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Mission-critical Sensing Applications

• Stringent sensing performance requirements
– Low false alarm rate, high target detection probability

• Physical uncertainties
– Stochastic noises, hardware biases

– Environmental changes, dynamics of monitored process

• Performance of a network must be dynamically calibrated

100 seismometers on UCLA 

campus [Estrin 02]

acoustic sensors detecting AAV 

http://www.ece.wisc.edu/~sensit/

http://www.ece.wisc.edu/~sensit/


State of the Art

• Collaborative signal processing (e.g., data fusion)

– Improves sensing accuracy by jointly processing noisy

measurements from multiple sensors

– May not handle system & physical dynamics

• Sensor calibration

– Often conducted in controlled environments

– Difficult to repeat after deployment



Exploiting Sensor Heterogeneity

• Calibrate low-end sensors using HQ sensors’ results

• Adaptive calibration in the presence of system/physical dynamics

Low-end sensors High-quality (HQ) sensors

Examples PIR, acoustic Pan-tilt-zoom camera, active radar

Manufacturing cost Low High

Energy consumption Low High

Sensing performance Limited capability, e.g., 

high false alarm rate

High-accuracy

Accelerometer

AcousticPIR PTZ camera

Active radar
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Approach Overview

• Low-end sensors
– Collaboratively detect target through data fusion

• High-quality sensor
– Activated when low-end sensors make positive decision

• Feedback
– Calibrate low-end sensors based on the detection results of HQ sensor

battery-powered camera



Approach Overview

• Low-end sensors
– Collaboratively detect target through data fusion

• High-quality sensor
– Activated when low-end sensors make positive decision

• Feedback
– Calibrate low-end sensors based on the detection results of HQ sensor

No target

battery-powered camera



Approach Overview

• Low-end sensors
– Collaboratively detect target through data fusion

• High-quality sensor
– Activated when low-end sensors make positive decision

• Feedback
– Calibrate low-end sensors based on the detection results of HQ sensor

battery-powered camera



Approach Overview

• Low-end sensors
– Collaboratively detect target through data fusion

• High-quality sensor
– Activated when low-end sensors make positive decision

• Feedback
– Calibrate low-end sensors based on the detection results of HQ sensor

detection 

request

battery-powered camera

Activated!



Approach Overview

• Low-end sensors
– Collaboratively detect target through data fusion

• High-quality sensor
– Activated when low-end sensors make positive decision

• Feedback
– Calibrate low-end sensors based on the detection results of HQ sensor

detection 

request

‘detected’

battery-powered camera

Activated!



Approach Overview

• Low-end sensors
– Collaboratively detect target through data fusion

• High-quality sensor
– Activated when low-end sensors make positive decision

• Feedback
– Calibrate low-end sensors based on the detection results of HQ sensor

detection 

request

‘detected’

battery-powered camera

Activated!



Approach Overview

• Low-end sensors
– Collaboratively detect target through data fusion

• High-quality sensor
– Activated when low-end sensors make positive decision

• Feedback
– Calibrate low-end sensors based on the detection results of HQ sensor

detection 

request

battery-powered camera

Activated!



Approach Overview

• Low-end sensors
– Collaboratively detect target through data fusion

• High-quality sensor
– Activated when low-end sensors make positive decision

• Feedback
– Calibrate low-end sensors based on the detection results of HQ sensor

detection 

request

battery-powered camera

Activated!



Outline

• Motivation

• Background

• Problem Formulation

• Control-theoretical Calibration Algorithm

• Evaluation



Sensor Measurement Model

• Readings of sensor i when 

target is absent (H0) and 

present (H1)

• Signal energy si is unknown

– Target’s source energy

– Signal path loss

• ni is Gaussian noise

– Unknown Gaussian distribution 









iii

ii

nsyH

nyH

:

:

1

0

H0 H1 H0

Readings of a sensor when a 

vehicle passes by [Duarte 2004]



Data Fusion and Detection Models

• Low-end sensors’ decision is made by

• Average detection cost
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Data Fusion and Detection Models

• Low-end sensors’ decision is made by

• Average detection cost

– C00=C11=0, C01=C10=1, average error rate
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Closed-loop Calibration

• Opt threshold that minimizes detection cost depends on

– Noise profiles:

– Received target signals:
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Closed-loop Calibration

• Opt threshold that minimizes detection cost depends on

– Noise profiles:

– Received target signals:

• Control Problem: Find a stable and converging

algorithm to calibrate T based on the feedback of high-

quality sensor, s.t. detection cost is minimized

Changing noise level

 

N

i in
1

]E[

 

N

i is
1

 

N

i in
1

]var[ unknown &

dynamic

Changing target energy



Feedback Control Loop

• Detection threshold is calibrated for each cycle

• A typical discrete-time control problem

calibration algorithm
data fusion of

low-end sensors

HQ sensorfeedback delay

detection threshold

activations

controlled variable

+ _
reference

target energy

noises, biases, dynamics
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Condition for Min Detection Cost

• Average detection cost is minimized iff

– PF and PM:   false alarm rate and missing probability 

of low-end sensors

– Q-1(x):   the inverse Q-function of N(0,1)

– δ: a known constant

  2121 )()( MF PQPQ
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Feedback Control Loop

• Detection threshold is calibrated for each cycle

• A typical discrete-time control problem

calibration algorithm
data fusion of

low-end sensors

HQ sensorfeedback delay

detection threshold

activations

controlled variable
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reference

HQ sensor

target energy
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Feedback of HQ Sensor

• Estimate PF and PM from HQ sensor’s results
– 100 detections in a cycle, target appearance prob. is 20%

– 8 triggers are classified as false alarms

– 19 triggers are confirmed as correct detections

• We account for the inaccuracy of HQ sensor and 

target appearance prob.
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Calibration Algorithm

• The system to be controlled is a 0-order system
– 1st-order controller:

• The system is stable and converging if

• The upper bound on a is unknown and dynamic
– Can be coarsely estimated

– Conservative setting of a
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Impact of Communication

• Stochastic packet loss

– The stability condition may change significantly

– The impact on stability can be mitigated by deploying more low-

end sensors

• Optimal route R that minimizes impact of packet loss:

• Feedback delay

– Comm. delay and sleeping delay of low duty-cycle sensors

– Has little impact when the delay is up to 10 cycles
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Testbed Experiments
• 6 Tmotes + a web-cam

• Detect light spots that randomly appear on a LCD

• Heuristic baseline approach
– Estimates noise and signal when the system makes negative and 

positive decisions, respectively
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Trace-driven Simulations

• Data traces collected from 75 acoustic sensors in 

vehicle detection experiments [Duarte 2004]

Static target, decreasing noise level

Moving target



Conclusions

• Propose a system-level adaptive calibration approach
– Sensor heterogeneity

– On-demand activation scheme

• Develop a control-theoretical algorithm
– Ensures provable stability and convergence

– Accounts for communication performance

• Calibrated network maintains optimal system detection 
performance in the presence of various dynamics


