
Dynamic Documents: Authoring, Browsing, and Analysis
Using A High-Level Petri Net-Based Hypermedia System

 Jin-Cheon Na and Richard Furuta
Department of Computer Science, Texas A&M University

College Station, TX 77843-3112, USA
Tel: 1-979-845-3839

{jincheon, furuta}@cs.tamu.edu

ABSTRACT
caT (for Context-Aware Trellis) was initially developed to support
context-aware documents by incorporating high-level Petri-net
specification, context-awareness, user modeling, and fuzzy
knowledge handling features into Trellis, a Petri-net-based
hypermedia system. The browsing behavior of documents
specified in the caT model can reflect the reader’s contextual
(such as location and time) and preference information. Recently,
to provide a framework for the authoring, browsing, and analysis
of reasonably complex, dynamic documents, we added (or
extended) several features in the caT system, providing
hierarchical Petri net support, a structured authoring tool,
browsing tools for multiple presentations of a particular
document’s specification, and a Petri net analysis tool. In this
paper, we present the extended features of caT and give examples
of using caT to define and present various documents, such as
formal specification of software requirements and customized
Web documents. Since caT is based on a formal model, the
behavioral characteristics of developed caT models can be
analyzed. Current debugging and analysis tools, integrated into
the authoring tool, are also introduced.

Categories and Subject Descriptors
H.5.4 [Information Interfaces]: Hypertext/Hypermedia

General Terms
Design, Theory

Keywords
Dynamic documents, Petri-net-based hypertext, Trellis, caT

1. INTRODUCTION
By enhancing the Trellis model [6], caT, an extended Trellis
hypertext model and its prototype system, provides good
separation among a document’s (1) structure, (2) data, and (3)

browsing semantics. In caT, the author, using a Petri-net-based
authoring tool, first builds a Petri-net-based document structure
and then associates net segments with the corresponding content
segments. Since Petri nets allow the specification of a document’s
browsing semantics, that is, “the dynamic properties of a reader’s
experience when browsing a document” [22], caT generalizes the
browsing semantics of a document and moves implementation of
such mechanisms into the document specification rather than the
system implementation. Therefore, the documents described in the
caT provide dynamic, interactive interfaces rather than static
document pages. As the reader browses a document using
document browsers, the corresponding Petri net’s states change.
Dynamic documents are generated based on the net state and the
document specification: in general, document components
associated with the active net components are displayed.

caT also supports good separation between document
specification and presentation, which allows multiple
presentations of a particular document’s specification. Since the
caT implementation is based on a client-server architecture,
several client browsers can be active simultaneously, presenting
different interpretations of the document and its browsing state. A
reader can choose an appropriate presentation of a document by
selecting a browser (e.g., to reflect a characteristic of the reader,
such as a handicap) or can use multiple browsers simultaneously
(e.g., to display an overview while reading or to view multiple
media types simultaneously). When read by multiple readers
simultaneously, the behavior of caT documents can be specified to
range between shared and separate. Consequently distributed
readers can be specified to be unaware of each other, sharing the
document’s specification but each with an independent view of
the document. Alternately, one reader’s action may be specified
to affect another reader’s view of documents, allowing sharing in
cooperative environments. Since Petri nets inherently provide a
good environment for synchronization of parallel actions, the caT
model also is useful for expressing group interactions within a
document structure.

caT [16] [17] was developed to extend Trellis in order to support
flexible user (or agent) adaptation to changes in environmental
information, such as time, location, and bandwidth/cost, by
adding new features to the Trellis system; mainly high-level Petri-
net specification and adaptive behaviors that respond to
dynamically-changing information. When the reader browses caT
documents, the system provides dynamic documents from its
collection, incorporating the reader’s contextual and preference
information. Recently, to provide a framework for the authoring,

browsing, and analysis of reasonably complex, dynamic
documents, we added (or extended) several features in the caT
system. Firstly, caT incorporates a hierarchical Petri net, based on
one of the features of the high-level Petri net described by Jensen
[13]—the hierarchical net support allows authoring of documents
with reduced graphical complexity, and increases reusability of
nets. In particular, addition of hierarchical nets supports
structured authoring in the authoring tool. Secondly, existing
browsers have been enhanced and new browsers have been added.
The resulting collection of browsers, including a text browser, an
image browser, and a Web browser, allows multiple presentations
of a particular document’s specification. Thirdly, an analysis tool
has been integrated into the authoring tool to allow verification
and validation of the behavioral characteristics of developed
document systems. In addition, a debugging tool has been
developed to allow an author to simulate and debug nets
interactively.

To explain the caT system and show its potential use in dynamic
document authoring, we introduce several example documents: an
online art gallery information service, an elevator protocol
specification, and a personal document path. The first example is
a simple online art gallery service providing a complete set of
resources to its on-campus patrons and a limited one to its off-
campus patrons. Next, the elevator protocol specification, shows
the breadth of the model by using it in formal specification of
software requirements. The reader can simulate the model (i.e.,
the elevator protocol) and see separate hypertextual views of the
simulation process by using multiple browsers. The third example,
the personal document path example, provides selections from a
personal collection of regularly-accessed documents based on the
reader’s schedule (access time) and other preferences.

This paper is organized as follows. Petri-net-based hypermedia
systems, including Trellis, are discussed in the next section. The
formal caT model and its major features are described in section
3. In section 4, we introduce dynamic document examples
described in the caT model. Current debugging and analysis tools,
integrated into the authoring tool, are introduced in section 5.
Related works are described in section 6. Finally, implementation
details and conclusion are in section 7 and 8, respectively.

2. PETRI-NET-BASED SYSTEMS
The process of reading a hypermedia document can be represented
as a task, which consists of sequential and parallel activities. An
easy modeling of synchronization schemes together with the
possibility to analyze important properties make Petri nets a good
candidate for hypermedia document modeling. A basic Petri net
[19] is graphically represented as a bipartite directed graph, in
which the circular nodes are called places and the bar nodes are
called transitions. A dot in a place represents a token, and a place
containing one or more tokens is said to be marked. When each
place incident on a transition is marked that transition is enabled.
An enabled transition may fire by removing one token from each
of its input places and putting one token into each of its output
places. However the basic Petri net is not always convenient for
representing and analyzing complex systems because tokens in the
basic Petri nets have no identity. In order to overcome this
problem, Petri nets that allow tokens to have distinct identity,
called high-level Petri nets, were proposed. In high-level Petri
nets, a token can be a composite object carrying data. A more

thorough exposition of net theory can be found in the texts by
Peterson [19] and Jensen [13].

There are some Petri-net-based models that focus mostly on the
specification of multimedia data stream synchronization
requirements. But, these models are not general enough for the
specification of general hypermedia applications. These systems
mainly provide presenting capabilities with no (or few) user
interaction capabilities. Some of the Petri-net-based models that
satisfy the requirements of general hypermedia applications are
Trellis [6] [22] [23] [24], HTSPN (Hierarchical Time Stream
Petri Net) [21] [27], MHPN (Multimedia Hypermedia Petri Net)
[26], and MORENA (Multimedia ORganization Employing a
Network Approach) [1].

The Trellis project, initiated in the late 1980’s, investigated the
structure and semantics of human computer interaction, mainly in
the context of hypertext (hypermedia) systems. In the form of
colored timed Petri nets, the Trellis model associates content with
places and links with transitions. When a place is marked, the
corresponding content is displayed, and when a transition is
enabled, the corresponding link can be selected. In the Trellis
implementation, information presentation is based on a simple
paradigm; namely, every node of the Petri net is shown on a
different window. Due to its Petri net paradigm, Trellis provides
the executable model, allowing for quick prototyping of process
protocols. Thus, the Trellis project examined hypertext as a
mechanism not only for structuring information, but also for
structuring process in the areas of Software Engineering [7] and
Computer Supported Cooperative Work (CSCW) [8]. We can
conceive of the colored Petri nets as the task (or process)
description and the associated contents as the information
required by the task. A more detailed overall description of the
Trellis project is given in [6].

3. caT
caT (Context-Aware Trellis) has been developed by incorporating
new features such as hierarchical colored timed Petri-net
specification [13], context-awareness [4], user modeling [2], and
fuzzy knowledge handling [28], into the Trellis hypertext model.
In this section, the formal definition of the caT model is
introduced first and the major extended features for dynamic
document authoring are followed.

3.1 Formal Definition of the caT Model
The formal definition of the caT model is specified by adding its
extended features to the existing Trellis formal definition [22]. A
caT hierarchical Petri net structure is a tuple, HCPN = <S, ST,
STM, IOM, I>, in which

• S = <Σ, P, T, A, τ, C, G, E> is a set of pages; each page s ∈ S

is a non-hierarchical CPN = <ΣS, PS, TS, AS, τS, CS, GS, ES>;
Σ, P, T, A, τ, C, G, and E represent all corresponding data (or
functions) in S, a set of pages; ΣS, PS, TS, AS, τS, CS, GS, and
ES represent data (or functions) in each page s. The detailed
description of each item is shown below.
§ ΣS is a finite set of token types, called color sets;
§ PS = {pS1, pS2, …, pSN} is a finite set of places with N ≥

0;
§ TS = {tS1, tS2, …, tSM} is a finite set of transitions with M

≥ 0 and PS ∩ TS = ∅;

§ AS ⊆ (PS × TS) ∪ (TS × PS) is the flow relation, a
mapping representing arcs between places and
transitions;

§ τS: TS → {0, 1, 2, … } × {0, 1, 2, …, ∞} is a time
function;

§ CS: PS → ΣS is a color function;
§ GS: TS → Boolean Expression is a guard function;
§ ES: (TS × PS) → Arc Expression is an arc expression

function.
• ST ⊆ T is a set of substitution transitions; T is a set of

transitions in all pages;
• STM: ST → S is a substitution transition/page mapping

function; no page is a subpage of itself;
• IOM: ST ⊆ (Psource × Ptarget) is an input/output mapping

function; Psource is a set of places (especially input or output
places of ST transition) in the source page, Ptarget is a set of
places in the target page (STM(st));

• I ∈ S is a start page.

In the caT model, each token can have a color value and optional
local token variables. Thus, each place can have different types of
tokens (i.e., tokens with different local variables), declared by the
color function, CS(pS), which maps each place to a color set
(type). The time function, τS(tS), maps each transition to a pair of
values termed release time and maximum latency respectively. For
any transition tS ∈TS, we write τS (tS) = (τr, τm) and we require that
τr≤τm.

The guard function, GS(tS), is used for mapping a Boolean
expression to each transition, which specifies an additional
constraint (threshold) which must be fulfilled before the transition
is enabled. The arc expression function, ES(tS×pS), is used for
mapping an assignment expression to each output arc, which
changes current token values when the transition is fired. STM(st)
and IOM(st) are functions for building hierarchical nets. STM(st)
is a page (or net) assignment function for mapping a transition to
a subpage (or subnet). IOM(st) is an input/output assignment
function for mapping input/output places of the current
substitution transition in the current page to the places in the
target page.

A hypertext in the caT structure is a tuple, <HCPN, M0, D, W, B,
Pl, Pd>, in which

• HCPN is a hierarchical colored timed Petri net <S, ST,
STM, IOM, I>;

• M0 : P → “token instances of Σ” is an initial marking (or
initial state) for HCPN;

• D is a set of document contents;
• W is a set of windows;
• B is a set of buttons (or links);
• Pl is a logical projection for the document, Pl = <Dl,Wl,Bl>,

mappings from components of a Petri net to the human-
consumable portions of a hypertext;

• Pd is a display projection for the document, a collection of
mappings that associate the logical buttons and windows of
a hypertext with physical screen representations and
locations.

3.2 Hierarchical Net
Hierarchical structure support is essential for developing large
Petri net applications since it reduces graphical complexity
problems that are common to graph-based modeling tools, and
increases net reusability. In Trellis [23], subnets are handled by
the browser—when a token arrives into a place where a subnet is
declared to be invoked, a browsing tool invokes the subnet using
a content attribute of a place, and causes invocation of a new,
independent, instance of the Petri net engine to handle its
execution. Consequently, there are no closely coupled interactions
between subnets, such as control-flow coupling or data value (i.e.,
token value) passing.

caT incorporates a hierarchical Petri net, based on one of the
features of the high-level Petri net. caT shifts the responsibility for
subnets from the browser to the Petri net engine (i.e., an
information server that receives client requests for its service), in
essence combining the nets into a single unit. In other words, in
caT, a Petri net engine can hold multiple subnets, which are
hierarchically linked; in Trellis, it can hold only one subnet.
Additionally, in caT, a structured authoring tool allows building
and browsing of hierarchical subnets.

In caT’s representation, a transition in a higher-level net may be
mapped to a separate subnet. Additionally, places in the higher-
level are mapped to places in the subnet—generally the input to
the subnet corresponds to places that lead into the mapped
transition and the output from the subnet corresponds to places
that come from the mapped transition. When a token arrives in a
mapped place, it appears simultaneously in both nets.
Consequently, tokens in the higher-level net are conveyed to the
subnet and then back from the subnet to the higher-level net. The
advantage of expanding a transition rather than a place is that this
permits specification of multiple input and output places.

For more detailed explanation, we will consider the simple case of
an online art gallery, which provides a complete set of resources
to its on-campus patrons and a limited one to its off-campus
patrons. The net in the left window of Figure 1(a),
Gallery_tour:#2, specifies a path for traversing three image pages
in sequential order. The subnet in the right of the figure displays a
graphical version of an image to the on-campus user and a text-
only version to the off-campus user, including help information
(irrelevant subnets are iconized). In this case as the window name
suggests the image is that of the lion, and the subnet is associated
with the show_lion transition in the main net. The subnet name,
located on each window’s title bar, copies the source transition’s
name and has an additional unique number after the name. In the
authoring tool, the inactive transition is represented as a black
rectangle bar; fireable transitions are flagged by coloring them
red. The subnet transition is represented as a rectangle bar with
empty fill; it is filled with pink color when there are active
transitions inside of the corresponding subnet.

In the figure, the subnet’s input place is mapped to lion and its
output place is mapped to finish. Note that the token in lion has
been replicated in input. There are three subnet mappings defined
in Figure 1(a). Token passing between subnets allows subnets to
be used as reusable components, like functions or procedures in
high-level programming languages. Additionally, the parent net
can pass presentation-related values to child subnets, such as

contents (i.e., file names) of the image or text places in
show_lion:#3. All three subnet transitions in Gallery_tour:#2
expand to the same structure using the same subnet, but each
subnet transition passes different display information. In the
figure, when the Oncampus transition in show_lion:#3 is enabled
and invoked, the image, text, and template places get tokens.
Then, a browser will display contents of the image and text places
for the on-campus user (the usage of the template node will be
discussed in the later section).

(a) Show lion

(b) Classify user

Figure 1. Gallery tour

3.3 Context-Aware Adaptation
Supporting context-aware hypertext adaptation requires
incorporation of dynamically-changing information from the
external environment. caT accomplishes this using four
mechanisms: (1) the token’s local-variable/value pairs; (2) the
assignment statements associated with output arcs, which modify
these values during traversal; (3) a global user-modeling profile;
and (4) the conditional predicate statements, which are attached to
transitions.

Adaptive hypermedia systems [2] use knowledge represented in a
user model to adapt the information and links being presented to

the given user. In caT, each colored token can have a connection
to a user-modeling profile that contains information associated
with the user’s preferences and with the external world. For
example, profile data might include a user’s ID or information
about a user’s educational background or job category.
Additionally, a process external to the caT system might maintain
a record of the user’s current location—this is communicated to
caT by updating the associated user-model profile value.
Consequently, the user model profile is globally visible and hooks
are provided to allow modification of its values by external
processes; compare this to the local token value/variable pairs,
which are maintained separately for each individual token. When
the user does not have a user profile in the system, predefined
default values stored in the default user profile are used.

The threshold values for transition firing are determined by
evaluating conditional predicates using the values associated with
the current token and the current user’s user-model. The
conditional predicates can be used with Trellis’ timing values to
provide more dynamic control of the reader’s traversal. Time
values are thought of as defining ranges for the availability of an
event. Therefore, when both the conditional and timing predicates
are defined in a transition, they must be satisfied at the same time
before the transition can be active. caT’s conditional predicate is
similar to a Storyspace guard field [14]. However, in addition, caT
can provide different behavior to a user under different contexts
(e.g., different access times, such as morning and evening, spring
and winter, etc.).

As an example, we return to our earlier art gallery example.
Figure 1(b) shows the segment of the specification that first
classifies the current user as being “on campus” or “off campus”
before invoking the Gallery_tour:#2 subnet previously shown in
Figure 1(a). In this example, the gallery’s owners have decided
that full access (on-campus-access) always will be allowed for
patrons on the campus subnet as well as during daytime hours for
people located physically near the campus and for faculty
members, regardless of location. Beginning in the subnet
Start_tour:#1 in the left side window, an assignment expression
statement attached to the output arc of Calc_currentTime invokes
a built-in time function to get the current time of day. Next, the
subnet Classify_user:#6 is invoked. Here, a statement on the
output arc of Calc_accessRight determines whether the user fits
either of the “high access” conditions (faculty or nearness to
campus during daytime). It does this by invoking the fuzzy
inference engine to infer an access right value with input values of
the current user’s location and the previously-acquired time-of-
day. caT supports a function for invoking an external fuzzy logic
engine to handle uncertain user contexts—the engine used is
Matlab’s Fuzzy Logic Toolbox [15]. The current user’s location
information is stored in the user profile; we assume that the
location information is maintained by mechanisms outside of the
caT system: e.g., environmental sensor devices and related
computer tools. The time-of-day value is carried in a local
variable of the token. To assign a classification to the user, the
returned access right value and the user’s network address
information are evaluated by the Off_campus and On_campus
transition predicates. Assignments on the output arcs from the
transitions assign the appropriate classification value to a variable
carried by the token.

3.4 Flexible Presentation
In Trellis, a browser called xtb displays the content associated
with each active place in a separate window. In caT, we developed
additional browsers for multiple presentations of a particular
document’s specification. An image browser displays only the
image content associated with each active place; a text browser
displays the text content; and the authoring tool, which is another
client browser, shows the multiple subnets’ status changes when it
is in a simulation mode, a mode that is especially useful to the
author.

The reader also can browse the caT model using Web browsers.
For the Web presentation, a template file specifies how active
content elements are to be displayed and how links are to be
embedded. The node that contains the template file, called the
composite node, can be viewed as a virtual composite node [10]
constructed from several atomic nodes. The Template file has a
following format (the default value for each option attribute is
underlined):

<Template [[multiple_frame = “yes_3frame” |
 “yes_2frame” | ”no”]
 [linkbullet_show = ”yes” | ”no”]]>
<Transition name = ”[placeName^]transitionName”
 [[activelink_name = ”activeTransitionName”]
 [inactivelink_name = ”inactiveTransitionName”]]>
<Place name = ”placeName”
 [[link_display = “all” | ”none” |
 ”show:’transName1’,…,’transNameN’”]
 [link_location = “below” | “above”]
 [link_sort = “yes” | “no”]
 [link_duplicate = “no” | “yes”]]>

The template file is essentially an HTML page with placeholders
indicating where information is to be embedded when the
corresponding places and transitions are marked and enabled,
respectively. Each template file has a <Template> construct
placed in front of the other constructs, followed by any numbers
of <Transition> and <Place> constructs. Descriptive text can be
placed in between constructs. <Template> specifies global
settings for current page generation. <Transition> specifies an
embedded link, which corresponds to a link in current subnet. We
can also use the <Transition> construct within the place’s content
documents. <Place> specifies a target place and display options
for the output links of the place. The <Place> construct is
substituted with the content of the target place only when the
place is active. The actual usage of each construct will be
illustrated in the next section.

4. DYNAMIC DOCUMENTS
4.1 Elevator Protocol Specification
Petri nets are one of the mechanisms that have been examined for
their usefulness in providing formal specification of software
requirements [9]. In addition, hypertext has been suggested as an
important component of systems supporting the software
engineering process. Thus a requirements specification describing
the actions of a building’s elevator was presented previously in
Trellis [7]. However the specification of the net suffers from
graphical complexity, even though it considers only one elevator,
since it is represented with one-level (i.e., non-hierarchical)

specification with simple (or non-structured) tokens. The one-
level specification of the net requires that related components be
repeated multiply in the description. In caT, the extended features,
especially hierarchical net and structured tokens, allow specifying
the elevator specification in more compact fashion.

In this example, we represent elevators for a three-floor building.
Each elevator has three buttons inside of it to indicate which floor
we wish to travel to and also buttons on the wall on each of the
floors. There are two buttons on floor two that can call the
elevator to head upward or downward. There is one button on
floor one and three to call the elevator for an upward and
downward trip, respectively.

Figure 2: Elevator specification

Figure 2 shows a caT elevator specification, which consists of
three subnets. In the figure, the display is of the caT authoring
tool, which is a modified version of χTrellis’ χTed editor: χTrellis
is the latest version of Trellis and χTed is a single window-based
authoring tool. The Floor3-2 and Floor2-1 transitions in the main
net, MainNet:#0, are associated with the Floor3-2:#2 and Floor2-
1:#1 subnets, respectively. In the Floor3-2:#2 subnet, the
subnet’s Floor3_close place is mapped to Floor3_close in
MainNet:#0, its Floor2_close place to Floor2_close, and its
Floor_Buttons to Floor_Buttons; the Floor2-1:#1 subnet has
similar mappings. Note that Floor_Buttons in each subnet share
the same token through the mapping. In this way, the some tokens
in the main net are shared with its subnets—this is similar to a
global variable. For example, in MainNet:#0, the token in the
Floor_Buttons place stores the status of button pressed, such as
#3Down, #2Up, #2Down, and #1Up, and the token information is
used in the other subnets. In caT, values can be associated with
tokens, and here each different colored token is used for different
purposes. In MainNet:#0, the maroon token in Floor_Buttons
represents the status of buttons on the wall; the black token in
Floor1_close and the green token in Floor3_close represent the
first and second elevators, respectively. The tokens for the
elevator store the status of button pressed, such as open, goto#3,
goto#2, and goto#1. In addition, conditional statements,
associated with transitions, are specified for controlling the token

(elevator tokens) flows; expression statements, associated with
output arcs, are specified for updating the status of button pressed
into token local variables; and timing values cause the simulation
to react dynamically to the rider’s action (i.e., button selection).

As a result, caT’s elevator specification is simplified, compared to
the previously-mentioned Trellis specification, because modular
subnets, separating distinct functions into separate descriptions,
can be specified and interrelated, and because information about
the elevator’s state can be encoded into the structured token.

In caT, each place may contain several different types of contents,
such as text, image, and sound, for use in selective presentations.
For example, the image browser shows the image content of the
active place. Figure 3 shows the application of selective
presentation during simulation of this specification using two
separate browsers: the standard χTrellis browser, xtb, and the
image browser. Figure 3(a) shows an xtb display, which allows
selection of links representing the elevator buttons on the wall on
each of the floors—the buttons are grouped here for convenience.
In the browser, when a color for browsing is specified, only places
with tokens of the given color will generate a new window. Figure
3(a) is the presentation of xtb with the color maroon. Figure 3(b)
shows the status of two elevators: the first elevator (black token)
is idle on the first floor, and the second elevator (green token) is
idle on the third floor. The windows in the “TEXT” row show
text-based presentations of xtb with the corresponding color
token. Selection of links corresponds to pushing buttons inside of
the elevator. Following the links (i.e., the execution of the net)
produces displays that correspond to the states in the operation of
the elevator. Simultaneously, the windows in the “IMAGE” row
show graphic presentations of the image browser—in the image
browser, the available links appear in a separate control window.

(a) Presentation of floor buttons

 Elevator 1
(idle on first floor)

Elevator 2
(idle on third floor)

T
E
X
T

I
M
A
G
E

(b) Presentations of two elevators

Figure 3: Executing the elevator specification

The elevator protocol specification example shows how separate
browsers can provide different views of a document’s state, which
viewed together increase the understanding of the document’s
content. It also illustrates the duality between document
specification and software requirement specification in this
context. The concepts of rapid prototyping and incremental
development are useful both in the requirements specification
context as well as in the dynamic document writing context. After
the specification is defined in caT, the reader can execute (or
simulate) the output model and see his (or her) interested
hypertextual view of simulation process using different browsers.
In addition, the analysis tool, integrated with the authoring tool,
helps to investigate the output specification, identifying
conditions such as dead links (i.e., deadlock in the software
context).

4.2 Personal Document Path
A personal document path application allows a reader to identify a
favorite collection of Web documents and to associate them with
contextual information. On browsing, the personal document path
provides contextualized information to the reader based on his
current environment. The personal path example considers the
following simple scenario of personal space. When the reader first
accesses a personal path initial page during office hours, he will
be asked if he is busy or not. If he is not busy, he will be
presented with a short path containing Web pages such as news,
weather, technical information, local Web server usage report
page, etc., before seeing a research-related search engine page. If
he is busy, he will see the research-related page directly. When the
reader connects during non-office hours, he will see his favorite
general purpose Web search engine after seeing the brief path of
Web pages.

Figure 4(a) shows the model with start_tour:#1 and daily_tour:#2
subnets on top and the other subnets iconized. In the
start_tour:#1 subnet, a token starts from the Begin place, and gets
the current access time. Based on the access time, the token moves
to either the office_hour or not_office_hour transition (these
transitions have Boolean conditional statements and are fired by
the system automatically without user interaction using a time-
based Petri-net feature). When the token passes through the
office_hour transition, a query document (see Figure 4(b)) for the
reader’s feedback is generated and after getting the reader’s input,
the token moves to the StartTraverse place. The reader’s feedback
information is stored in the current token and that value is used
for matching with conditional statements attached to transitions
afterward. When the token passes through the not_office_hour
transition, it directly reaches the StartTraverse place bypassing
the query document generation.

The template file attached to the Template node in the
start_tour:#1 net is as follows:

<Template multiple_frame=”no”>
<Place name=”Question” link_display=”none”>
<Transition name=”busy” activelink_name=”(a) busy day”>
<Transition name=”not_busy”
 activelink_name=”(b) not busy day”>

The first two lines specify that the output page will be frameless,
and output links attached to the Question place will not be

displayed automatically after the content of the Question place.
Instead, <Transition> constructs (the last two constructs) are
used for specifying active link names of the output links. The
output Web document from the current net status is shown in
Figure 4(b).

(a) Nets when accessed during office hours

(b) Web browser-based display

Figure 4: Personal document path: start_tour net

In the daily_tour substitution (or subnet) transition, StartTraverse
and End in start_tour:#1 is mapped to Begin and End in the
daily_tour:#2 subnet, respectively. Therefore, when a token
arrives to StartTraverse, Begin in daily_tour:#2 gets the same
token value. In the daily_tour:#2 subnet, the token moves to the
StartPersonalTour place before it goes to StartSearchEngine if
the reader is “not busy” or if access is during non-office hours;
otherwise it moves directly to the StartSearchEngine place. Thus,
a busy reader will skip the personal_ tour subnet.

Figure 5 shows the subnets and a corresponding output page when
the reader is browsing the third node of the personal_tour:#3

subnet (only related subnets are displayed). Nodes in
personal_tour:#3 have input/output mappings with nodes in
children nets. For example, in the show_node3 transition of
personal_tour:#3, Node3 is mapped to Input and Node3 in the
show_node3:#6 net; Node4 is mapped to Output and Node4;
additionally, the other nodes have mappings for allowing access
from a subnet to the other subnets through a parent net.

(a) Nets when the third node accessed in the path

(b) Web browser-based display

Figure 5: Personal document path: personal_tour net

Figure 5(a) represents subnets and their marking status when the
reader sees the third page with annotation. The template file of the
Template place in the show_node3:#6 subnet is as follows:

<Template multiple_frame=”yes_2frame”>
<Place name=”Annotation” link_display=”none”>
<Place name=”Content” link_display=”none”>

According to this template specification, the output page will have
two frames. Output links from the Annotation and Content places
will not be displayed in the main frame, and the links on the left
control frame will be used instead for path browsing. The system

replicates the transition-associated links in the left control frame.
If normal Web links are followed, changing the information
display from that generated by caT, the links in the left control
frame allow the user to continue to traverse the net specification.
Figure 5(b) shows an output page corresponding to Figure 5(a).
The reader sees the third page with the annotation after clicking
the Show_annotation link, and can hide the annotation by clicking
the Hide_annotation link.

Figure 6 shows a subnet and a corresponding output page when
the reader browses the search_engine:#9 subnet. When the reader
browses during office hours, he will see a research-related search
page; otherwise he will see a general Web search engine page. In
the subnet, the office_hour transition has a condition statement
that is satisfied only when tokens have an access time within an
office hour range. Figure 6(a) represents a subnet and its marking
status when the reader sees a research-related search page. The
template file for the search_engine:#9 net is the same as the one
used in the show_node3:#6 subnet except for the place names
(Research and General). Figure 6(b) shows an output page
corresponding to Figure 6(a). When the reader sees a research
search page, he can move to a general search page or back to a
personal path page. After he moves to the general search page, the
reader can move back to the research search page.

(a) Net when accessed during office hours

(b) Web browser-based display

Figure 6: Personal document path: search_engine net

The personal document path example shows how the caT system
supports browsing of contextualized Web documents. The author
can describe various dynamic documents using the caT system,
and the reader can browse the dynamic documents using Web
browsers.

5. DEBUGGING AND ANALYSIS TOOLS
The authoring tool supports two kinds of tools for net analysis.
The first is an interactive debugging tool and the second is an
analysis tool with which the author can analyze the hierarchical
Petri nets by building a Reachability Tree (RT). Currently, the
following characteristics can be verified by the analysis tool:
terminal state existence (i.e., if a state m exists in which no
transitions are enabled), boundness (i.e., if there is a place that has
unbounded number of tokens), and safeness (i.e., if every place
has only one token). In Petri net analysis, in addition to dead
marks, boundness is important since the tokens may represent
limited system resources. In the context of Trellis, [25] explores
the analysis of basic Petri nets for various browsing
characteristics.

To activate the debugging tool, the user first pushes a recording
button (see the “Rec Tool” buttons in Figure 2). Thereafter, when
a dead link or an overflow place occurs while the user fires
transitions, warning message windows pop up. The system uses
the current analysis option value for boundness, set by the author,
to check overflow places. Additionally, the author can move
backward from the current marking since each transition fire is
saved. After finishing the traversal, the author can replay the
traversal path using a play button, which plays the saved markings
from an initial marking to an end marking with a specified time
interval. The author can stop the playing at any time to check the
net status.

After building Petri nets, the author can construct a RT using the
analysis tool. Before constructing a RT, the author sets analysis
options: maximum token number in a place, maximum analysis
time, maximum marking number, and maximum dead marking
number. In general, the time complexity of Petri nets is very
expensive. Therefore, the author would likely start with moderate
option values, such as 3-minute analysis time rather than
unlimited time. Similarly, if maximum token number is not set, a
RT may have infinite markings especially when we analyze an
unbounded net. Therefore, initially authors are likely to set the
overflow limit number to a small number, such as 5. The options
modify the analysis tool’s behavior in generating a RT. For
example, if the number of tokens in a place reaches the limit,
adding tokens does not increase the token count and is flagged as
an overflow for that place. After building a RT, the author can see
the result, and can return to the markings that cause problems. At
this point the author can check the net status, including token
values. In addition, the author can see marking lists (transition
invocation sequences), and trace the marking history to find
problems.

6. RELATED WORK
Most of the Petri-net-based hypermedia systems support a similar
scheme to that of Trellis. MORENA [1] is targeted at the
description and execution of hypermedia applications allowing
flexibility and adaptability through message passing. Composite
nodes, defining a hierarchy, have their own structure (nodes,

transitions, and arcs) and encapsulate information (such as
synchronization specification). MHPN [26] links Petri net objects
to MHEG (Multimedia and Hypermedia information coding
Expert Group) [12] objects to express the complex logic
requirements of hypermedia applications, such as flexible
(asynchronous and concurrent) browsing and rendering
capabilities, and to provide a formal graphical model for the
structured authoring of hypermedia. The HTSPN [21] model
enables a unified specification of temporal and logical
synchronization within hypermedia systems, using the Dexter
model [10] and Time Stream Petri Nets model (TSPN) [5] as
background. An interpreted version of the HTSPN model (I-
HTSPN [27]) provides means to specify hypermedia document on
top of the hypermedia structure.

In terms of Petri net structure, caT is unique in supporting the
structured token among the Petri-net-based systems. The local-
variable/value pairs associated with caT’s structured token help to
reduce specification complexity; the structured token allows net
status information to be associated with the token, rather than
requiring its encoding into the state of the Petri net. In addition, in
caT, a transition is mapped to a subnet along with input/output
mappings between places to serve as input/output to the subnet.
The advantage of the expansion of a transition over the one of a
place (used in the other systems) is that this permits specification
of multiple input and output places and allows more flexible
interface between main net and subnet.

As an alternative to Petri-net-based models, HMBS (Hypertext
Model Based on Statecharts) [3] uses the structure and execution
semantics of statecharts [11] to specify both the structural
organization and the browsing semantics of a hyperdocument.
HMBS is a model for applications that have a hierarchical
structure, such as books, scientific papers, etc. XHMBS (the
eXtended Hyperdocument Model Based on Statecharts) [18] is an
extension of HMBS with additional mechanisms for describing
the time sequencing and information synchronization
requirements typical of multimedia.

SMIL (Synchronized Multimedia Integration Language) [20] is a
meta-language that allows authors to write interactive multimedia
presentations. It supports effective timing and synchronization,
adaptation to users and systems, and modeling of a flexible
presentation and user interface. SMIL 1.0 became W3C
Recommendation on 15th June 1998, and SMIL 2.0 is expected to
become a W3C Recommendation soon. Currently the RealPlayer
8, GRiNS, and Quicktime 4.1 players support SMIL 1.0.
However, SMIL is a script language and does not support analysis
to the same degree that Petri-net-based systems do.

7. IMPLEMENTATION
In the caT implementation, every caT model is an instance of an
information server—an engine that receives remote procedure call
(RPC) requests for its services. Clients are separate processes that
may have visual user interfaces and communicate with one or
more engines via RPC. The server and most client tools (the
authoring tool and browsers) have been implemented in C, C++,
and Motif, and run in a Linux environment. caT’s Web
presentation required inclusion of a new intermediate message-
handling server to translate between Web-browser-based Java
applets and the information servers. The general architecture of

the caT system is shown in Figure 7. Autofire, a client with no
visual interface, supports automatic firing of transitions that have
timing predicates.

Java
Applet WWW

Browser

HTTP
server

Intermediate
Server
(in Java)

Information
Server (Petri
Net Engine)

SO
C

K
E

T

H
TT

P

Client
(Web
 browser)

Server
(Linux)

JavaScript

Web Server Interface
(Web page display)

Information Server Interface
(Petri net related transactions)

Web
Documents

Store
Documents

Retrieve
Documents

Browsers

R
P

C

Authoring
Tool

Autofire

RPC

RPC

Client
(Linux)

R
P

C

 Figure 7: caT system architecture

8. CONCLUSION
caT was developed to support context-aware documents by
extending the Trellis model. In this paper, we introduced the
extended features of caT that are essential for the authoring,
browsing, and analysis of fairly complex, dynamic documents:
hierarchical nets, the structured authoring tool, flexible
presentation using various browsers, and analysis tools. Then, we
gave examples of using caT to show its usability for specifying
and presenting various dynamic documents: executable formal
specification of software requirements and customized Web
documents. In caT, the author, who is accustomed to the caT
model and its underlying formalism, can specify various dynamic
documents using the structured GUI (Graphical User Interface)
authoring tool, and the reader, who is not necessary to know the
model, can browse the dynamic documents using various
browsers, including Web browsers, to have his selective document
views in different environments. In addition, the analysis tool
allows the author to investigate the document specification before
it is delivered to the reader. In the near future, we plan to
investigate and develop more interesting documents, such as
cooperative documents, in order to evaluate and enhance the
usability of the caT system.

9. REFERENCES
[1] BOTAFOGO, R. and MOSSÉ, D. “The MORENA Model

for Hypermedia Authoring and Browsing”, In Proceedings of
the International Conference on Multimedia Computing and
Systems (Los Alamitos, Ca., USA, May 1995), IEEE
Computer Society Press, pp. 42-49.

[2] BRUSILOVSKY, P. “Methods and techniques of adaptive
hypermedia”, User Modeling and User Adapted Interaction,
6, 2-3 (1996), pp. 87-129.

[3] DE OLIVEIRA, M.C.F., TURINE, M.A.S., and MASIERO,
P.C. “A Statechart-Based Model for Hypermedia
Applications”, ACM Transactions on Information Systems,
19, 1 (Jan. 2001), pp. 28-52.

[4] DEY, A.K. and ABOWD, G.D. “Toward a Better
Understanding of Context and Context-Awareness”, Georgia

Institute of Technology, GVU Technical Report GIT-GVU-
99-22, (June 1999).

[5] DIAZ, M. and SÉNAC, P. “Time stream Petri nets, a model
for multimedia streams synchronization”, In Proceedings of
the First International Conference on Multi-media
Modeling, (1993), pp. 257-273.

[6] FURUTA, R. and STOTTS, P.D. “Trellis: a Formally-
defined Hypertextual Basis for Integrating Task and
Information”, Lawrence Erlbaum Associates, (2001), pp.
341-367.

[7] FURUTA, R. and STOTTS, P.D. “A hypermedia basis for
the specification, documentation, verification, and
prototyping of concurrent protocols”, Technical Report
TAMU-HRL 94-003, Texas A&M University, Hypertext
Research Lab, (June 1994).

[8] FURUTA, R. and STOTTS, P.D. “Interpreted Collaboration
Protocols and their Use in Groupware Prototyping”, In
Proceedings of ACM 1994 Conference on Computer
Supported Cooperative Work, ACM, (Oct. 1994), pp. 121-
132.

[9] GHEZZI, C., JAZAYERI, M., and MANDRIOLI, D.
“Fundamentals of Software Engineering”, Prentice Hall,
(1991).

[10] HALASZ, F. and SCHWARTZ, M. “The Dexter Reference
Model”, In Proceedings of NIST Hypertext Standardization
Workshop, (1990), pp. 95-133.

[11] HAREL, D. “Statecharts: a visual formalism for complex
systems”, Science of Computer Programming, 8, (1987), pp.
231-274.

[12] ISO 13522-1. “Information Technology – Coding of
Multimedia and Hypermedia Information – Part 1: MHEG
Object Representation, Base Notation (ASN. 1)”, (1994).

[13] JENSEN, K. “Coloured Petri Nets: Basic Concepts, Analysis
Methods and Practical Use Volume 1”, EATCS Monographs
on Theoretical Computer Science, Springer-Verlag, (1992).

[14] JOYCE, M. “Storyspace as a hypertext system for writers
and readers of varying ability”, In Proceeding of Hypertext
’91 (San Antonio, USA, Dec. 1991), ACM, pp. 381-387.

[15] The MathWorks, Inc. “Fuzzy Logic Toolbox User’s Guide”,
(1999).

[16] NA, J.-C. and FURUTA, R. “Context-Aware Digital
Documents Described In A High-Level Petri-net-based
Hypermedia System”, Digital Documents and Electronic
Publishing (DDEP00) (Munich, Germany, Sept. 2000).

[17] NA, J.-C. and FURUTA, R. “Context-Aware Hypermedia in
a Dynamically-Changing Environment, Supported by A

High-Level Petri Net”, In Proceedings of Hypertext ’2000
(San Antonio TX, USA, May 2000), pp. 222-223.

[18] PAULO, F.B., TURINE, M.A.S., DE OLIVEIRA, M.C.F.,
and MASIERO, P.C. “XHMBS: A Formal Model to
Support Hypermedia Specification”, In Proceedings of
Hypertext ’98 (Pittsburgh PA, USA, 1998), ACM, pp. 161-
170.

[19] PETERSON, J.L. “Petri Net Theory and the Modeling of
Systems”, Prentice-Hall, Englewood Cliffs, N.J., (1981).

[20] SMIL. “Synchronized Multimedia Integration Language
(SMIL 2.0) Specification”, W3C Proposed Recommendation
(05 June 2001), http://www.w3.org/TR/smil20/.

[21] SÉNAC, P., DE SAQUI-SANNES, P., and WILLRICH, R.
“Hierarchical Time Stream Petri Net: a model for
hypermedia systems”, In Application and Theory of Petri
Nets 1995, Lecture Notes in Computer Science no. 935, G.
DE MICHELIS and M. DIAZ (Eds.), Springer (1995), pp.
451-470.

[22] STOTTS, P.D. and FURUTA, R. “Petri-net-based hypertext:
Document structure with browsing semantics”, ACM
Transactions on Information Systems, 7, 1 (Jan. 1989), pp. 3-
29.

[23] STOTTS, P.D. and FURUTA, R. “Hierarchy, composition,
scripting languages, and translators for structured hypertext”,
In Proceedings of the European Conference on Hypertext
’90 (Nov. 1990), pp. 180-193.

[24] STOTTS, P.D. and FURUTA, R. “Dynamic Adaptation of
Hypertext Structure”, In Proceedings of Hypertext ’91
(1991), pp. 219-231.

[25] STOTTS, P.D., FURUTA, R., and CABARRUS, C.R.
“Hyperdocuments as Automata: Verification of Trace-Based
Browsing Properties by Model Checking”, ACM
Transactions on Information Systems, 16, 1 (1998), pp. 1-30.

[26] WANG, H. K. and WU, J.-L. C. “Interactive Hypermedia
Applications: A Model and Its Implementation”, Software-
Practice and Experience, 25, 9 (September 1995), pp. 1045-
1063.

[27] WILLRICH, R., SÉNAC, P., DIAZ, M., and DE SAQUI-
SANNES, P. “A Formal Framework for the Specification,
Analysis and Generation of Standardized Hypermedia
Documents”, In Proceedings of Multimedia ’96 (1996),
IEEE Press, pp. 399-406.

[28] ZADEH, L.A. “Knowledge representation in fuzzy logic”,
IEEE Trans. Knowledge and Data Engineering, 1, 1 (1989),
pp. 89-100.

