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Mission-critical Sensing Applications
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100 seismometers on UCLA acoustic sensors detecting AAV
http://www.ece.wisc.edu/~sensit/

campus [Estrin 02]

« Stringent sensing performance requirements
— Low false alarm rate, high target detection probability

« Physical uncertainties
— Stochastic noises, hardware biases
— Environmental changes, dynamics of monitored process

 Performance of a network must be dynamically calibrated


http://www.ece.wisc.edu/~sensit/

Collaborative signal processing (e.g., data fusion)

— Improves sensing accuracy by jointly processing noisy
measurements from multiple sensors

— May not handle system & physical dynamics

Sensor calibration
— Often conducted in controlled environments
— Difficult to repeat after deployment



Exploiting Sensor Heterogeneity

= Accelerometer

L ]

PIR Acoustic PTZ camera

Active radar

Low-end sensors High-quality (HQ) sensors
Examples PIR, acoustic Pan-tilt-zoom camera, active radar
Manufacturing cost Low High
Energy consumption Low High
Sensing performance Limited capability, e.g., High-accuracy

high false alarm rate

« Calibrate low-end sensors using HQ sensors’ results

« Adaptive calibration in the presence of system/physical dynamics
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Approach Overview
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 Low-end sensors
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— Activated when low-end sensors make positive decision

 Feedback
— Calibrate low-end sensors based on the detection results of HQ sensor
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Sensor Measurement Model

* Readings of sensor i when
target is absent (H;) and
present (H,) BT

H,: yi=m
H: y. =s +n

« Signal energy s; is unknown
- Target,s source energy ’ 0 15 3;) 4‘5 60 75 9;) 105 120

— Signal path loss Time (seconds)

Readings of a sensor when a
vehicle passes by [Duarte 2004]

10

Measurement (e-3)

* n,is Gaussian noise
— Unknown Gaussian distribution



Data Fusion and Detection Models

 Low-end sensors’ decision is made by

>y, <T = decide0

<Ziyi >T = decidel

« Average detection cost

Z Cjk P(J |Hk)‘P(Hk)

j,ke{0,1}
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Data Fusion and Detection Models

 Low-end sensors’ decision is made by

>y, <T = decide0
D>y, 2T= decidel

mn threshold J

« Average detection cost

weight of deciding j
when ground truth is H,
L Cjk P(J | Hk)‘P(Hk)

j,ke{0,1}
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Data Fusion and Detection Models

 Low-end sensors’ decision is made by

>y, <T = decide0
D>y, 2T= decidel

mn threshold J

« Average detection cost
prob. of deciding | when
weight of deciding j ground truth is H,
when ground truth is H,
>, Ci-P(IH)-P(H,)

j.ke{0,1} Y P(H,): target J
appearance prob.
— Cpu=C11=0, Cy,=C,p=1, average error rate PP P




Outline

Motivation

Background

Problem Formulation
Control-theoretical Calibration Algorithm
Evaluation



Closed-loop Calibration

noise
opt threshold
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Changing noise level

noise
opt threshold

Changing target energy

« Opt threshold that minimizes detection cost depends on

— Noise profiles: ZN_lE[n ]

ZN var[n, ]

— Received target signals: Z.— ,
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Closed-loop Calibration

noise

R noise
opt threshold - -‘LLJm opt threshold
LTI
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Changing noise level Changing target energy

* Opt threshold that minimizes detection cost depends on

““‘,=—N-—‘—‘-. “““ * dynamic
— Received target signals: :_ Z_i=is_i_:
« Control Problem: Find a stable and converging
algorithm to calibrate T based on the feedback of high-
guality sensor, s.t. detection cost is minimized



Feedback Control Loop

target energy
noises, biases, dynamics

reference . _ _ detection threshold data fusion of
calibration algorithm >
low-end sensors

activations

controlled variable
feedback delay [« HQ sensor S

» Detection threshold is calibrated for each cycle
« A typical discrete-time control problem
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Condition for Min Detection Cost

« Average detection cost is minimized iff

Q (P -Q7'(Py) =0¢

— P-and P,,; false alarm rate and missing probability
of low-end sensors

— Q1(x): the inverse Q-function of N(0,1)

— 0. a known constant
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Feedback Control Loop

target energy
noises, biases, dynamics

reference . _ _ detection threshold data fusion of
calibration algorithm >
low-end sensors

activations

controlled variable
feedback delay [« HQ sensor -

» Detection threshold is calibrated for each cycle
« A typical discrete-time control problem



» Estimate P and P,, from HQ sensor’s results
— 100 detections in a cycle, target appearance prob. is 20%

— 8 triggers are classified as false alarms

P, = : =10%
100 —100 x 20%

— 19 triggers are confirmed as correct detections

100x20%—-19
M 100 x 20%

5%

« We account for the inaccuracy of HQ sensor and
target appearance prob.
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Calibration Algorithm

« The system to be controlled is a O-order system
— 1st-order controller:

a transfer function of the
GC (Z) — —7 calibration algorithm
1-b-z
« The system is stable and converging if
N noise variance of sensor |
2vartn |
O<a<=—=r+==,b=1

iq | S, : signal received by sensor |

« The upper bound on a is unknown and dynamic
— Can be coarsely estimated
— Conservative setting of a



Impact of Communication

« Stochastic packet loss
— The stability condition may change significantly

— The impact on stability can be mitigated by deploying more low-
end sensors

« Optimal route R that minimizes impact of packet loss:

R =argmin) —logPRR(h)

R heR
PRR — Packet reception ratio

* Feedback delay
— Comm. delay and sleeping delay of low duty-cycle sensors
— Has little impact when the delay is up to 10 cycles
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Testbed Experiments

6 Tmotes + a web-cam
« Detect light spots that randomly appear on a LCD

* Heuristic baseline approach

— Estimates noise and signal when the system makes negative and
positive decisions, respectively
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Trace-driven Simulations

Data traces collected from 75 acoustic sensors In

vehicle detection experiments [Duarte 2004]
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* Propose a system-level adaptive calibration approach
— Sensor heterogeneity
— On-demand activation scheme

« Develop a control-theoretical algorithm
— Ensures provable stability and convergence
— Accounts for communication performance

« Calibrated network maintains optimal system detection
performance in the presence of various dynamics



