Impact of Integrity Attacks on Real-Time Pricing in Smart Grids

Rui Tan¹ Varun Badrinath Krishna¹ David K. Y. Yau^{1,2} Zbigniew Kalbarczyk³

¹Advanced Digital Sciences Center, Illinois at Singapore ²Singapore University of Technology and Design ³University of Illinois at Urbana-Champaign

Cyber Attacks on Smart Grids

- Communication and device vulnerabilities incur threats
 - A worm controls 15,000 emulated meters in 24 hours [Blackhat Demo 2009]
 - 40% of attacks on critical infrastructures target power grids [US DHS 2012]

Existing Studies

- False data injection
 - Bypass bad data detection [CCS'09]
 - Disorder grid operations
 - Generation dispatch [TSG'11]
 - Energy routing [ICCPS'12]
 - Wholesale pricing [TSG'11, ICSS'12]

Measurement data in power systems (bus power meters) vs. Data to/from smart meters at end users

- (Sub-)hourly changing electricity prices
- Reflect market condition and improve efficiency
- Physical impact

Commonwealth Edision Company (ComEd), Illinois rrtp.comed.com/live-prices

- (Sub-)hourly changing electricity prices
- Reflect market condition and improve efficiency
- Physical impact

- (Sub-)hourly changing electricity prices
- Reflect market condition and improve efficiency
- Physical impact

- (Sub-)hourly changing electricity prices
- Reflect market condition and improve efficiency
- Physical impact

- (Sub-)hourly changing electricity prices
- Reflect market condition and improve efficiency
- Physical impact

Problem

- Impact of malicious modifications to price signals
 - Can they destabilize the pricing system?

[Image: www.bluephoenixinc.com]

Problem

- Impact of malicious modifications to price signals
 - Can they destabilize the pricing system?
- Closed loop
 - Mutually dependent price and demand
 - Difficult performance analysis
 - Harder with attacks

[Image: www.bluephoenixinc.com]

Outline

- Background & Motivation
- Formulation of Real-Time Pricing
- Impact of Attacks
- Simulations

Pricing Model

- System operator
 - Match supply and demand by periodic pricing
 - Same price for suppliers and consumers

ComEd:

Households pay real-time wholesale price from system operator

Scheduled supply

$$s(\lambda) = \sum_{i} s_{i}(\lambda)$$

- λ : price

Total supply (GW)

• Scheduled supply $s(\lambda) = \sum_{i} s_i(\lambda)$ A supplier (increasing) $-\lambda$: price

10 15 20 25 30 35 40 45 50 55

Wholesale price (\$/MWh) Australian Energy Market Operator

• Scheduled supply $s(\lambda) = \sum_{i} s_{i}(\lambda) \quad \text{A supplier}_{(\text{increasing})} \quad \text{Monormalized}$ $-\lambda: \text{ price}$

^{10 15 20 25 30 35 40 45 50 55}

Wholesale price (\$/MWh) Australian Energy Market Operator

Demand

 $d(\lambda) = \sum_{i} e_{i}(\lambda) + \text{baseline}_{i}$

• Find ex-ante price λ_k for kth pricing period

$$s(\lambda_k) = d(\lambda_k)$$

• Find ex-ante price λ_k for kth pricing period

$$s(\lambda_k) = d(\lambda_k)$$

known unknown

• Find ex-ante price λ_k for kth pricing period

$$s(\lambda_k) = d(\lambda_k) \implies s(\lambda_k) = \widetilde{d}(\lambda_k)$$
where the second s

• Find ex-ante price λ_k for kth pricing period

$$s(\lambda_k) = d(\lambda_k) \implies s(\lambda_k) = \widetilde{d}(\lambda_k)$$
unknown
predicted

Autoregressive prediction

 Unstable closed loop [Roozbehani]

– Unstable closed loop [Roozbehani 2012]

 $s(\lambda_k) = d(\lambda_{k-1})$

• Find ex-ante price λ_k for kth pricing period

$$s(\lambda_k) = d(\lambda_k) \implies s(\lambda_k) = \widetilde{d}(\lambda_k)$$
where the second s

Autoregressive prediction
 Unstable closed loop [Roozbehan]

– Unstable closed loop [Roozbehani 2012]

$$s(\lambda_k) = d(\lambda_{k-1}) \implies \lambda_k = s^{-1}(d(\lambda_{k-1}))$$

Oscillating or diverging price

 Overloaded power networks
 Increased operational cost

- Oscillating or diverging price

 Overloaded power networks
 Increased operational cost
- Stable solution is desirable

Control-Theoretic Solution

- Set price based on observed scheduling error

scheduling error = scheduled supply – actual demand

Control-Theoretic Solution

Set price based on observed scheduling error

scheduling error = scheduled supply – actual demand

$$\lambda_k = \lambda_{k-1} + \frac{2 \cdot \eta}{f(\lambda_{k-1})} \cdot (s_{k-1} - d_{k-1})$$

$$\lambda_{k} = \lambda_{k-1} + \frac{2 \cdot \eta}{f(\lambda_{k-1})} \cdot \underbrace{(s_{k-1} - d_{k-1})}_{\text{error}} \underbrace{\text{scheduling}}_{\text{error}}$$

$$gain \in (0,1)$$

$$\lambda_{k} = \lambda_{k-1} + \frac{2 \eta}{f(\lambda_{k-1})} \cdot (s_{k-1} - d_{k-1}) \qquad scheduling error$$

Outline

- Background & Motivation
- Formulation of Real-Time Pricing
- Impact of Attacks
- Simulations

Attack Models

ρ: capability of attackerτ: intensity of attack

Scaling attack (skip)

- Follow certain rules (delay & scale)
 - Lower capability & resource requirements
 - Direct modifications to data packets
 - Launch indirectly

- Follow certain rules (delay & scale)
 - Lower capability & resource requirements
 - Direct modifications to data packets
 - Launch indirectly

true time	Pricing Period	Price (\$/MWh)
	[1pm, 2pm]	10
7654	[2pm, 3pm]	11

- Follow certain rules (delay & scale)
 - Lower capability & resource requirements
 - Direct modifications to data packets
 - Launch indirectly

- Follow certain rules (delay & scale)
 - Lower capability & resource requirements
 - Direct modifications to data packets
 - Launch indirectly

- Follow certain rules (delay & scale)
 - Lower capability & resource requirements
 - Direct modifications to data packets
 - Launch indirectly

true time $\int \frac{1}{2} \int \frac{$

. . .

Region of Stability

• Region of η for stability under attack

$$\lambda_{k} = \lambda_{k-1} + \frac{2\eta}{f(\lambda_{k-1})} \cdot (s_{k-1} - d_{k-1})$$

- Time-varying baseline demand tracking quality

Region of Stability

• Region of η for stability under attack

$$\lambda_{k} = \lambda_{k-1} + \frac{2\eta}{f(\lambda_{k-1})} \cdot (s_{k-1} - d_{k-1})$$

- Time-varying baseline demand tracking quality

- Smaller region of stability
 - Less flexibility in tuning tracking performance subject to stability under attacks

Analytical Results

Closed-form region of stability

shrinks with delay (τ) and ratio of compromised smart meters (ρ)

Analytical Results

Closed-form region of stability

shrinks with delay (τ) and ratio of compromised smart meters (ρ)

If less than half of consumers are under delay attack, system is stable.

Analytical Results

Closed-form region of stability

shrinks with delay (τ) and ratio of compromised smart meters (ρ)

If less than half of consumers are under delay attack, system is stable.

- Break this condition, system can be unstable
- Attacker/operator focus on critical infrastructures

Outline

- Background & Motivation
- Formulation of Real-Time Pricing
- Impact of Attacks
- Simulations

Simulation Methodology

- GridLAB-D
 - Physical aspects, emergency events
 - 1405 consumers
 - Scaled real load data as baseline demand

Simulation Methodology

- GridLAB-D
 - Physical aspects, emergency events
 - 1405 consumers
 - Scaled real load data as baseline demand

No Attacks

Result price tracks the clearing price

Delay Attack

all smart meters compromised, delay = 4.5 hours

Delay Attack

all smart meters compromised, delay = 4.5 hours

Delay Attack

all smart meters compromised, delay = 4.5 hours

Weaker Delay Attack

65% smart meters compromised

Weaker Delay Attack

65% smart meters compromised

Weaker Delay Attack

65% smart meters compromised

Volatility

- Volatility = std(scheduling errors)
 - 0: stable & converging
 - Else: increased operation cost

Volatility

- Volatility = std(scheduling errors)
 - 0: stable & converging
 - Else: increased operation cost

Conclusion and Future Work

- Impact of integrity attacks on real-time pricing
 - Region of stability
 - Delay more than half of smart meters
- Future work
 - Other realistic factors (e.g., a portion of consumers use fixed price)
 - Countermeasures
 (e.g., intrusion detection)