Adaptive Calibration for Fusionbased Wireless Sensor Networks

Rui Tan¹, Guoliang Xing², Xue Liu³, Jianguo Yao³, Zhaohui Yuan⁴

¹ City University of Hong Kong
 ² Michigan State University
 ³ University of Nebraska – Lincoln
 ⁴ Wuhan University

Outline

- Motivation
- Background
- Problem Formulation
- Control-theoretical Calibration Algorithm
- Evaluation

Mission-critical Sensing Applications

100 seismometers on UCLA campus [Estrin 02]

acoustic sensors detecting AAV http://www.ece.wisc.edu/~sensit/

- Stringent sensing performance requirements
 - Low false alarm rate, high target detection probability
- Physical uncertainties
 - Stochastic noises, hardware biases
 - Environmental changes, dynamics of monitored process
- Performance of a network must be dynamically calibrated

State of the Art

- Collaborative signal processing (e.g., data fusion)
 - Improves sensing accuracy by jointly processing **noisy** measurements from **multiple** sensors
 - May not handle system & physical dynamics
- Sensor calibration
 - Often conducted in controlled environments
 - Difficult to repeat after deployment

Exploiting Sensor Heterogeneity

	Low-end sensors	High-quality (HQ) sensors
Examples	PIR, acoustic	Pan-tilt-zoom camera, active radar
Manufacturing cost	Low	High
Energy consumption	Low	High
Sensing performance	Limited capability, e.g., high false alarm rate	High-accuracy

- Calibrate low-end sensors using HQ sensors' results
- Adaptive calibration in the presence of system/physical dynamics

Exploiting Sensor Heterogeneity

	Visit of the second	FTZ camera
	Low-end sensors	High-quality (HQ) sensors
Examples	PIR, acoustic	Pan-tilt-zoom camera, active radar
Manufacturing cost	Low	High
Energy consumption	Low	High
Sensing performance	Limited capability, e.g., (high false alarm rate	High-accuracy

- Calibrate low-end sensors using HQ sensors' results
- Adaptive calibration in the presence of system/physical dynamics

- Low-end sensors
 - Collaboratively detect target through data fusion
- High-quality sensor
 - Activated when low-end sensors make positive decision
- Feedback
 - Calibrate low-end sensors based on the detection results of HQ sensor

- Low-end sensors
 - Collaboratively detect target through data fusion
- High-quality sensor
 - Activated when low-end sensors make positive decision
- Feedback
 - Calibrate low-end sensors based on the detection results of HQ sensor

- Low-end sensors
 - Collaboratively detect target through data fusion
- High-quality sensor
 - Activated when low-end sensors make positive decision
- Feedback
 - Calibrate low-end sensors based on the detection results of HQ sensor

- Low-end sensors
 - Collaboratively detect target through data fusion
- High-quality sensor
 - Activated when low-end sensors make positive decision
- Feedback
 - Calibrate low-end sensors based on the detection results of HQ sensor

- Low-end sensors
 - Collaboratively detect target through data fusion
- High-quality sensor
 - Activated when low-end sensors make positive decision
- Feedback
 - Calibrate low-end sensors based on the detection results of HQ sensor

- Low-end sensors
 - Collaboratively detect target through data fusion
- High-quality sensor
 - Activated when low-end sensors make positive decision
- Feedback
 - Calibrate low-end sensors based on the detection results of HQ sensor

- Low-end sensors
 - Collaboratively detect target through data fusion
- High-quality sensor
 - Activated when low-end sensors make positive decision
- Feedback
 - Calibrate low-end sensors based on the detection results of HQ sensor

- Low-end sensors
 - Collaboratively detect target through data fusion
- High-quality sensor
 - Activated when low-end sensors make positive decision
- Feedback
 - Calibrate low-end sensors based on the detection results of HQ sensor

Outline

- Motivation
- Background
- Problem Formulation
- Control-theoretical Calibration Algorithm
- Evaluation

Sensor Measurement Model

Readings of sensor *i* when target is absent (*H*₀) and present (*H*₁)

$$\begin{cases} \boldsymbol{H}_0: \quad \boldsymbol{y}_i = \boldsymbol{n}_i \\ \boldsymbol{H}_1: \quad \boldsymbol{y}_i = \boldsymbol{s}_i + \boldsymbol{n}_i \end{cases}$$

- Signal energy s_i is unknown
 - Target's source energy
 - Signal path loss
- *n_i* is Gaussian noise
 - Unknown Gaussian distribution

Readings of a sensor when a vehicle passes by [Duarte 2004]

• Low-end sensors' decision is made by

$$\begin{cases} \sum_{i} \mathbf{y}_{i} < \mathbf{T} \implies \text{decide0} \\ \sum_{i} \mathbf{y}_{i} \ge \mathbf{T} \implies \text{decide1} \end{cases}$$

• Average detection cost

$$\sum_{j,k\in\{0,1\}} \boldsymbol{C}_{jk} \cdot \boldsymbol{P}(j \mid \boldsymbol{H}_{k}) \cdot \boldsymbol{P}(\boldsymbol{H}_{k})$$

• Low-end sensors' decision is made by

$$\begin{cases} \sum_{i} \mathbf{y}_{i} < \mathbf{T} \implies \text{decide 0} \\ \sum_{i} \mathbf{y}_{i} \ge \mathbf{T} \implies \text{decide 1} \\ \text{detection threshold} \end{cases}$$

Average detection cost

$$\sum_{\boldsymbol{j},\boldsymbol{k}\in\{0,1\}}\boldsymbol{C}_{\boldsymbol{j}\boldsymbol{k}}\cdot\boldsymbol{P}(\boldsymbol{j}\mid\boldsymbol{H}_{\boldsymbol{k}})\cdot\boldsymbol{P}(\boldsymbol{H}_{\boldsymbol{k}})$$

Outline

- Motivation
- Background
- Problem Formulation
- Control-theoretical Calibration Algorithm
- Evaluation

Closed-loop Calibration

Changing noise level

Changing target energy

- Opt threshold that minimizes detection cost depends on
 - Noise profiles: $\sum_{i=1}^{N} E[n_i] = \sum_{i=1}^{N} var[n_i]$
 - Received target signals: $\sum_{i=1}^{N} \mathbf{s}_{i}$

Closed-loop Calibration

Changing noise level

Changing target energy

- Opt threshold that minimizes detection cost depends on
 - Noise profiles: $\sum_{i=1}^{n} E[n_i]$ $\sum_{i=1}^{n} var[n_i]$ unknown & dynamic Received target signals: $\sum_{i=1}^{n} s_i$

Closed-loop Calibration

Changing noise level

Changing target energy

- Opt threshold that minimizes detection cost depends on
 - Noise profiles: $\sum_{i=1}^{N} E[n_i]$ $\sum_{i=1}^{N} var[n_i]$ unknown & dynamic Received target signals: $\sum_{i=1}^{N} s_i$
- **Control Problem:** Find a **stable** and **converging** algorithm to calibrate *T* based on the feedback of high-quality sensor, **s.t.** detection cost is minimized

Feedback Control Loop

- Detection threshold is calibrated for each cycle
- A typical discrete-time control problem

Feedback Control Loop

- Detection threshold is calibrated for each cycle
- A typical discrete-time control problem

Condition for Min Detection Cost

• Average detection cost is minimized iff

$$({m Q}^{-1}({m P}_{{m F}})^2 - {m Q}^{-1}({m P}_{{m M}})^2 = \delta$$

- P_F and P_M : false alarm rate and missing probability of low-end sensors
- $Q^{-1}(x)$: the inverse Q-function of N(0,1)
- **δ**: a known constant

Condition for Min Detection Cost

• Average detection cost is minimized iff

$$\mathbf{Q}^{-1}(\mathbf{P}_{\mathbf{F}})^2 - \mathbf{Q}^{-1}(\mathbf{P}_{\mathbf{M}})^2 = \delta$$
reference
variable

- P_F and P_M : false alarm rate and missing probability of low-end sensors
- Q⁻¹(x): the inverse Q-function of N(0,1)
- δ: a known constant

Feedback Control Loop

- Detection threshold is calibrated for each cycle
- A typical discrete-time control problem

Feedback of HQ Sensor

- Estimate P_F and P_M from HQ sensor's results
 - 100 detections in a cycle, target appearance prob. is 20%
 - 8 triggers are classified as false alarms

$$P_{F} = \frac{8}{100 - 100 \times 20\%} = 10\%$$

- 19 triggers are confirmed as correct detections

$$\mathbf{P}_{\mathbf{M}} = \frac{100 \times 20\% - 19}{100 \times 20\%} = 5\%$$

• We account for the inaccuracy of HQ sensor and target appearance prob.

Outline

- Motivation
- Background
- Problem Formulation
- Control-theoretical Calibration Algorithm
- Evaluation

Calibration Algorithm

- The system to be controlled is a 0-order system
 - 1st-order controller:

$$\mathbf{G}_{\mathbf{c}}(\mathbf{z}) = \frac{\mathbf{a}}{1 - \mathbf{b} \cdot \mathbf{z}^{-1}}$$

transfer function of the calibration algorithm

• The system is stable and converging if

noise variance of sensor i

$$0 < \mathbf{a} < \frac{\sum_{i=1}^{N} [var[n_i]]}{\sum_{i=1}^{N} [\mathbf{s}_i]}, \quad \mathbf{b} = 1$$

signal received by sensor *i*

- The upper bound on *a* is unknown and dynamic
 - Can be coarsely estimated
 - Conservative setting of *a*

Impact of Communication

- Stochastic packet loss
 - The stability condition may change significantly
 - The impact on stability can be mitigated by deploying more lowend sensors
- Optimal route **R** that minimizes impact of packet loss:

$$R = \underset{R}{\operatorname{argmin}} \sum_{h \in R} -\log PRR(h)$$

PRR – Packet reception ratio

- Feedback delay
 - Comm. delay and sleeping delay of low duty-cycle sensors
 - Has little impact when the delay is up to 10 cycles

Outline

- Motivation
- Background
- Problem Formulation
- Control-theoretical Calibration Algorithm
- Evaluation

Testbed Experiments

- 6 Tmotes + a web-cam
- Detect light spots that randomly appear on a LCD
- Heuristic baseline approach
 - Estimates noise and signal when the system makes negative and positive decisions, respectively

Trace-driven Simulations

• Data traces collected from 75 acoustic sensors in vehicle detection experiments [Duarte 2004]

Conclusions

- Propose a system-level adaptive calibration approach
 - Sensor heterogeneity
 - On-demand activation scheme
- Develop a control-theoretical algorithm
 - Ensures provable stability and convergence
 - Accounts for communication performance
- Calibrated network maintains optimal system detection performance in the presence of various dynamics