– Countermeasures 
(e.g., intrusion detection) 


