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ABSTRACT
In this paper we discuss application of caT, which extends the Trel-
lis Petri-net-based model of document/hypertext, towards specifi-
cation of Web-browsable documents that respond to their reader’s
characteristics, browsing activities, use environment, and interac-
tions with other readers. The Petri net basis provides both a graph-
ical representation of the nodes and links in the hypertext and also
an automaton-based specification of the browsing behaviors en-
countered by readers examining the hypertext. Providing Web-
browsable responsive hypertexts in the caT context requires con-
sideration of the structures that might be designed in support of the
application and also of the mechanism for translating from caT’s
custom interfaces’ multi-window presentation to a composite that
can be viewed using a standard Web browser.

Categories and Subject Descriptors
H.5.4 [Information Interfaces and Presentation]: Hypertext/Hy-
permedia; I.7.2 [Document and Text Processing]: Document
Preparation—Hypertext/hypermedia

General Terms
Design, Theory

Keywords
caT, Trellis, Petri-net-based hypertext, context-aware hypertext

1. INTRODUCTION
As the reading audience for the World-Wide Web increases in

number and diversity, and as the viewing venues broaden from
wired workstations to wireless networks and miniaturized displays,
so also does the need develop for Web-based document/hypertext
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collections that can be reshaped to respond to their user and use
environments. The information of relevance to a use may vary with
time of day or with location (e.g., direction to see a book on a li-
brary’s shelf may be useful if you are in the library building, but
is not likely to be useful if you are traveling in an airplane). The
presentation of information may differ depending on device and
network characteristics. Additional resources may be available, or
may be unavailable, if other readers are also viewing the same doc-
ument collection.

Specification of such hypertextual collections requires mecha-
nisms that can reflect these characteristics of the external use en-
vironment. Engineering such collections further requires that the
mechanisms lend themselves to specification reuse and that they
provide a “hook” that makes verification and validation of the doc-
ument’s properties feasible. The goal of the work described in this
paper is to enable a principled specification of such responsive hy-
pertexts. The mechanisms used are application of programmable
browsing semantics, as introduced in Trellis and extended in caT,
to be described next.

Beginning in the late 1980’s, Furuta and Stotts’ Trellis proj-
ect [24] investigated hypertext applications specified by Petri nets.
Trellis defines not only a hypertext’s nodes and links, but also the
its browsing semantics—where browsing semantics mean the doc-
ument behaviors (e.g., the sequence of information elements dis-
played and links made available) encountered during a reader’s
browsing session. This is enabled by the dual nature of Petri nets—
both graph structure (representing the nodes and the links) and also
associated automaton semantics. Applying the automaton’s seman-
tics defines the browsing semantics.

Trellis browsing semantics are called “programmable,” since lo-
calized change to the specification can be used to change brows-
ing behavior. In addition, the specific browsing behavior of a hy-
pertext specification depends on its initial state (i.e., which of its
components were designated to be active when browsing began),
so selection of a different initial state also could change the be-
havior (a virtual change to the specification rather than a physical
change). The early Trellis papers demonstrate how these character-
istics can be used, for example, to implement different access cate-
gories, either enabling or denying access to selected portions of the
hypertext depending on the desired access policy. A key point is
that the policy was defined by the hypertext’s specification and not
as attributes defined and interpreted by a system’s implementation.
Consequently, the mechanism allows the flexible specification and



modification of user-related access policies. A subsequent Trellis
paper [11] demonstrates use of the mechanisms to define the roles
and activities of participants in a group meeting, and how such def-
initions can be modified to reflect different meeting protocols.

Trellis specifications incorporate parallelism—multiple content
elements can be active simultaneously, and consequently be dis-
played simultaneously. One application of parallelism is to rep-
resent different information threads, active simultaneously but tra-
versed independently. Another is to represent synchronous traver-
sal of separate content elements—for example separate media com-
ponents of a multimedia presentation. Furthermore, the automaton
semantics provide a hook that allows the application of analysis
techniques developed by others in different domains to questions
of interest in the hypertext context (e.g., can this node be reached,
are there any nodes without outgoing links, etc.).

Trellis browsing semantics provide a mechanism by which a hy-
pertext can respond to events in its environment. As examples,
Trellis hypertexts can be designed to dynamically permit or limit
access to information, to select different information for presenta-
tion on initial and subsequent accesses, and to respond differently
if multiple readers are viewing a section of a hypertext simultane-
ously. We will discuss these points in more detail later in the paper.

Over the past few years, we have extended the Trellis model to
further support hypertext responsiveness. We call the revised model
caT (context-aware Trellis) [19], reflecting its additional support for
incorporating, into the specification, characteristics of the external
environment in which the hypertext is being used (e.g., reader’s
physical location, time of day, user characteristics such as age and
job title, etc.). In addition, the caT extensions permit the hyper-
text state to better encapsulate information about the reader as an
individual, augmenting the less specific support for representing
classes of readers provided in Trellis.

The natural mode for authoring caT hypertexts proceeds from
the structure to the content (i.e., top-down)—in other words, the
link graph structure of the hypertext is developed first, and then
content is associated with the nodes. On the other hand, the natural
mode for authoring World-Wide Web documents seems to be to
create the content within Web pages first and then to embed links
to other Web pages. Although technologies such as XML provide
a framework that tends to regularize the organization within pages,
the overall specification remains bottom-up in character.

Indeed, one might argue that it is the node that is the primary
abstraction within the World-Wide Web while it is the link structure
that is primary in caT. We believe that this characteristic makes
it more convenient to achieve manageable hypertext collections in
caT than in more conventional World-Wide Web specifications.

The remainder of the paper is organized as follows. Section 2
provides an informal overview of the portions of the caT model
necessary to understand the paper’s examples (further details can
be found in other papers; e.g., [19]). We also illustrate how we
present caT hypertexts for viewing on the World-Wide Web. Sec-
tion 3 returns to the topic of responsive hypertexts, illustrating their
characteristics through example. Related work is identified in Sec-
tion 4. Finally, Section 5 provides discussion and conclusions.

2. caT AND TRELLIS
This section contains an informal introduction to caT’s Petri-net-

based hypertext model. A formal description can be found in [19].
A Petri net (see, e.g., [21, 22]) is represented graphically as a bi-

partite directed graph, in which the circular nodes are called places
and the bar nodes are called transitions. A dot in a place represents
a token, and a place containing one or more tokens is said to be
marked. When each place incident on a transition is marked that

P1 P1 P3

P4 P5P2P2

P7

P8

P6 P9

T1 T2

P10 P11

P13

P14

P12

(a) (b) (c)

(d) (e) (f)

Figure 1: Petri net examples.

transition is enabled. An enabled transition may fire by removing
one token from each of its input places and putting one token into
each of its output places.

Figure 1 gives a few examples of Petri nets. Net (a) shows a sim-
ple case of a single place, which is marked, incident on a transition.
When the transition is fired, the resulting specification is that in net
(b). When the transition in net (c) is fired, the token in place P3 is
removed and one token is deposited into each of the places P4 and
P5; hence this can be thought of as a fork. The transition in net (d)
will not become enabled until both places P6 and P7 are marked;
this is a join. On firing, the net will contain a single token in place
P8. Net (e) encodes a choice. Both transitions T1 and T2 are en-
abled, but only one can fire, since firing will consume the token in
place P9. Finally, net (f) presents a slightly more complex exam-
ple. Firing the transition will remove the tokens in places P12 and
P13, depositing tokens into P12 and P14. Thus after firing, place
P12 remains marked.

Petri nets are mapped to hypertexts by associating content with
places and links with transitions. When a place is marked, the cor-
responding content is displayed, and when a transition is enabled,
the corresponding link can be selected. Consequently, nets (a) and
(b) correspond to the display of a sequence of content elements,
net (c) to two content elements following in parallel from a single
element, net (d) to a single content element replacing two prede-
cessors, net (e) to two links, either of which may be selected, and
net (f) to a case in which one content element remains visible while
the second is replaced by a new content element.

As a notational convenience, the actual form of Petri net used
is the Colored Petri Net (CPN) [16]. Tokens in the CPN have a
“color”, and predicates on the arcs specify what color (or colors)
must be present before the transition is enabled as well as the color
that is produced once the transition is fired. In addition, transitions
are augmented with non-negative timing values, �τr�τm�, τr � τm.
τr, the release time, represents the amount of time that must elapse
after the transition is enabled before the system permits its firing.
τm, the maximum latency time, represents the maximum amount of
time that the transition will be permitted to be enabled; the system
fires the transition automatically after time τm passes. Time values
can be thought of as defining a range, a delay and a timeout, for the
availability of an event. �0�∞� is the common case (available for
firing immediately and never fired by the system). Other interesting
values include �0�0�, which fires itself immediately on enabling,
and �∞�∞�, which can never be fired.



The mechanisms described so far in this section were defined
in Trellis, and consequently have been carried forward into caT’s
definition. caT has expanded the definition in a number of ways, to
be described in the remainder of the section.

In the caT model, a token has optional local variables in addition
to its color value. In addition, global variables are found in a user
profile. Conditional predicates, referring to the local and global
variables, are associated with the transitions and must be satisfied
before the transition is permitted to fire. Assignment statements,
associated with the arcs from transition to place, set and modify
the variables’ values. Hooks are included in the system’s imple-
mentation to allow invocation of an external fuzzy logic engine
when necessary in the evaluation of predicates and in computing
new values for variables.

Following Jensen’s lead [16], caT incorporates a form of hierar-
chical Petri net—essentially the specification is built as a collection
of subnets, tied together in a hierarchy. In caT’s representation, a
transition in a higher-level net may be mapped to a separate subnet.
The transition that is expanded to the subnet is called the substi-
tution transition. Additionally, places in the higher-level net are
mapped to places in the subnet—generally, the input to the subnet
corresponds to places that lead into the substitution transition, and
the output from the subnet corresponds to places that come from
the substitution transition. When a token arrives in a mapped place,
it appears simultaneously in both nets. Consequently, tokens in the
higher-level net are first conveyed to the subnet, and then back from
the subnet to the higher-level net. Variables passed from the higher-
level net to the subnet can be used to specify the mapping of content
to place, so the same subnet definition can be used multiple times
if a particular structure is used multiply in a hypertext.

2.1 Specifying composite nodes for dynamic
Web page generation

In caT, a template file specifies how active content elements are
to be displayed and how links are to be embedded when the reader
browses the document on the Web. Content elements associated
with a place have types that are used on display to determine how
(or whether) the element should be rendered. The template file is
simply another content type. It takes control when its associated
place is marked; consequently multiple template files can be ac-
tive at different times during a browsing session. The node that
contains the template file can be viewed as specifying the direc-
tions by which a virtual composite node is constructed from the
active atomic content elements (i.e., those associated with marked
places); only the active atomic content elements specified in the
template file are used for generating the display. Thus, the content
of the composite node changes dynamically based on the current
net state.

The template file is essentially an HTML page with placehold-
ers indicating where information is to be embedded when the cor-
responding places and transitions are marked and enabled, respec-
tively (see [19] for a definition of the template file’s syntax). A tem-
plate file includes a <Template> construct, which is followed by
any number of <Transition> and <Place> constructs in any
order. Additional text can be included as well; this text is copied
verbatim into the output page.

Attributes associated with the <Template> construct specify
global settings that control whether links are shown in a separate
frame, the appearance of the links, if shown, and whether debug-
ging controls are also included. The <Transition> construct
maps active transitions in the net to corresponding anchors in the
Web page. This construct’s attributes also can be used to spec-
ify what the anchor’s text will be when the associated transition

Figure 2: χTed display showing a hierarchical net specification.

<body bgcolor=#ffffff>
<h1>
<Template multiple_frame="no">
<Place name="joke" link_display="none">
<br>
<Transition name="answer"
activelink_name="Click here for the answer"
inactivelink_name="">
<Place name="answer">
</h1>
</body>

Figure 3: Template file associated with the subnet.

is active or inactive; if unspecified, the transition’s name is used
as the anchor text. Finally, the <Place> construct specifies a
target place and display options for the output links of the place.
The <Place> construct is replaced by the content of the target
place when the place is active and suppressed otherwise. Attributes
specify whether anchors should be generated automatically (i.e., if
they are not specified within the content using <Transition>
constructs), where they should be placed relative to the content,
whether they should be sorted by anchor text, and whether they
should appear multiple times if more than one arc leads to the tran-
sition.

We present a brief example to illustrate some of these mecha-
nisms. Figure 2 shows the caT version of the χTrellis Petri net
editor χTed with two subnets visible. The net shown in the window
labeled MainNet:#0 is the top-level definition, and invokes five
instances of a subnet. One of these instances is shown in the other
window and the other four are minimized. In the example, top-
level place “joke1” is mapped to subnet place “entry” and “joke2”
to subnet place “exit”. Since “joke1” is marked, so also is “en-
try”. The subsequent subnet instance maps “joke2” to “entry” and
“joke3” to “exit”, and so on. Each mapping in the main net also
assigns different values to attributes “jokefile” and “answerfile”.

Within the subnet, the value of attribute “jokefile” is specified
to point to the content of place “joke” and the value of “answer-



Figure 4: Two successive snapshots of Web browser output.

file” to point to the content of place “answer”. The transition ad-
jacent to the initially-marked “entry” has timing values of �0�0�.
Consequently the token in “entry” is redistributed immediately to
places “template”, “joke” and “null”. The contents for “template”
are identified to the system as a template file; the complete template
specification is shown in Figure 3. Place “null” is used to modify
the behavior of the specification and does not have displayable con-
tent associated with it. Note that the author of the template file has
decided to specify the appearance of the link associated with tran-
sition “answer”, but has used the defaults for the transitions “next”
and “again”, which are adjacent to place “answer”. Figure 4, left,
shows the Web browser display when the net is in this state.

When the “answer” link is selected, the tokens from “joke” and
“null” are removed, and tokens placed into “answer” and back into
“joke”. Consequently the joke’s text remains visible, but the “an-
swer” link is no longer selectable, as shown in Figure 4, right. At
this point, the reader can decide to re-visit the current joke (restor-
ing the initial display at the left of the figure) or can see the next
joke in the sequence. If the reader selects the “next” link, a token is
deposited into place “exit” and the other tokens removed from the
subnet. Because “exit” is mapped in the top-level net, a token also
appears in place “joke2” at this point, causing the invocation of the
next instance of the subnet.

Note that each instance in this example uses the same definition
of structure while mapping distinct content elements. Note fur-
ther that in a separate application, it could be the content that is
reused, with an element appearing in multiple structural contexts.
This strong separation of structure and content permits the separate
adjustment of either.

3. CAUSATIVE FACTORS AND APPLICA-
TION EXAMPLES

Factors that make it desirable to change the reading environment
of a hypertext dynamically include those involved with a reader’s
characteristics (e.g., the reader’s expertise, experience, job role,
etc.) or actions (e.g., what portions of the hypertext have already
been visited and other characteristics of the browsing history), other
readers’ characteristics or actions (e.g., interaction with other read-
ers, presence or absence of classes of readers such as desk assis-
tants, etc.), features of the hardware/networking environment (e.g.,
screen size and resolution, network speed and cost), features of the
real-world environment (e.g., time, location, speed, proximity to
other objects, etc.), and policy decisions made by the hypertext’s
managers (e.g., access limitations, etc.). See [10] for more detail.
A response to changes in these factors is a modification of the hy-
pertext’s browsing behavior—a perceived change to the hypertext’s
browsing semantics.

Figure 5: The top-level net.

In reaction to these factors, the browsing behavior of a respon-
sive hypertext may be modified. Modifications may be actual—
a change to a value binding or to the structure—or they may be
virtual—modifications to the apparent behavior of the hypertext,
perhaps as the result of evaluation of conditional expressions that
include settable attribute values or perhaps through substitution of
a parallel segment of the specification. Modifications may involve
the hypertext’s content, its link structure, and/or the hypertext’s pre-
sentation.

Perceived changes to the content may achieve several effects.
Most directly, variants of the same content may be presented—for
example, information in different languages, versions specialized
for different experience backgrounds, or versions prepared for pre-
sentation on different media. In most cases of this sort the selection,
once made, will not change during the browsing session. More dy-
namically, content may be modified during the browsing session.
For example, the information presented on the first version might
be more detailed than the version encountered subsequently (e.g., a
tutorial description that is replaced by a summary). Alternately, the
information can become more detailed on subsequent visits or ad-
ditional information might be disclosed. Perhaps in such cases the
substitution reflects the time between visits—e.g., the original ver-
sion is shown when greater amounts of time elapse between visits.
An additional possibility may be that the content varies in less obvi-
ously predictable fashion between visits—for example, a different
quote might be displayed on each visit to a portion of a hypertext.

Perceived link structural modifications may be modest in scale,
achieving results similar to content changes, or may result in large-
scale change to the hypertext’s browsing behavior. A straightfor-
ward appearing modification is the addition or removal of portions
of the structure (i.e., enabling or disabling links). For example, ad-
ditional help links could be added on repeated visits to a portion of
the hypertext. In administering a quiz, portions of the quiz could
become unavailable after a time period elapses or after the student
moves on to a subsequent section. Substitution of “isomorphic”
structures (e.g., structures covering essentially the same content)
may be an appropriate response to meet the goals of readers with
different interests, different training, or different job functions. As
with content modifications, seemingly arbitrary modifications of
structure may be appropriate for some applications with seemingly
different organizations encountered on subsequent visits.



Figure 6: Chapter one’s subnet.

Modification of the presentation of information displayed to a
reader during browsing presents a third category of potential re-
sponses to the causative factors. Content may be rendered for dif-
ferent devices (e.g., shown as printed text on displays or converted
into synthesized speech for audio devices) and surface features of
the formatting may be modified (e.g., fonts used in display). If
the displayed node is actually represented in the specification as a
composite without temporal ordering dependencies among the el-
ements (e.g., a picture and its caption; a procedure call signature
and the free-text description of its function). In this case the rel-
ative ordering of the different information elements can be altered
if desired. (This may be perceived by the reader to be a content
change, not a presentational change.) Link appearance may also
be modified—for example, links may be shown associated with an-
chors in the text, or as separate menu items either within the content
display or separated from the display. Choice among certain link
behaviors may also be considered to be presentational in nature.
For example, the three link types defined in Guide1 [3] represent
distinct presentational responses to link following.

3.1 Example one: quiz application
Consider a multiple-choice quiz application intended for invo-

cation by other nets, such as those presenting a tutorial. In the
example, we assume that the tutorial covers five topics and that for
each topic five questions are to be asked. Figure 5 shows the top-
level net; place “Question” is the entry point. Reader access to a
set of questions is permitted only if the corresponding topic has
been read. This is kept track of in the value of a variable carried by
the token and is enforced through conditional statements associated
with the top row of transitions.

Assume that the reader has chosen to answer questions for chap-
ter 1. Figure 6 shows the subnet corresponding to the chapter’s
questions (since all chapters have the same number of questions,
the same subnet specification can be used for all). Here the reader
can select any of the previously unasked questions to answer. The

1The three types are replacement (essentially Nelson’s Stretchtext),
note/glossary (a pop-up display), and reference (the conventional
behavior in which the destination replaces the source).

Figure 7: Question one in chapter one.

Figure 8: Asking the question.

structure is similar to that of Figure 5, using a token variable to suc-
cessively restrict access. While questions remain to be answered,
the reader is presented with the “next question” link. When all
questions have been answered, the “finish” link is fired automati-
cally to take the reader back to the top-level net.

Figure 7 shows the subnet associated with a question. Again,
there are four possible answers. Figure 8 shows the display when
the question is first posed; this is specified by the template associ-
ated with place “Template0”. In the design, the correct answer is
found as the fourth choice—this does not necessarily correspond
to the fourth link because the links are alphabetized by the sys-
tem since the link sort attribute’s value is specified to be “yes” in
the associated <Place> construct. The labels displayed for the
links are set by reference to a variable, hence the specification of
$choice1 through $choice4 on the transitions in the net. The link
labeled “auto choice” is invoked automatically if the reader does
not respond within one minute.

By chance in the example, the fourth link does correspond to
this correct choice, and the reader has selected it, resulting in the
Web display of Figure 9. If the reader had selected an incorrect an-
swer, a display like Figure 10 would be generated instead. Note that
these displays are created by selecting an appropriate template—
the question and the explanation of the four choices (represented by
the four places on the right hand side of Figure 7) remain marked
while the subnet is active. The different templates specify whether



Figure 9: Correct answer.

the answer is correct or incorrect and present the explanations in an
appropriate order and with necessary connective text.

3.2 Example two: access policies
A characteristic of caT’s programmable browsing semantics is

that policy decisions concerning issues such as access can be en-
coded into the net’s specification rather than into the system’s im-
plementation. Figure 11 provides a brief illustration of this. The
figure sketches the specification for four different access policies
as an illustration of the generality that can be achieved—certainly
others are realizable as well. Example (a) is straightforward—no
limits are placed on access. In example (b), no access is permitted.
Example (c) allows exactly two visits and blocks off access after
that point. Finally, example (d) prohibits access on the first three
visits but permits free access after that point. This is because the
transition with the �0�0� timing will fire immediately when it is en-
abled, effectively preventing the firing of the transition leading to
the “Resource” place.

3.3 Example three: dynamically-interacting
readers

A third application illustrates the interaction of multiple read-
ers. We have reimplemented and extended the Trellis meeting pro-
tocol described earlier in [11]. The protocol defined the interac-
tions of a group of meeting participants—permitting only one to
speak at a time but allowing a moderator to preempt a participant
immediately, representing arrival and departure of meeting partici-
pants, and allowing the moderator to exchange roles with a partic-
ipant. The implementation demonstrated how to separate the roles
of readers in the different classes (i.e., the moderator and the meet-
ing participants in this example); allowing multiple listeners simul-
taneous access to the net, while restricting speaking and moderat-
ing roles to a single individual. The new implementation illustrates

Figure 10: Incorrect answer!
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Figure 11: Access protocol specification examples.

caT’s abilities to provide different Web-based interfaces for each
class reflecting the operations available to the reader and to refine
further the interactions that occur between the meeting participants.
Extensions include the addition of a voting function to the protocol
and the ability to reflect the results of votes in the state of the net.
In addition, “aging” is added to the protocol—for example, a par-
ticipant who has just finished speaking can be given lower priority
for gaining the floor again immediately, to allow other participants
a better opportunity to obtain permission to speak.

3.4 Notes and comments
The examples have sketched ways in which caT hypertexts can

be specified to respond to user, environmental, and use factors. We
conclude the section by touching on some additional points.

caT has inherited Trellis’ client/server implementation architec-
ture. In this architecture, the clients make the determination of
how to best render content elements for presentation to the reader.
For example, the χTed Petri net editor presents a net view, while
the standard χTrellis browser xtb presents a multi-window textual
view. Specialized clients may decide to present only a single media
type, for example graphics or audio.



Multiple clients may be active simultaneously, communicating
with a server. If several clients are associated with the same display,
this means that each will present its interpretation of the content to
the reader simultaneously—perhaps providing a debugging view in
addition to the browsing view, or perhaps providing simultaneous
textual and synthesized speech renderings of the content. A reader
who does not like the Web-based views presented in this paper can
continue to use xtb, or indeed can use both interfaces at the same
time.

The implementation architecture provides a natural mechanism
by which separate readers can interact through a hypertext—each
reader has an independent client that communicates with a com-
mon server. It also provides a means by which multiple displays/
computers can be used by an individual reader—separate clients for
each of the displays/computers. Since clients determine the content
rendering, specializing that rendering for the specific output device
characteristics (e.g., large-sized and small-sized displays) is a nat-
ural extension. One of our current research projects is to specify
a mechanism by which clients can negotiate, when requested by
the reader, to avoid redundant rendering of content (e.g., multiple
essentially identical views of the same content element). In the fu-
ture, we expect that such negotiations will continue to increase in
complexity to provide more effective information displays; see, for
example, issues such as those identified in [14].

As a second comment, we note that the syntax of the template file
continues to evolve. For example, it is easy to see how to specify
Guide’s [3] replacement and reference link semantics (mentioned
earlier) using a combination of net structure and template file se-
mantics. However, with the current system, Guide’s note/glossary
link cannot be specified. Both note/glossary and replacement links
would share the same net state in caT, as both source and destination
are visible simultaneously. Within the caT context, the distinction
between the two link types is presentational, not structural. Con-
sequently, it will be up to the template file specification to allow
the hypertext’s author to distinguish between the two link types’
presentations; this is an extension that we are discussing currently.

Finally we close the section by emphasizing, once again, that
the changes to the net’s browsing semantics that we have described
may be implemented either as an actual modification to the spec-
ification or as virtual modifications. In the caT context, a virtual
modification is achieved through the mechanisms of net structures
implementing access control—access to sections of the net specifi-
cation is permitted or denied based on the state of the net (i.e., the
distribution of tokens in the net).

4. RELATED WORK
In the years following Trellis’ introduction, several other teams

also adopted automaton-based hypertext models. MORENA [2]
and MHPN [27] provide finer-grained synchronization than Trellis
in order to describe multimedia documents. HMBS [26, 7] and
XHMBS [20] use the Statechart formalism as their basis.

Recently, Muchaluat-Saade and Soares [18] have presented a
graphical notation for describing hypertexts that is similar in ap-
pearance to Petri nets but without the automaton formalism. A
component of their notation that may be an interesting extension
to caT’s is the inclusion of graphical attachment points, corre-
sponding to anchors in the content. Also of relevance are Ellis, et
al.’s long-standing investigations into representing workflows with
automaton-based models [8]. A topic of particular applicability to
caT in the context of the current paper is their work in identifying
feasible transformations to such specifications [25].

Storyspace Guard fields [17] are one example of an early mech-
anism by which hypertext structures could respond to events that

occurred during hypertext browsing. The more recent SMIL stan-
dard [23] has provided a mechanism that permits flexible specifica-
tion of multimedia presentations that can be defined to respond to
a user’s characteristics.

The design of the template file, which directs the mapping from
caT net space to Web display, is straightforward and shares con-
cepts with earlier research efforts in hypertext and similar fields.
Within the Hypertext subject area, we note the relationship to ear-
lier work involving composites (e.g., [15]). Also of relevance are
investigations of information reuse (e.g., [12]) which contain the
concept of presentational transformation of hypertext content. The
sources for this concept’s incorporation into caT include the investi-
gations carried out in the context of document preparation systems
concerning the flexible presentation of structured document speci-
fications [4, 13].

Our caT-related work can be viewed as an alternate view of issues
raised in the context of Adaptive Hypermedia; De Bra, Houben,
et al.’s nicely-developed framework [6, 5] describes hypertextual
adaptations incorporated into such systems, which are similar to
those identified in this paper. In addition similar issues have been
encountered in other contexts; see for example the earlier inves-
tigations into Active Documents (e.g., [1] and [9]). We believe
that caT’s contribution is complementary to those of these other
projects. The perspective of programmable browsing semantics
presents the hypertext as a dynamic entity, and one in which it is
possible to include considerations such as the coordinated activities
of multiple simultaneous readers as well as the effects of indepen-
dent external events.

5. COMMENTS AND CONCLUSIONS
Our goal in writing this paper was to illustrate the mechanisms

in caT that enable the specification of hypertexts that respond to
the wide range of factors that occur during their use. In addition
to characteristics such as a reader’s role (e.g., student, teacher, ad-
ministrator, or parent) and the reader’s browsing history, we also
wish to include factors that may not have been incorporated as di-
rectly before, such as measures of the external environment and the
attributes/actions of other simultaneous readers.

caT’s incorporation of the Petri-net-based model introduced in
Trellis seems to us to focus attention on the structural character-
istics of the hypertext and on the temporal characteristics of its
browsing. This tends to encourage the development of nets through
definition and reuse of regularly-structured specification fragments
rather than through the more organic and ad-hoc structure that re-
sults when the hypertext definition focuses primarily on its content.

The hierarchical network extensions supplied by caT makes it re-
alistic to specify hypertexts that are both larger than those in Trel-
lis but also more consistently structured. Increasing size is possi-
ble because the specification can be broken down into manageable
pieces through the use of subnets. The reuse of those same subnets
provides a consistency of specification that was hard to maintain
with a single level representation. In general, the incorporation of
a hierarchical net structure allows centralization of specifications
implementing policies, while at the same time helping to localize
the modifications needed if the policies are changed.

We have not described in this paper all of caT’s features. In par-
ticular, we have only touched briefly on its inclusion of net analysis
and debugging tools. caT incorporates standard Petri net analysis
techniques that can be used to verify properties of the net through
inspections of the states that can be generated. In addition to the
analysis of the net’s states, caT examines net properties related to
its variables through simulation. In addition caT allows capture
and replay of browsing sessions, allowing the hypertext’s author to



trace through the paths that readers have taken. Such tools provide
additional opportunities for hypertext authors to verify the integrity
of their hypertext specifications.

Finally, it is interesting to note the wide ranging characteristics
of the participants that can take part simultaneously in a browsing
session. The participants can be either human or computational
in form; interactions may be human–human, human–computer, or
perhaps even computer–computer. The wide range of participants
and their interests, as well as the breadth of possible environmen-
tal factors, may lead to hypertext responses that may not be those
preferred by a specific individual. For example, an administrative
decision (such as that given in the examples) that limits access to
information when outside of normal working hours may not be ap-
preciated by a weekend visitor. caT’s mechanisms provide us with
the flexibility to decide whether one participant or another should
be provided with higher priority in their actions. It will be interest-
ing to continue this exploration of hypertext browsing in response
to a wide variety of participants’ requests rather than hypertext as
responsive primarily to a single individual.
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