
Context-Aware Digital Documents Described In A
High-Level Petri Net-Based Hypermedia System

Jin-Cheon Na and Richard Furuta

Department of Computer Science, Texas A&M University
College Station, TX 77843-3112, USA

{jincheon, furuta}@cs.tamu.edu

Abstract. As mobile computing becomes widespread, so will the need for
digital document delivery by hypertextual means. A further trend will be the
provision of the ability for devices to determine where they are, e.g., through
the inclusion of GPS sensors, as will the need for devices to operate on
heterogeneous networks. Consequently, hypertext systems supporting these
devices will benefit if they also can become context-aware. In this research, we
introduce caT (for Context-Aware Trellis), a context-aware hypertext model
and associated tools, which supports flexible user (or agent) adaptation to
changes in environmental information, such as time, location, bandwidth/cost,
etc. Firstly a context-aware hypertext model is proposed by incorporating both
high-level Petri net features and user-modeling into the previously-described
Trellis hypertext model. Major features of the high-level Petri net that are being
explored are structured tokens and flexible net description. Fuzzy knowledge
(context) handling is supported by the integration of a fuzzy logic tool with the
Petri net, and a flexible information presentation tool has been designed to
support Web-based browsing of documents specified in the caT model.
Additionally, authoring and analysis issues are explored to support structured
authoring and verification of application models, respectively. A simple
example, a university digital library, is introduced in the paper to explain the
concept of the caT model.

1 Introduction

As mobile computing becomes widespread, so will the need for document collections
that can customize themselves for reading in different environments. If mobile
documents properly reflect their readers’ context, they can provide more relevant
information to meet their readers’ dynamically changing contextual requirements.
Mobile systems should provide context-aware services without requiring readers to
provide explicit context data. For this purpose, over the last decade, some researchers
have built context-aware applications [6, 17] that take advantage of environmental
information to provide better interaction with readers. Context-aware applications
typically focus on a mobile user who is carrying a portable system, such as a Personal
Data Assistant (PDA), that has been augmented with environmental sensors, such as
GPS receivers, active badges, electronic compasses, etc. These environmental sensors
could detect location, orientation, time of day and time of year, temperature,

companions or objects nearby, user identification, etc. Additionally, high-level
sensors (software sensors), which correlate information from lower level sensors in
order to deduce some higher level state, could detect more complex situation data.

Some context-aware document applications have been developed. Peter Brown [3]
provides a framework for discrete context-aware applications and services based on a
simple Post-It note metaphor, where discrete pieces of information are attached to
individual contexts, to be triggered when the user enters those contexts. Mobile tour
guides [1] have been developed to familiarize a visitor with a new area. Office
awareness systems [21, 22] sense users’ locations, help people find each other, and
keep up awareness. Context-based retrieval applications [16] collect and save context
information and support subsequent information retrieval based on context
information. Conference Assistant [7], which supports conference attendees and
presenters, assists users in taking notes on presentations and aids in the retrieval of
conference information after the conference concludes.

Hypertext systems, including the WWW (World-Wide Web), have been widely
accepted as document navigation and search tools. Hypertext systems supporting
mobile systems will benefit if they also can become context-aware. For example, we
can think of a university digital library, which wishes to provide a full version of a
Web document to its on-campus patrons and a limited one to its off-campus patrons.
The library system also might give more detailed documents for reference material
located on the current floor than for other floors. Some documents should be made
available for general use outside of working hours or when they are no longer secret.

A focal point in adaptive hypermedia systems [2, 4] has been support for user
modeling. Adaptive hypermedia systems use knowledge represented in a user model
to adapt the information and links being presented to the given user. Adaptive
hypermedia systems are mainly used now in educational hypermedia areas where the
hyperspace is reasonably large and where individuals with different goals, knowledge
and background use a hypermedia application. Providing context-awareness will
require user modeling.

In this research, we will introduce extensions to a previously-described hypertext
model in order to support context-awareness. Trellis [8], based on colored timed Petri
nets [12], is chosen since it provides good facilities for dynamic adaptations and
supports formal analysis techniques. This paper is organized as follows. Related work
is discussed in section 2. The research objectives and detailed research work are
described in section 3. Finally, future work and conclusions are discussed in section 4.

2 Related Work
2.1 Petri Nets

Petri nets [12, 15, 24], as graphical and mathematical tools, provide a uniform
environment for modeling, formal analysis, and design of systems. Formally, a basic
Petri net is a bipartite directed graph defined as follows:

A Petri net structure is a tuple, <P, T, F>, in which
• P = {P1, P2, …, Pn} is a finite set of places with n ≥ 0;
• T = {T1, T2, …, Tm} is a finite set of transitions with m ≥ 0 and P ∩ T = ∅;

• F ⊆ (P × T) ∪ (T × P) is the flow relation, a mapping representing arcs between
places and transitions.
For a marking of a Petri net structure <P, T, F>

• M: P → I, I = {0, 1, 2, …}, is a function that associates a marking to each place
in the net.

Fig. 1. A Simple Petri Net

Graphically, a Petri net is represented by indicating its places by circles, transitions
by bars, arcs by arrows, and tokens by small black dots. A place containing one or
more tokens is said to be marked. When each place incident on a transition is marked
that transition is enabled. An enabled transition may fire by removing one token from
each of its input places and putting one token into each of its output places. For
example, consider the marked Petri net shown in Figure 1. The initial marking is M0 =
[110] (i.e., P1 = 1, P2 = 1, P3 = 0) and T1 is an enabled transition under M0. If T1 were
fired, the resulting next state would be M1=[001], as shown in the right side of the
Figure.

The basic Petri net is not always convenient for representing and analyzing
complex systems because tokens in the basic Petri nets have no identity. In order to
overcome this problem, Petri nets that allow tokens to have distinct identity, called
high-level Petri nets, were proposed. These nets include predicate-transition nets [9],
colored Petri nets [12], object-oriented Petri nets [10], and others. In high-level Petri
nets, a token can be a composite object carrying data, which may be of arbitrary
complexity including integers, reals, text strings, records, lists and tuples.
Nonetheless, it should be noted that ordinary and high-level Petri nets have the same
descriptive power, even though high-level Petri nets supply much better structuring
facilities than basic nets [24]. A more thorough exposition of net theory can be found
in the texts by Peterson [15] and Jensen [12].

2.2 Trellis

The Trellis project [8, 18] has investigated the structure and semantics of human
computer interaction, in the context of hypertext (hypermedia) systems, program
browsers, visual programming notations, and process models. The Trellis model is

P3 P3

T1

Before Fire

T1

P2P1 P1 P2

After Fire

formally defined using colored timed Petri nets as the structure of a hyperprogram,
and this gives the model an elegant structure that can be both programmed and
analyzed [24].

In the form of colored timed Petri nets (CPN) used by the Trellis model, tokens
have color types and a token of one color is discernible from a token of another color.
However, within a color class individual tokens cannot be distinguished from one
another. Each transition in a Trellis net has two time values, representing respectively
a delay and a timeout. Time values in Trellis are thought of as defining ranges for the
availability of an event. Formally, a colored timed Petri net in the Trellis model is
defined as follows [18]:

A CPN is a tuple, <Σ, P, T, F, τ>, in which
• Σ is a finite set of token colors, such as {black, maroon, …};
• P, T, and F are as defined earlier ;
• τ : T → {0,1,2, … } × {0, 1, 2, …, ∞} is a function mapping each transition to a

pair of values termed release time and maximum latency respectively. For any
transition t ∈T, we write τ(t) = (τr, τm) and we require that τr≤τm.

A Trellis net is completed by annotating for the components of the CPN. We can
conceive of the CPN as the task description and the different annotations as the
information required by the task. One important category of annotation is content.
Fragments of information (text, graphics, video, audio, executable code, and other
hyperprograms) are associated with the places in a CPN. Another category of
annotation is events, which are mapped to the transitions of the CPN. A third category
of annotation is the attribute/value (A/V) pair; a list of A/V pairs is kept with each
place, each transition, each arc, and for the CPN as a whole. Annotations can be used
by the Trellis implementation to build client tools, such as hypertext documents
browser and authoring tools. Formally, a hypertext in the Trellis model is defined as
follows [18]:

A hypertext in the Trellis structure is a tuple, <CPN, M0, D, W, B, Pl, Pd>, in
which

• CPN is a colored timed Petri net <Σ, P, T, F, τ>;
• M0 : P → token instances of Σ is an initial marking (or initial state) for CPN;
• D is a set of document contents;
• W is a set of windows;
• B is a set of buttons (or links);
• Pl is a logical projection for the document, Pl = <Dl,Wl,Bl>, mappings from

components of a Petri net to the human-consumable portions of a hypertext;
• Pd is a display projection for the document, a collection of mappings that

associate the logical buttons and windows of a hypertext with physical screen
representations and locations.

3 caT

With the increased availability of mobile personal computers, in modern hypertext
systems, adaptation support for users in dynamically-changing environments will be
essential to meet the needs of mobile users. The main goal of this research is to
continue the development of caT [14], a context-aware hypertext model and
associated tools. Beginning with the χTrellis implementation by Stotts, et al., the
following main research issues are being explored.

1. A context-aware hypertext model: Even though previously-described hypertext
models provide a powerful modeling framework, they have a weakness in
supporting context-aware adaptation, mainly due to a lack of incorporation of
dynamically-changing information from the external environment. We need a new
context-aware hypertext model that supports context-awareness in dynamically-
changing environments.

2. Fuzzy knowledge handling: By introducing the fuzzy logic [23] concept into a
hypertext model, the model can have the ability to handle uncertain knowledge
(i.e., fuzzy context) in real world applications. Fuzzy logic primarily is motivated
by observing that human reasoning can use concepts and knowledge that do not
have well-defined, sharp boundaries (i.e., vague concepts). For example, the new
model may support the following link display condition: “shows a link when
access right of the current user is rather high”. In this case, the model needs to use
a fuzzy rulebase for inferring the access right value from the current user’s
information (e.g., access time and location).

3. Flexible information presentation: The Trellis model supports good separation
between document specification and presentation. This allows multiple
presentations of a particular document specification. To provide a WWW-based
presentation, which has been widely accepted recently, we need to specify how
active content elements and links of the Trellis model are to be displayed and
embedded in WWW pages, respectively. The currently-existing χTrellis prototype
uses a separate window (or frame) to display the net’s active content and links, but
in the WWW context it is necessary to have a mechanism that combines these
elements into one larger document. A composition mechanism, based on the
composite node concept introduced in the Dexter model [11], is explored for the
presentation of multiple active content elements into one flexible (or dynamic)
document.

To address these requirements, we are developing caT, which supports flexible
user (or agent) adaptation to changing environments by incorporating context-
awareness, user modeling, and fuzzy knowledge handling features to the current
Trellis system. caT also supports Web-based browsing to enable the high usability of
the model. The detailed methods of the suggested research work are described in the
following subsections.

3.1 Context-Aware Hypertext Model

The foremost objective of this research work is to develop a context-aware hypertext
model. Beginning with the Trellis model, the following features are added:

1. Structured tokens: Each colored token caries its own local variable/value pairs.
Thus, it can represent dynamically-changing characteristics, such as access time
and access location. Providing individual identity to tokens requires a mechanism
to determine what values should be used if tokens are combined or replicated
during transition firing. In caT, these transformations are specified through
predicates associated with the outgoing arcs from the transition. For hypertext
applications, each colored token may represent each person who is in a
dynamically-changing environment. With this token information, caT can provide
different behavior to the user under different contexts (e.g., different access times,
such as morning and evening, spring and winter, etc.). Users can share the same
Petri net, but have context-aware, customized views from the net.

2. User modeling: Each colored token also can have a link to a user-modeling profile
that contains the user’s information (e.g., preference, background, etc.). caT can
use this user modeling information in addition to local token values to customize
its behavior to different users. The distinction between a token’s local values and
the user model profile is that the local values are expected to reflect dynamic and
environmentally changing data, while values in the user modeling profile are less
dynamic, reflecting user profile data. In addition, the user model profile is globally
visible, while the local variables are associated with an individual token. For
context-aware applications, user modeling will help supplement the limits of
current sensor devices. In the real world, some sensor devices are not available to
common users, and it is impossible to get some kinds of environmental data from
sensor devices, such as a user’s current working organization type. User modeling
can address these shortcomings by enabling derivation of missing values.

3. Link adaptation: Conditional statements attached to transitions are evaluated with
values from the current user model and token; conditional statements determine the
threshold values for transition firing, and thus provide link adaptation.
Additionally, assignment statements attached to output arcs are used for changing
current token values, and function calls for getting environmental data or invoking
a fuzzy inference engine are supported in conditional and assignment statements.

The formal definition of Petri net used in the caT model is as follows:

A caT Petri net structure is a tuple, <Σ, P, T, F, τ, C, G, E>, in which
• Σ is a finite set of token types, called color sets;
• P, T, F, and τ are as defined earlier;
• C : P → Σ is a color function;
• G : T → Boolean Expression is a guard function;
• E : (T×P) → Arc Expression is an arc expression function.

The caT model has additional (or enhanced) properties (or functions) in addition to
the common ones in the Trellis model. In Σ, in caT, each token can have a color value
and optional local token variables. Therefore, each place can have different type of

tokens (i.e., tokens with different local variables), declared by “C : P → Σ”. The color
function, C(p), maps each place to a color set (type), and each token on the place must
have a token that belongs to the color type. The guard function, G(t), is used for
mapping a Boolean expression to each transition, which specifies an additional
constraint (threshold) which must be fulfilled before the transition is enabled. The arc
expression function, E(t×p), is used for mapping an assignment expression to each
output arc, which changes current token values when the transition is fired.

3.2 Fuzzy Logic Tool Integration

In context-aware applications, we need to handle uncertain user contexts.
Consequently, caT incorporates a fuzzy logic engine for evaluating conditional
statements used for link adaptation as well as for updating values in local variables.
Matlab’s Fuzzy Logic Toolbox [13] is used as caT’s fuzzy logic engine and is
invoked on transition firing. Some fuzzy Petri nets [5] use fuzzy tokens, but keeping
the current Petri net model and invoking an external fuzzy logic engine when
necessary seems like a simple and reasonable solution, rather than introducing fuzzy
logic into the current model and making a complex fuzzy Petri-net-based model.

A function for invoking an external fuzzy logic engine is supported in caT. The
first argument is a rulebase name and the following arguments are either local token
values or user profile values. For example, the user’s access right is inferred by
invoking the external fuzzy logic engine with a target rulebase name, user’s access
time, and current location. A sample rulebase for this purpose is as follows:

1. If (time is day) and (distance is close) then (accessRight is high) (1)
2. If (time is day) and (distance is middle) then (accessRight is middle) (1)
3. If (time is day) and (distance is far) then (accessRight is low) (1)
4. If (time is not day) then (accessRight is high) (1)

Generally, the rulebase infers an access right value from the current user’s access
time and distance. When the current time is day, users who are in close distance get
high access rights. But when the current time is not day, all users get high access
rights, regardless of their distance. Fuzzy terms, such as day, close, middle, and far,
are defined by membership functions; a membership function is a curve that defines
how each point in the input space is mapped to a membership value (or degree of
membership) between 0 and 1.

3.3 Flexible Information Presentation Tool

In caT, a template file specifies how active content elements are to be displayed and
how links are to be embedded. The template file is simply another Trellis content type
associated with a place. It takes control when the place is marked; consequently
multiple template files can be active at different times during a browsing session. The
node that contains the template file can be viewed as a virtual composite node
constructed from several atomic nodes. Only active atomic nodes in the composite
node are used for generating the current presentation of the composite node. Thus, the

content of the composite node changes dynamically based on the current net state.
As an example, consider the case of a university digital library, which provides a

full version of a Web page to its on-campus patrons and a limited one to its off-
campus patrons. However, faculty members off-campus retain access to the full
version. Because the page includes access to a real-time help desk, only the limited
version is available outside of normal operating hours. For exemplifying the above
scenario in the caT model, some of the current existing library services at Texas
A&M University are used. Figure 2 shows a small net fragment implementing these
restrictions. The top portion of the net, invoked automatically by caT’s time
specifications, invokes the fuzzy inference engine to classify the user as being “on-
campus” or “off-campus” based on the time of day, distance from campus, access
rights, and incoming IP address. The bottom portion of the net specifies the
information display in the Web browser, shown in Figure 3. The detailed behavior of
the Petri net in Figure 2 is described in the following subsections.

Fig. 2. Petri net of a simple digital library tour

Context-
Aware
User
Classifi-
cation

Document
Display
Using the
Template

Context-Aware User Classification. Initially, user tokens will be placed in
ReaderPool place. Each colored token has the following local token variable/value
pairs: user name, accessRight, user class, network, and currentTime. The user name
and network values will be marked initially, and the other values are inferred or
calculated by the system. A user profile for each user has the following values:
disToCampus (distance from a current location to campus) and userType (user
occupation).

The Calc_currentTime transition has a timing value of (0,0). (0,0) means no delay
and no timeout, therefore the Calc_currentTime transition will be executed
immediately by the system when it is enabled. When the Calc_currentTime transition
is fired, the currentTime value is calculated by using an expression that is attached to
the output arc of the Calc_currentTime transition. “r.w.currentTime” is used for
accessing a local token variable currentTime of the current colored token: “r” is a
color variable that is instantiated to the current color value, and “w” denotes that the
following variable currentTime is a local token variable. “send()” function is used for
calling system-support functions. When the Calc_currentTime transition is fired, a
colored token in ReaderPool caries its own local variable/value pairs to the output
place, i.e., CalcTime, with a new currentTime value.

In the next step, the Calc_accessRight transition is fired, and the user’s
accessRight value is inferred by invoking an external fuzzy logic engine. “fis()” is a
function for invoking an external fuzzy logic engine. The accessright.fis rulebase is
the one introduced in section 3.2. “r.u.disToCampus” is used for accessing the user
profile variable disToCampus of the current token user. “u” denotes that the
following variable disToCampus is a user profile variable. The user profile name is
stored in the current token’s user name variable.

When a token arrives at the Check_status place, either the offcampus_condition or
the oncampus_condition transition is enabled after each condition statement attached
to its transition is evaluated with the current token and user profile values. The
condition in offcampus_condition is “(r.w.accessRight < 0.8 && r.w.network !=
‘128.194.147’ && r.u.userType != ‘faculty’)”; The condition in oncampus_condition
“(r.w.accessRight >= 0.8 || r.w.network == ‘128.194.147’ || r.u.userType ==
‘faculty’)”. When the current token’s inferred accessRight is larger than or equal to
0.8 (i.e., rather high), or network is ‘128.198.147’, or userType is ‘faculty’, the
oncampus_condition transition is enabled; otherwise, the offcampus_condition
transition is enabled. When the transition is fired, the assignment statement (r.w.class
= ‘oncampus’ or r.w.class = ‘offcampus’) attached to output arc of the transition is
executed.

After the user is classified, a token is in the Branch place. A token with the user
class value ‘oncampus’ (or ‘offcampus’) has the Oncampus (or Offcampus) transition
enabled and fired. Now the user (on-campus or off-campus) will have tokens in both
template and node0 places, and the user is ready for a guided digital library tour. Up
to this point, all transitions are executed by the system without interaction with the
user.

Document Display Using the Template. Each classification includes a separate
template file to display a full version of the page to the on-campus user and a limited
one to the off-campus user. The content of “template” node for on-campus users is as
follows:

<html>
<body>
some descriptive text ……
<Append place=”node0”>
some descriptive text ……
<Append place=”node1”>
<Append place=”node2”>

<Append place=”node3”>
<Append place=”node4”>
<Append place=”node5”>
<Append place=”help”>
<Transition text=”next”>
</body>
</html>

This template file is used for combining contents of active nodes (nodes that have
tokens) specified in an <Append> construct. When only node0 and template places
are active, the content of node0 is used for generating the current Web page. Then,
when node1, node2 and help including template are active (when the next transition
On_Campus_Service of the on-campus user, who accesses the net during regular
office hours, is fired), the contents of these nodes are used for generating the current
Web page. Also when the on-campus user accesses the net at a non-regular office
hour, the content of help is not used for generating the output Web page. Thus, only
the limited version (no on-line help) is available outside of normal operating hours.

The template node for off-campus users may have the same template file as on-
campus users. But because there are no node2, node4, and help in the subnet of off-
campus users, only node0, node1, node3, and node5 are used for generating the
output Web page. Therefore, off-campus users will have a limited version compared
to on-campus users. When tokens move around the net, the contents of the Web page
change dynamically.

A <Transition> construct is used for defining an embedded link that allows the
user to move to the next state. If the output transition of the template node is enabled,
that transition link is included in the combined Web page. This enables the user to fire
the transition to move to the next state. Possible internal links, such as links between
node0 and node5, are generated automatically in the combined Web page if these are
enabled transitions.

For the detailed behavior of the bottom portion of the net, consider the case of on-
campus users who access the net during regular hours. The On_Campus_Service
transition has a condition statement “r.w.currentTime >= 9.0 && r.w.currentTime
<= 17.00”; Off_Campus_Service(no help) transition has “r.w.currentTime < 9.0 ||
r.w.currentTime > 17.00”. Therefore, when the user accesses the net during regular
office hours, On_Campus_Service will be enabled, otherwise On_Campus_Service(no
help) is enabled. The resulting page is shown in Figure 3 (a). Introductory text (the
content of node0) and the On_Campus_Service link are displayed in a main frame,
and a duplicate On_Campus_Service link in a left control frame. Since
On_Campus_Service has a time value (0,∞), the system will wait for the user’s input
(i.e., a mouse click). When a time value is not declared, (0,∞) is the default value.

When the On_Campus_Service transition is fired, the contents of node1, node2,
and help are used for generating the current Web page (see Figure 3 (b)). LibCat and
DB_and_Ejournals links are displayed with additional text and WWW links, and the

user can select one of these links for the next navigation. The caT links that are
mapped to active transitions in the net (called “caT links” in this section for
distinguishing them from WWW links) is distinguished with a preceding circle bullet,
and normal WWW links are shown without preceding bullets. When the user clicks
caT links, the corresponding transition is fired, the net state is changed, and the new
content is regenerated using template. When the user clicks WWW links, the resulting
effect is the same as normal WWW browsing semantics, but the user still can move to
the next state using caT links placed in the left control frame. Since LibCat has a time
value (0,20) and DB_and_Ejournals (0,∞), LibCat will be selected automatically by
the system unless the user responds within 20 time units (i.e., seconds).

Fig. 3. Context-aware display

(b) After On_Campus_Service clicked

(c) After LibCat clicked (d) After Finish clicked

(a) Initial page

When LibCat is clicked, LibCat (the catalog of Texas A&M University General
Library) will be shown (see Figure 3 (c)). Now the user can search for library items
using the LibCat search engine. Since the finish link has a time value (0,60), the user
has to finish his (or her) search work within 60 time units, otherwise the user’s
window will be forced to move to the next state window (see Figure 3 (d)). The time
value can easily be adjusted to a reasonable value by an author of this net, or, indeed,
adjusted dynamically based on the reader’s performance [19]. When the restart link is
clicked, the user will be reclassified as being an “on campus” or “off campus” user
based on new environmental values: time of day, distance from campus, and
incoming IP address (in current example, only time of day is dynamically changing).

Implementation. In the caT implementation, beginning with χTrellis for the X-
windows environment, a distributed client/server network achieves cooperative
separation between net and interpretation. Every caT model is an instance of an
information server − an engine that receives remote procedure call (RPC) requests for
its services. Clients are separate processes that have visual user interfaces and
communicate with one or more engines via RPC. The Trellis browser has been
implemented in C, C++, and Motif, and it runs in a Unix environment. A new Web
version of the browser has been designed and implemented using Java language: the
Java applet first communicates with an intermediate message-handling server, and the
server passes RPC requests using Java JNI (Java Native Interface) to the information
servers. The general architecture of the new browsing tool is shown in Figure 4.

Fig. 4. General architecture of a flexible information tool

Applet WWW
Browser

HTTP
server

Server
(in Java)

Shared
Library
(in C)

Thread 1

Thread 2

Thread n

…...

Information
Servers (Petri
Net Engines)

So
ck

et

H
T

TP

Client

ServerJNI

R
P

C

JavaScript

Web Server Interface
(Web page display)

Information Server Interface
(Petri net related transactions)

Thread 1
…...

Thread n

Web
Documents

Store
Documents

R
et

ri
ev

e
D

oc
um

en
ts

4 Discussion

One of the primary advantages of using Petri net models is that the same model is
used for the analysis of behavioral properties and performance assessment, as well as
for systematic building of systems [24]. Therefore, authors can use Petri net analysis
techniques to verify and validate the behavioral characteristics of developed hypertext
systems before they are handed over to users [20]. Firstly it is possible to verify that
all nodes in a hypertext can be reached via some path; more important, it also is
possible to verify that certain nodes cannot be reached from particular initial
markings, giving the basis for access control. Additionally, the following
characteristics may be verified (or simulated): terminal state existence (i.e., if a state
m exists in which no transitions are enabled), maximum or minimum time for a
specific document navigation (using timing statements in transitions: a release and a
maximum latency times), certain collections of information that can be viewed
simultaneously, etc. To support these features, the extended model has been designed
to be consistent with Petri net theory. However we expect that dynamic characteristics
of environment data including user-modeling data may make the verification of the
system difficult. For example, the combinations of many dynamic data may generate
very large net states. We plan to analyze the system with only a small amount of
dynamic data considered at one time. We are developing analysis tools to be added to
the current authoring tool, so authors can verify behavioral characteristics of
developed hypertext documents.

Additionally, top-down or bottom-up structured authoring support will be essential
for developing large-sized Petri net applications since it reduces graphical complexity
problems that are common to graph-based modeling tools. Current Trellis supports
hierarchical net browsing using a hyperprogamming feature, but it does not support
built-in hierarchical nets. In other words, when a token arrives into a place where
another net (i.e., a subnet) is declared to be invoked, a browsing tool can only handle
the subnet invocation using a content attribute of a place, and show the output
interface of the subnet in a new process. But an information server itself does not
invoke the subnet since it ignores the content attribute of the place. Moreover, there
are no closely coupled interactions between hierarchical nets, such as data value (or
token value) passing. Shifting hierarchical net handling from content-level (i.e., a
browsing tool) to net structure-level (i.e., an information server) will be more
appropriate for flexible net interactions. When data passing between nets is supported,
subnets can be used as templates, like functions or procedures in high-level
programming languages. This will increase reusability of subnets. The structure-level
hierarchical net feature will be very useful for structured authoring, and also will
support easy system tracing for simulation and debugging purposes.

In summary, we have introduced caT, a context-aware hypertext model and
associated tools, which supports flexible adaptation in a dynamically-changing
environment. caT is an extension of the earlier Trellis model in the following ways:

• It supports both high-level Petri net and user modeling features to provide flexible
context-aware adaptation,

• It integrates a fuzzy logic tool with the current model to support fuzzy (or
uncertain) knowledge handling, and

• It supports a Web-based browsing tool.

The successful result of the current work shows the potential usability of context-
aware hypertext systems. Potential target applications of this model are context-aware
hypermedia applications running on mobile systems with attached sensors to capture
their environment. The research is continuing in order to enhance the usability of the
caT model.

References

1. ABOWD, G.D., ATKESON, C.G., HONG, J., LONG, S., KOOPER, R. and
PINKERTON, M. “Cyberguide: A Mobile Context-Aware Tour Guide”, ACM Wireless
Networks 3, (1997), pp. 421-433

2. DE BRA, P., HOUBEN, G. and WU, H. “AHAM: A Dexter-based Reference Model for
Adaptive Hypermedia”, Proceedings of the 10th ACM Conference on Hypertext and
Hypermedia, Darmstadt, Germany, ACM Press, (1999), pp. 147-156

3. BROWN, P.J. “Triggering information by context”, Personal Technologies, vol. 2, no. 1,
(September 1998), pp. 1-9

4. BRUSILOVSKY, P. “Methods and techniques of adaptive hypermedia”, User Modeling
and User Adapted Interaction, vol. 6, no. 2-3, (1996), pp. 87-129

5. CARDOSO, J., VALETTE, R., and DUBOIS, D. “Fuzzy Petri Nets: An Overview”, 13th

IFAC World Congress, San Francisco USA, (30 June – 5 July 1996), pp. 443-448
6. DEY, A.K. and ABOWD, G.D. “Toward a Better Understanding of Context and Context-

Awareness”, Georgia Institute of Technology, GVU Technical Report GIT-GVU-99-22,
(June 1999)

7. DEY, A.K., SALBER, D., ABOWD, G.D., and FUTAKAWA, M. “The Conference
Assistant: Combining Context-Awareness with Wearable Computing”, The Third
International Symposium on Wearable Computers, (1999), pp. 21-28

8. FURUTA, R. and STOTTS, D. “Trellis: a Formally-defined Hypertextual Basis for
Integrating Task and Information”, In Olson, G.M., Smith, J.B., and Malone, T.W.,
editors, Coordination Theory and Collaboration Technology, to appear in 2001

9. GENRICH, H.J. and LAUTENBACH, K. “System modeling with high-level Petri nets”,
Theoret. Comp. Sci., vol. 13, (1991), pp. 109-136

10. GUDWIN, R. and GOMIDE, F. “Object networks – a modeling tool”, Fuzzy Systems
Proceedings, 1998 IEEE World Congress on Computational Intelligence, The 1998 IEEE
International Conference on Volume: 1, (1998), pp. 77-82

11. HALASZ, F. and SCHWARTZ, M. “The Dexter Reference Model”, Proceedings of NIST
Hypertext Standardization Workshop, (1990), pp. 95-133

12. JENSEN, K. “Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use
Volume 1”, EATCS Monographs on Theoretical Computer Science, Springer-Verlag,
(1992)

13. The MathWorks, Inc. “Fuzzy Logic Toolbox User’s Guide”, (1999)
14. NA, J. and FURUTA, R. “Context-Aware Hypermedia in a Dynamically-Changing

Environment, Supported by A High-Level Petri Net”, short paper, Proceedings of
Hypertext ’2000, San Antonio TX, USA, (2000), pp. 222-223

15. PETERSON, J.L. “Petri Net Theory and the Modeling of Systems”, Prentice-Hall,
Englewood Cliffs, N.J., (1981)

16. RHODES, B.J. “The Wearable Remembrance Agent”, Proceedings of 1st International
Symposium on Wearable Computers, ISWC ’97, Cambridge, MA, (October 1997), IEEE
Press, pp. 123-128

17. SCHILIT, W.N., ADAMS, N., and WANT, R. “Context-aware computing applications”,
Proceedings of the Workshop on Mobile Computing Systems and Applications, Santa
Cruz, Ca., IEEE Computer Society Press, Los Alamitos, Ca., (1994), pp. 85-90

18. STOTTS, P.D. and FURUTA, R. “Petri-net-based hypertext: Document structure with
browsing semantics”, ACM Transactions on Information Systems, vol. 7, no. 1, (Jan.
1989), pp. 3-29

19. STOTTS, P.D. and FURUTA, R. “Dynamic Adaptation of Hypertext Structure”,
Proceedings of Hypertext ’91, (1991), pp. 219-231

20. STOTTS, P.D., FURUTA, R., and CABARRUS, C.R. “Hyperdocuments as Automata:
Verification of Trace-Based Browsing Properties by Model Checking”, ACM Trans. On
Information Systems, vol. 16, no. 1, (1998), pp. 1-30

21. WANT, R., HOPPER, A., FALCAO, V., and GIBBONS, J. “The Active Badge Location
System”, ACM Transactions on Informations, vol. 10, no. 1, (1992), pp. 91-102

22. WANT, R., SCHILIT, B., ADAMS, N., GOLD, R., PETERSON, K., ELLIS, J.,
GOLDBERG, D., and WEISER, M. “The PARCTAB Ubiquitous Computing
Experiment”, Technical Report CSL-95-1, Xerox Palo Alto Research Center, (1995)

23. ZADEH, L.A. “Knowledge representation in fuzzy logic”, IEEE Trans. Knowledge and
Data Engineering, vol. 1, no. 1, (1989), pp. 89-100

24. ZURAWSKI, R. and ZHOU, M. “Petri Nets and Industrial Applications: A Tutorial”,
IEEE: Transactions on Industrial electronics, vol. 41, no. 6, (December 1994)

