

CONTEXT-AWARE HYPERMEDIA IN A DYNAMICALLY CHANGING

ENVIRONMENT, SUPPORTED BY A HIGH-LEVEL PETRI NET

A Dissertation

by

JIN-CHEON NA

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2001

Major Subject: Computer Science

CONTEXT-AWARE HYPERMEDIA IN A DYNAMICALLY CHANGING

ENVIRONMENT, SUPPORTED BY A HIGH-LEVEL PETRI NET

A Dissertation

by

JIN-CHEON NA

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Approved as to style and content by:

 Richard Furuta
 (Chair of Committee)

______________________________ ______________________________
 John J. Leggett Frank M. Shipman III
 (Member) (Member)

______________________________ ______________________________
 John D. Oswald Jennifer Welch
 (Member) (Head of Department)

December 2001

Major Subject: Computer Science

iii

ABSTRACT

Context-Aware Hypermedia in a Dynamically Changing Environment, Supported by a

High-Level Petri Net. (December 2001)

Jin-Cheon Na, B.S., Hanyang University;

M.S., Oklahoma State University

Chair of Advisory Committee: Dr. Richard Furuta

 In modern hypertext systems, with the increased availability of personal computers

with environmental sensors (e.g., GPS sensors), adaptation support to meet the needs of

the users in dynamically-changing environments will become essential. Hypertext

systems supporting computing devices with environmental sensors will therefore benefit

if they can also become context-aware. In this research, we introduce caT (for Context-

Aware Trellis), a context-aware hypertext model with associated tools, which supports

flexible user (or agent) adaptation to changes in environmental information, such as

time, location, bandwidth/cost, etc. The context-aware hypertext model incorporates

high-level Petri nets, context-awareness, user-modeling, and fuzzy knowledge handling

features into the previously-described Trellis hypertext model. Major features of the

high-level Petri net that are explored are its hierarchical net, structured tokens, and

flexible net description. Fuzzy knowledge (context) handling is supported by the

integration of a fuzzy logic tool into the Petri net. In caT, the author who is accustomed

to the caT model and its underlying formalism can specify various dynamic documents

using the structured GUI (Graphical User Interface) authoring tool. Afterward, the

iv

reader, who does not necessarily need to know the model, can browse the dynamic

documents using various browsers, including Web browsers. The browsing behavior of

documents specified in the caT model can reflect the reader’s contextual (such as

location and time) and preference information. To show the usability of caT, we

introduce several of its prototype applications that represent various documents such as

customized Web documents, formal specifications of software requirements, and

cooperative documents. Since caT is based on a formal model, the behavioral

characteristics of developed caT models can be analyzed. An analysis tool, which is

integrated into the authoring tool, supports the verification of application models. The

successful result of the user evaluation showed the potential usability of the model as a

context-aware hypertext system. With the increased availability of computing devices

equipped with environmental sensors, further research work will enhance the usability of

the caT system.

v

To my parents and wife and daughter for their love, patience, and encouragement.

vi

ACKNOWLEDGMENTS

 I could not have accomplished my doctoral degree without the support of many great

scholars at Texas A&M University. First of all, I would like to express my deep

gratitude to my committee chair, Dr. Richard Furuta. His invaluable advice and patience

allowed me to undergo and finish the challenging process of my doctoral degree

program. I would also like to express my appreciation to my other committee members,

Dr. John J. Leggett, Dr. Frank M. Shipman III, Dr. John D. Oswald, and Dr. David L.

Busbee, for their valuable comments and time. I also would like to thank the graduate

students, who work with the Center for the Study of Digital Libraries (CSDL), for their

participation in the experiments of evaluating the prototype software system that

provides a major part of my dissertation material. Finally, I would like to thank all other

graduate students in CSDL, whose advice and friendship gave me a lot of

encouragement for my study at Texas A&M University.

vii

TABLE OF CONTENTS

 Page

CHAPTER I INTRODUCTION ...1

 1.1 Context-awareness in the computing world ..1

 1.2 Context-aware information delivery in hypertext5

 1.3 Formal model-based hypermedia systems ..7

 1.4 The approach and corpus of our choice ..8

 1.4.1 A context-aware hypertext model ..9

 1.4.2 Fuzzy knowledge handling...10

 1.4.3 Flexible information presentation ..11

 1.4.4 Structured authoring...12

 1.4.5 Verification and validation...14

 1.4.6 Improving the Trellis implementation....................................14

 1.5 Contributions of this research ...15

CHAPTER II REVIEW OF PREVIOUS WORK...18

 2.1 High-level Petri net ...18

 2.2 Fuzzy Petri net...21

 2.3 Formal model-based hypermedia systems ..23

 2.3.1 Petri-net-based systems ..23

 2.3.1.1 Trellis ...23

 2.3.1.2 Other Petri-net-based systems..28

 2.3.2 Statechart-based systems..31

viii

 Page

 2.4 Adaptive hypermedia systems...33

 2.5 Multimedia language for Web...36

CHAPTER III SYSTEM OVERVIEW AND DESIGN ...39

 3.1 System overview of the caT system..39

 3.2 System design..40

 3.2.1 Formal definition of the caT model..40

 3.2.2 Context-aware hypertext model ...43

 3.2.2.1 Structured tokens..44

 3.2.2.2 User modeling ..47

 3.2.2.3 Link adaptation...48

 3.2.2.4 Hierarchical nets...53

 3.2.3 Fuzzy knowledge handling...62

 3.2.4 Flexible information presentation ..66

 3.2.5 Analysis of extended Petri nets ..74

CHAPTER IV PROTOTYPE IMPLEMENTATION ..81

 4.1 Implementation details ..81

 4.1.1 Information server ..83

 4.1.2 Authoring tool ..87

 4.1.3 Flexible information presentation tools..................................89

 4.1.4 Analysis tool...90

 4.1.5 Porting to Linux ...95

ix

 Page

 4.2 Interactions with the authoring tool ..96

 4.3 Interactions with the analysis tool ...107

CHAPTER V EXAMPLE APPLICATIONS ...112

 5.1 Context-aware applications ...113

 5.2 Software requirement specifications ...123

 5.3 CSCW specification ..129

CHAPTER VI EVALUATION AND DISCUSSION ...139

 6.1 Evaluation of the caT system ..139

 6.1.1 Objectives...139

 6.1.2 Subjects ..140

 6.1.3 Methods..141

 6.1.4 Results analysis and discussion..143

 6.1.5 Evaluation of specification mechanism................................148

CHAPTER VII DISCUSSION AND CONCLUSION ...150

 7.1 Discussion ...150

 7.1.1 Different client interpretations of content specification.......150

 7.1.2 The analysis tool...154

 7.1.3 Miscellaneous issues ..157

 7.2 Conclusions ...160

REFERENCES...164

APPENDIX A ..177

x

 Page

APPENDIX B ..179

APPENDIX C ..181

APPENDIX D ..183

VITA ..186

xi

LIST OF FIGURES

 Page

Figure 1: A simple Petri net ...20

Figure 2: A colored Petri net example ...24

Figure 3: caT Petri nets: colored tokens with local variable/value pairs45

Figure 4: caT Petri nets: flow control specification of colored tokens47

Figure 5: Subnet specification..55

Figure 6: Classify user in gallery tour ..57

Figure 7: Show lion in gallery tour ..58

Figure 8: A membership function for day..64

Figure 9: Matlab’s Rule Viewer for the sample rulebase...65

Figure 10: Show lion for the on-campus user ..75

Figure 11: Show lion for the on-campus user with help information76

Figure 12: caT system architecture ..82

Figure 13: Marking structure..93

Figure 14: χTed main window ...98

Figure 15: Transition attribute dialog...103

Figure 16: Token attribute dialog...104

Figure 17: Subnet input/output map dialog..106

Figure 18: Analysis options..108

Figure 19: Net properties..109

Figure 20: Mark lists ..111

xii

 Page

Figure 21: start_tour net: nets when accessed during office hours116

Figure 22: start_tour net: Web browser-based display...117

Figure 23: personal_tour net: nets when show_node3 is accessed118

Figure 24: personal_tour net: Web browser-based display..120

Figure 25: search_engine net: net when accessed during office hours121

Figure 26: search_engine net: Web browser-based display ...122

Figure 27: Elevator specification ...125

Figure 28: Executing the elevator specification ..128

Figure 29: Conference protocol: MainNet net ..132

Figure 30: Conference protocol: getFloor net ...133

Figure 31: vote_subnet net: listening state ...134

Figure 32: vote_subnet net: voting state ..135

Figure 33: Output page in the listening state..137

Figure 34: Output page in the voting state ...138

xiii

LIST OF TABLES

 Page

Table 1: Syntax of the token expression ..46

Table 2: Syntax of the conditional statement ...49

Table 3: Syntax of the assignment statement ...52

Table 4: Place attributes ...85

Table 5: Arc attributes..85

Table 6: Transition attributes ...86

Table 7: Net attributes ..86

Table 8: Net description file...88

Table 9: Popup menu of χTed canvas window ..97

Table 10: Menus of χTed main window ..99

Table 11: Icons for editing ...100

Table 12: Icons for simulation and recording ..101

Table 13: Profiles of subjects ...141

Table 14: Evaluation data...143

1

CHAPTER I

INTRODUCTION

1.1 Context-awareness in the computing world

When humans converse with humans, they are able to use implicit situational

information, or context, to enhance the conversational bandwidth. Unfortunately, this

ability to convey ideas does not transfer well to humans interacting with computers. By

providing computer applications with access to the human’s context, we increase the

richness of communication in human-computer interaction and make it possible to

produce more useful computational services. Dey and Abowd [1999a] define context in

the following way: “Context is any information that can be used to characterize the

situation of an entity. An entity is a person, place, or object that is considered relevant to

the interaction between a user and an application, including the user and applications

themselves.”

 Due to the increased availability of personal computers with attached sensors that

capture data about their physical environment, a new range of applications called

context-aware applications [Schilit et al. 1994] became attractive. These applications,

using contextual information, provide an opportunity to customize the provision of

information to reflect the user’s current needs. Context-aware applications typically

—————————
The journal model is ACM Transactions on Information Systems.

2

focus on a mobile user who is carrying a mobile system such as a Personal Data

Assistant (PDA) that incorporates environmental sensors such as GPS receivers,

electronic compasses, etc. These environmental sensors could identify location, time,

identification, and companions or objects nearby, and they could detect if the user is

stationary or in motion. Additionally, super sensors that correlate information from

lower-level sensors in order to deduce some higher-level state could identify more

complex situation data; for example, whether the occupant of an office is having a

meeting. In the near future most mobile systems are expected to be context-aware.

 In context-aware applications, location, identity, time, and activity are the primary

context types for characterizing the situation of a particular entity [Dey and Abowd

1999a]. This context information not only answers the questions of who, what, when,

and where, but also provides other sources of contextual information indirectly. For

example, knowing an entity’s location, we can determine what other objects or people

are near the entity and what activity is occurring near the entity.

 Over the last decade, some researchers have built context-aware applications that

take advantage of environmental information to provide better interaction with the user.

Some examples of context-aware applications are as follows:

• Office awareness systems [Hodes and Katz 1999; Want et al. 1992; Want et al.

1995] sense users’ locations, help people find each other, and keep up their

location awareness or forward phone calls to the correct person. Teleporting

3

[Bennett et al. 1994] automatically brings up users’ desktop on nearby computers

as users move around.

• Mobile tour guides [Abowd et al. 1997] familiarize a visitor with a new area.

• Context-based retrieval applications [Rhodes 1997] collect and save context

information and support subsequent information retrieval based on context

information. Conference Assistant [Dey et al. 1999b], which supports conference

attendees and presenters, assists users in taking notes on presentations and aids in

the retrieval of conference information after the conference concludes.

• Brown [Brown 1998a; Brown 1998b; Brown et al. 1997] provides a framework

for discrete context-aware applications and services based on a simple Post-It

Note metaphor, where discrete pieces of information (called stick-e notes) are

attached to individual contexts. The stick-e notes are then triggered when the user

enters those contexts. In addition, Brown [Brown 1998b] suggests the following

applications: equipment maintenance software shows field engineers the

equipment information they need to be aware of; farm management software

shows farmers the information attached to tagged farm animals or tagged

equipment when the object of interest is around; real timetables for public

transport guide travelers to the nearest stop so that they arrive shortly before the

public transport vehicle does; office equipment control software shows the user

personally tailored control panels on a PDA as he (or she) passes office

4

equipment, such as a photocopier, and the panels allow the user to control the

equipment.

• In her book Plans and Situated Actions [1987], Suchman argues that plans are

resources for situated action, but do not in any strong sense determine its course.

Actions are always situated in particular social and physical circumstances; the

situation is crucial to action interpretation. Suchman introduces a concept of a

user model as a representation of the user and his (her) situation, and intelligent

tutoring systems as applications using user modeling.

 Most of the context-aware systems require detecting, interpreting, and responding to

context. In other words, the context-aware systems have a responsibility to detect and

interpret context information, in addition to providing customized information to reflect

the user’s current needs. However, Dey and Abowd [1999a] propose a narrower view of

context-aware systems: “a system is context-aware if it uses context to provide relevant

information and/or services to the user, where relevancy depends on the user’s task”.

They argue that context-aware systems are required only to respond to context, allowing

the detection and interpretation to be performed by other computing entities. When the

burden of sensing (and distributing) context information moves to other special

computing entities, it will be easier to build context-aware applications.

 As one of these efforts, Salber et al. [1999] introduce the context toolkit. This

supports the concept of context widgets, which mediate between the environment and

the application in the same way graphical widgets mediate between the user and the

5

application. Therefore, the approach to context-aware application development is to

collect contextual information through automated means, make it easily available to a

computer’s run-time environment, and let the application designer decide what

information is relevant and how to deal with it. The user may not be required explicitly

to express all information relevant to a given situation. When context-aware building

tools like the context toolkit are commonly available, we expect to see more varied and

interesting context-aware applications.

1.2 Context-aware information delivery in hypertext

Vannevar Bush is credited with first describing the hypertext concept in his article “As

We May Think” [Bush 1945]. He introduces a machine he calls the Memex for browsing

and making notes in an extensive on-line text and graphics system. The Memex is for

personal knowledge workers; with it they do their own knowledge work. The essential

feature of the Memex is the ability to tie related items together while they are doing their

knowledge work.

 The basic concept of hypertext is fairly simple: windows on the screen are associated

with objects in a database, and links are provided between these objects [Conklin 1987].

Recently, due to the popularity of the WWW (World-Wide Web), which is a kind of

simple hypertext system compared to other hypertext systems (such as KMS [Akscyn et

al. 1988], HAM [Campbell and Goodman 1988], and Trellis [Furuta and Stotts 2001]),

hypertext has been more widely accepted.

6

 In modern hypertext systems, with the increased availability of personal computers

with environmental sensors, adaptation support for users in dynamically-changing

environments will become essential to meet their needs. Hypertext systems supporting

computing devices with environmental sensors will thus benefit if they also can become

context-aware. Hypertext systems can be context-aware application building tools with

the incorporation of dynamically-changing information from the external environment.

 A focal point in adaptive hypermedia systems [Brusilovsky 1996] has been support

for user modeling. Users with distinct goals and knowledge may be attracted to different

portions of information displayed on a hypermedia page and may use different links for

navigation. The adaptive hypermedia field endeavors to conquer this problem by using

knowledge represented in the user model to adapt the information and links being

presented to the given user. Providing context-awareness will require user modeling.

However, it also will require the incorporation of dynamically-changing information

from the external environment. In addition to reflecting individual differences,

information providers may wish to tailor presentation to user location, access time,

network bandwidth/cost, etc.

 For example, we can think of a context-aware application, a university digital library,

that provides a full version of a Web page to its on-campus patrons and a limited one to

its off-campus patrons. However, off-campus faculty members retain access to the full

version. Because the page includes a real-time help desk, only the limited version is

available outside of normal operating hours. Some databases are only made available for

7

general use outside of working hours. Patrons inside of the physical library building are

given more detail for reference material located on the current floor than for other floors.

1.3 Formal model-based hypermedia systems

The model implicit in many hypermedia systems (e.g., Neptune [Delisle and Schwartz

1986]) is the labeled directed graph, where the information content of the application is

associated with the contents of a set of nodes, and the labels of the arcs are associated

with the user’s logical selections. Selecting a label follows the arc(s) associated with the

label, resulting in the change of the display of the hypertext.

 Some formal model-based systems, including the Trellis project [Furuta and Stotts

2001; Stotts and Furuta 1989a], investigate the use of automaton-based specification in

defining hypertextually-based interaction. The behavior of the hypertext is described by

the browsing semantics of the specification—i.e., the contents displayed and links

presented are tied to the state changes that occur as the automaton is executed. A

primary focus in the automaton-based systems has been to generalize the browsing

semantics of a document and to move implementation of such mechanisms into the

document (or hypertext) specification rather than the system implementation.

 The automaton-based models provide good abstraction and separation of the

structure from the content of hypertext, using them helps to discipline the authoring

activity by encouraging development in a structured fashion. This development is

accomplished by requiring that the structure is designed before the actual contents are

8

associated to the nodes in the structure [De Oliveira et al. 2001]. In addition, the models

that are based on automaton formalisms, such as Petri nets and Statecharts, support

systematic analysis techniques. Authors can use the analysis techniques to verify and

validate the behavioral characteristics (e.g., reachability of certain information) of

developed documents before the materials are handed over to users.

 However, most graph-based models suffer from graphical complexity. Therefore,

specification simplification efforts that reduce the graphical complexity are necessary. In

addition, a noticeable cost of using automaton-based systems is that the author

interacting with such a system must be accustomed to the model and its underlying

formalism. Good interface design and proper training may reduce the cost of using the

automaton-based systems.

1.4 The approach and corpus of our choice

The main goal of this research is to develop caT (called “caT”, for Context-Aware

Trellis) [Na and Furuta 2000a; Na and Furuta 2000b; Na and Furuta 2001], a context-

aware hypertext model and associated tools. caT is a formal-model-based hypertext

system that provides adaptation support for users in dynamically-changing

environments.

 In developing caT, we extend the existing Trellis hypertext system to concentrate

more on new interesting features, such as context-awareness, than on the other intrinsic

hypertext features. Trellis was chosen since it provides excellent facilities and potential

9

extensibility for dynamic adaptations of multiple readers, and supports formal analysis

techniques for detecting inconsistencies in the specification. The Trellis project was

initiated in the late 1980’s to investigate the use of the automaton formalism (colored

timed Petri nets [Jensen 1992; Zurawski and Zhou 1994]) in defining hypertextually-

based interaction.

 Beginning with the Trellis system, the following main research issues are explored: a

context-aware hypertext model, fuzzy knowledge handling, flexible information

presentation, structured authoring, verification and validation, and improvement of the

Trellis implementation. Detailed descriptions of the above issues are presented in the

following subsections.

1.4.1 A context-aware hypertext model

Mobile computing environments raise an additional requirement for hypertext systems—

namely, the need to be able to reflect the current context of use in the structure and

content of the hypertext. For example, the relevance of information may change as the

reader moves from location to location (e.g., the location of the nearest gas station).

Relevance may reflect time of day, speed of connection, the administrative categories

corresponding to a system’s current user (e.g., faculty, staff, or student), the proximity of

other, interacting devices, etc. A main goal of this research, therefore, has been to

support specification of context aware hypertexts.

Even though conventional hypertext models provide a powerful modeling

framework, they are weak when supporting context-aware adaptation. For supporting

10

context-aware adaptation, they need incorporation of dynamically-changing information

from the external environment. A focus of adaptive hypermedia systems has been

support for user modeling, but this focus has been more on static personal preference

information than dynamic context information from the external environment.

We need a new context-aware hypertext model that supports context-awareness in

dynamically-changing environments. Consequently, we have extended the Trellis

hypertext model in support of context-awareness. For incorporation of the external

environmental data, caT provides hooks that allow hypertexts to reflect changing,

external events. However, handling the instrument that detects those events remains

outside of the caT system, as Dey and Abowd [1999a] suggest.

1.4.2 Fuzzy knowledge handling

Fuzzy logic [Zadeh 1989] primarily is motivated by observing that human reasoning can

utilize concepts and knowledge that do not have well defined, sharp boundaries (i.e.,

vague concepts). If we integrate the fuzzy logic concept into the hypertext model, the

new model that results will have the ability to handle uncertain knowledge in hypertext

applications. For example, the simple link display decision is based on showing or not

showing (i.e., true or false) for all users; but we may need the following link display

condition: show a link when the access right of the current user is rather high. In this

case, we may need a fuzzy rulebase for inferring the access right value from the current

user’s information. For example, one of the rules will be as follows: the access right

value is high when he (or she) accesses the system at daytime and is close to the location

11

of the system. Fuzzy knowledge handing will help to represent and infer the user’s vague

contextual information more naturally. For these reasons, we have integrated an existing

fuzzy logic tool [The Mathworks, Inc. 1999] into the Petri net structure.

1.4.3 Flexible information presentation

Since the Trellis (i.e., caT’s parent system) implementations are based on a client-server

architecture, several client browsers can be active simultaneously, each presenting

different interpretations of the document and its browsing state as stored in the server.

This feature provides good separation between document specification and presentation.

Using this characteristic of the system, new browsers have been developed in this

research, such as an image browser and a Web-based information presentation tool for

Web browsers, in order to allow multiple presentations of a particular document’s

specification.

The early Trellis clients assume implementation directly within the windowing

environment that provides the primary user interface for the hypertext’s reader.

Consequently, interface tasks within the Trellis prototype system are distributed across

multiple clients and multiple windows. For example, one client may have the task of

playing audio while another has the task of displaying images. Commonly, the clients

that display textual content display each of the multiple elements that may be active

simultaneously in separate windows. A separate window, which logically could be

considered to be associated with its own client process, allows invocation of links.

12

The architecture of the World-Wide Web suggests instead that the clients’ interaction

with the users is to be funneled through the intermediary of a HTTP server. The target

presentation is within the context of a Web browser, and not in the context of a

windowing system. To maintain consistency with the World-Wide Web’s user interface

paradigm, we define a mechanism to create a composite node from the active content

elements and to embed the link anchors that correspond to firable transitions (i.e., links).

As a result, the Web-based information presentation of the caT model will allow us

to define sophisticated hypertext applications in caT and to browse the resulting

information using the familiar user-interface of WWW browsers such as Netscape

Navigator. We may say that the support for browsing with Web browsers provides a

connection between the caT hypertext model and the WWW to get synergy from the two

different models. Web-based flexible information presentation will increase the usability

of caT.

1.4.4 Structured authoring

Structured authoring (top-down or bottom-up) support will be essential for developing

large-sized Petri net applications since it reduces the graphical complexity problems that

are common to most graph-based modeling tools. Thus, in the Petri net research field,

hierarchical Petri nets (extensions of basic Petri nets) have been developed to support

authoring of multiple Petri nets that are hierarchically linked [Jensen 1992]. With the

hierarchical net, the author can build hierarchically structured subnets in a top-down or

bottom-up way. However in terms of the authoring of both the nets (i.e., document

13

structures) and their annotations (i.e., contents and links), caT more strongly supports a

top-down design, in comparison to the bottom-up design common in Web document

authoring. In caT, authors initiate their design by specifying a document structure (i.e., a

Petri net); in the Web, authors create fragments of content, and include pointers to other

pieces of content within these fragments.

 Concerning Trellis, one immediate approach to reducing graphical complexity

problems is to incorporate notions of stepwise decomposition (i.e., hierarchy) into the

specification, thereby providing a means by which significantly-sized specifications can

be defined in manageably-sized pieces. Trellis’ Graph Grammar approach [Stotts and

Furuta 1990] is a step in this direction, but it was developed separately and not

incorporated into the general Trellis prototypes. The mechanism provided in the

prototypes, namely the inclusion of hypertexts as a permissible content element, does

introduce a notion of hierarchy but strongly separates the state of the content-embedded

element from that of the parent net.

 In Trellis, a Petri net engine (i.e., an information server that receives client requests

for its service) holds only one net, and hierarchical subnets are handled by the browser

(i.e., client-side programs). Therefore, for hierarchical subnet support, multiple Petri net

engines and browsers are involved in a loosely-coupled fashion. It is necessary to shift

the responsibility for subnets from the browser to the Petri net engine, in essence

combining the nets into a single unit. In other words, the Petri net engine should be

14

extended to hold multiple hierarchical subnets. Consequently, caT extends the Petri net

engine in the Trellis model to support hierarchical Petri nets.

 In addition, the current Trellis authoring tool is a single-window-based tool, which

does not support hierarchical subnet editing facilities such as easy creation of multiple

subnets (or sub modules) and easy browsing between parent and child nets. For

supporting flexible structured authoring, a multiple-window-based authoring tool is

developed to allow building and browsing of hierarchical subnets. The author, using the

authoring tool, first builds a Petri-net-based hierarchical document structure and then

associates net segments with the corresponding content segments.

1.4.5 Verification and validation

One of the major advantages of using Petri net models is that the same model is used for

the analysis of behavioral properties as for the systematic construction of discrete-event

systems [Zurawski and Zhou 1994]. Authors can use the analysis techniques to verify

and validate the behavioral characteristics (e.g., reachability of certain information) of

developed systems before the systems are handed over to users. To support this feature,

at first we study the conformance of the extended model to current analysis techniques,

and then develop and integrate analysis tools into the authoring tool.

1.4.6 Improving the Trellis implementation

Trellis has been viewed favorably by the hypertext research community (see, for

example the comments in Frank Halasz’s 1991 Hypertext Conference keynote speech

15

[Halasz 1991]). However, it has not received widespread use, even though it has been

freely available via FTP in binary form since the mid-1990’s. This relative lack of use

seems due to a number of factors that, combined, make it inconvenient to use the system,

especially in the current computing environment. These factors, such as the user

interface and running environment, are identified and managed in the development of

caT.

1.5 Contributions of this research

caT, a context-aware hypertext model and associated prototype tools, has been designed

and built in order to support flexible adaptation in a dynamically-changing environment

through extension of the earlier Trellis model.

 In summary, the major contributions of this research work are as follows:

1. Introduce a new context-aware hypertext system for the development of context-

aware hypertext documents.

§ Provide a flexible net specification with adaptive behavior by

incorporating high-level Petri nets, fuzzy (or uncertain) knowledge

handling, and user modeling features into the Trellis model.

§ Provide hooks that allow hypertexts to reflect changing, external events

(dynamically-changing environmental information).

2. Present mechanisms for reducing complexity of specification representation in

Petri net-based hypertext systems.

16

§ Provide mechanisms for simplifying the specification representation by

introducing hierarchical Petri nets and structured tokens (tokens with

local variable/value pairs) features to the Trellis model.

3. Support flexible information presentation of a document specification.

§ Define a mechanism to create a composite node from the active content

elements, and as well embed the link anchors for Web-based information

presentation of the caT model.

§ Develop (or support) multiple browsers, such as a text browser, an image

browser, and Web browsers, to allow multiple presentations of a

particular document’s specification.

4. Develop structured authoring and analysis tools for the high-level Petri net-based

hypertext system.

§ Develop a multiple-window-based structured authoring tool for the

specification of reasonably large and complex documents that are linked

hierarchically.

§ Develop an analysis method for the extended nets and build an analysis

tool that is integrated into the authoring tool

5. Improve the Trellis implementation.

§ Enhance the user interfaces and the functionality of the components of the

Trellis implementation, as well as its porting to Linux

17

 The caT system also provides a good environment for the specification and

hypertextual browsing of various documents, even though it has been mainly targeted at

context-aware hypertext documents. Thus, for investigating the potential usability of the

system, we have built various hypertext documents: context-aware documents, adaptive

documents, hierarchical documents, CSCW protocol specifications, software

requirement specifications, etc.

 Finally, we have performed an informal evaluation of the proposed system. The

result of this successful evaluation shows the potential usability of context-aware

hypertext systems. We expect that the experience and the results gained from this work

will provide some background techniques and experiences for further context-aware

research in hypertext and related fields. With the increased availability of computing

devices equipped with environmental sensors, further research will improve the usability

of the context-aware hypertext system.

18

CHAPTER II

REVIEW OF PREVIOUS WORK

2.1 High-level Petri net

Petri nets [Jensen 1992; Peterson 1981; Zurawski and Zhou 1994], as graphical and

mathematical tools, provide a uniform environment for modeling, formal analysis, and

design of discrete event systems. Formally, a basic Petri net is a bipartite directed graph

defined as follows (the notation used here is taken from [Reisig 1985; Stotts and Furuta

1989a]):

 A Petri net structure is a tuple, <P, T, F>, in which:

• P = {p1, p2, …, pn} is a finite set of places with n ≥ 0;

• T = {t1, t2, …, tm} is a finite set of transitions with m ≥ 0 and P ∩ T = ∅;

• F ⊆ (P × T) ∪ (T × P) is the flow relation, a mapping representing arcs between

places and transitions.

The arcs denoted by F set pre- and post-relations for places and transitions. The set of

places that are incident on a transition t is called the preset of t, and is represented by

 •t = {p | (p,t) ∈ F}.

The set of places that come after a transition t is called the postset of t, and is represented

by

 t• = {p | (t,p) ∈ F}.

19

For a marking of a Petri net structure <P, T, F>:

• M : P → I, I = {0, 1, 2, …}, is a function that associates a marking with each

place in the net.

 Each integer in a marking specifies the number of tokens existing in the

corresponding place. An execution of a Petri net generates a series of markings, starting

with the initial marking Ms and finishing in some final marking Mf. To move from the

current state M to some next state M', any transition t that is enabled under M is chosen

and fired. For a transition t to be enabled under the marking M, it must satisfy the

following condition that is represented by

 ∀ p ∈ •t : M(p) ≥ 1.

Firing t involves of deleting one token from each place in •t and adding one token to

each place in t•—we assume that the weight on each arc is 1. The next state M' is then

the vector of integers indicating the number of tokens in each place after the firing.

 Graphically, a Petri net is represented by indicating its places by circles, its

transitions by bars, its arcs by arrows, and its tokens by small black dots. A place

containing one or more tokens is said to be marked. When each place incident on a

transition is marked, that transition is enabled. For example, consider the marked Petri

net shown in Figure 1. The initial marking is M0 = [110] (i.e., P1 = 1, P2 = 1, P3 = 0), and

T1 is an enabled transition under M0. If T1 were fired, the resulting next state would be

M1=[001], as shown in the right side of the figure.

20

Figure 1: A simple Petri net

 The basic Petri net is not always convenient for representing and analyzing complex

systems because tokens in the basic Petri nets have no identity. This poses problems for

modeling systems, which demand that physical resources or messages, if represented by

tokens, have identity. Without this identity, it is unrealizable to trace the flow of

different resources or messages in the system. A likely solution is to build a model in

such a way that the flow of each resource or message is associated with a separate

subnet. Because the resources or messages share, in most cases, the same system, all

these subnets are duplicates. This approach increases the graphical complexity of the

model [Zurawski and Zhou 1994].

P1 P2

P3

T1

P1 P2

P3

T1

Before Fire After Fire

21

 In order to overcome this complexity problem, Petri nets that allow for tokens that

have distinct identity, called high-level Petri nets, were proposed—these mechanisms

may give identity to a group of tokens not necessary to individual tokens. These nets

include predicate-transition nets [Genrich and Lautenbach 1981], colored Petri nets

[Jensen 1992], and object-oriented Petri nets [Gudwin and Gomide 1998; Sibertin-Blanc

1985]. In high-level Petri nets, a token can be a composite object carrying data. This data

can be of arbitrary complexity involving integers, reals, text strings, records, lists, and

tuples. Nonetheless, it should be noted that ordinary and high-level Petri nets have the

same descriptive power, even though high-level Petri nets supply much better structuring

facilities than basic nets [Zurawski and Zhou 1994]. A more thorough exposition of net

theory can be found in the texts by Peterson [1981] and Jensen [1992]. The caT model

extends the Trellis model by introducing to it some features of the high-level Petri nets

such as tokens carrying data.

2.2 Fuzzy Petri net

The recognition of the need for qualitative specification of the system, as well as the

need for representing approximate and uncertain information, has led to the development

of various types of Fuzzy Petri Nets (FPN). Since 1988, with the work of Looney

[1988], several authors from the Petri net and AI communities have proposed different

kinds of FPN [Cardoso and Pradin-Chézalviel 1997; Cardoso et al. 1996]. FPN,

combining fuzzy logic and Petri net theory, aims at solving two fundamental issues:

22

allowing the representation of the evolution during the time, given by Petri nets, and the

representation of uncertain knowledge about a system state, given by fuzzy logic.

 Although sharing the same name, Fuzzy Petri Net, the models that have been

described are based on different notions. Their variances first are related to the fuzzy

tools used (fuzzy logic, possibility theory, etc.) and then related to which elements of the

Petri nets are fuzzyfied (tokens, markings, and transition thresholds). Some of these FPN

systems are used to represent fuzzy expert systems [Chen et al. 1990]. In these cases,

Petri nets are used to describe formally the rule chaining mechanisms (i.e., reasoning

algorithms) with a marking corresponding to some step within the reasoning; most

approaches associate a logical proposition with any place of the Petri nets. The benefit of

this approach is that concurrency (several rules may be applied in any order) and choices

(selections of one rule in a set of conflicting rules) can be formally captured. In another

class of application [Cardoso et al. 1990], a FPN is used to represent directly imprecise

or vague knowledge. The FPN represents a dynamic system, and the marking denotes

the knowledge about its state at some time point. Another uncomplicated way of

supporting uncertain knowledge in Petri nets is integrating an existing fuzzy logic tool

(or a fuzzy expert system) with current Petri net structures. Here, the Petri net can

interact with the fuzzy logic tool to handle uncertain knowledge. The caT model follows

this approach.

23

2.3 Formal model-based hypermedia systems

In the following subsections, Petri-net-based hypermedia systems (including Trellis)

are introduced, followed by statechart-based hypermedia systems.

2.3.1 Petri-net-based systems

2.3.1.1 Trellis

The Trellis project was initiated in the late 1980’s [Furuta and Stotts 1989; Stotts and

Furuta 1989a] to investigate the use of automaton-based specification in defining

hypertextually-based interaction. Essentially, the Trellis model is based on a colored

timed Petri net as the structure of a hyperprogram, and the behavior of the hypertext is

described by the browsing semantics of the specification—i.e., the contents displayed

and links presented are tied to the state changes that occur as the automation is executed.

 The underlying information engine supporting Trellis is related to other hypertext

engines that have been used in experimental software support systems, such as HAM

(Hypertext Abstract Machine) [Campbell and Goodman 1988]. The uniqueness of Trellis

is its foundation on a parallel collaborative computation model, i.e., colored timed Petri

nets. This gives the model an elegant structure that can be both programmed and

analyzed. In the colored timed Petri nets (CPN) of the Trellis model, tokens have type

(color), and a token of one color is discernible from a token of another color. However,

within a color class, individual tokens cannot be distinguished from one another.

 In Figure 2, each of the three tokens in places P1 and P2 has a different color. The

notation on the arc from P1 to T1 defines a variable, a. The color of the token extracted

24

from P1 when T1 is fired matches the color of the token deposited back into P1.

Similarly, the color of the token extracted from P2 matches that deposited into P4 (either

of the tokens in P2 will satisfy this condition). Because a constant value is used on the

arc from T1 to P5, the color of the token deposited there always is “red”. Similarly, a

specific color could have been required on the input arc. Both arcs leading into transition

T2 have been notated with the same variable name, c; hence the color of the tokens from

P2 and P3 consumed when T2 fires must match.

Figure 2: A colored Petri net example

 Each transition in a Trellis net has two time values, which represent, roughly, a delay

and a timeout. Time values in Trellis are thought of as defining ranges for the

P1 P2 P3

P5P4

T1 T2

a

a

c c

b
red

blue

b

25

availability of an event. The first value in the pair describes a delay that must pass

between when the transition is enabled and when the system allows its firing. The

second value, greater than or equal to the first, describes the maximum amount of time

that will be allowed to pass before the system fires the transition itself. Thus the time (0,

∞) represents a transition that can be fired immediately and never fires itself. Other

examples include (0, 5), a transition that fires itself after 5 time units; (5, ∞), one that

requires a delay of 5 time units; and (0, 0), one that fires itself immediately on being

enabled.

 Formally, a colored timed Petri net in the Trellis model is defined as follows [Stotts

and Furuta 1989a]:

 A CPN is a tuple, <Σ, P, T, F, τ>, in which:

• Σ is a finite set of token colors, such as {black, maroon, …};

• P, T, and F are as defined earlier ;

• τ : T → {0, 1, 2, …, ∞} × {0, 1, 2, …, ∞} is a function mapping each transition to a

pair of values termed release time and maximum latency respectively. For any

transition t ∈T, we write τ(t) = (τr, τm) and we require that τr≤τm.

 A Trellis net is completed by annotating for the components of the CPN. We can

consider the CPN as the task description and the different annotations as the information

needed by the task. One main category of annotation is content. Fragments of

information (text, graphics, video, audio, executable code, and other hyperprograms) are

26

connected with the places in a CPN. Another category of annotation is events, which are

mapped to the transitions of the CPN. A third category of annotation is the

attribute/value (A/V) pair. A list of A/V pairs is associated with each place, each

transition, each arc, and the CPN as a whole. Annotations can be used by the Trellis

implementation to build client tools such as hypertext document browsers and authoring

tools. In the Trellis implementations, information presentation is based on a simple

paradigm; namely, every node of the Petri net is shown in a different window.

 A hypertext in the Trellis structure [Stotts and Furuta 1989a] is a tuple, <CPN, M0,

D, W, B, Pl, Pd>, in which:

• CPN is a colored timed Petri net <Σ, P, T, F, τ>;

• M0 : P → “token instances of Σ” is an initial marking (or initial state) for CPN;

• D is a set of document contents;

• W is a set of windows;

• B is a set of buttons (or links);

• Pl is a logical projection for the document, Pl = <Dl,Wl,Bl>, mappings from

components of a Petri net to the human-consumable portions of a hypertext;

• Pd is a display projection for the document, a collection of mappings that associate

the logical buttons and windows of a hypertext with physical screen representations

and locations.

 The Trellis prototype implementations are based on a client-server architecture,

which accomplishes cooperative separation between net and interpretation. The central

27

part of the server is the Petri net engine, which implements Petri net execution

semantics. The Petri net engine is wrapped with the hypertext engine, which interprets

the state of the Petri net into a hypertext-centric representation. Normally, this denotes

that the hypertext engine constructs a list of active content elements (i.e., those

associated with marked places) and their related active links (i.e., corresponding to

transitions that are enabled for firing). Every Trellis model is an instance of an

information server, an engine that services remote procedure call (RPC) requests. The

engine has no visible user interface, but does have an API that allows other remote

processes to call its functions for building, editing, annotating, and executing a CPN.

 Interface clients are separate processes that have visual user interfaces and

communicate with one or more engines via RPC. Clients collectively provide the

necessary views, interactions, and analyses of a net for some specific application

domain. One or more client applications provide the interface with the user and with

other interacting agents. Hypertext clients communicate with the hypertext engine and

have the responsibility for determining how to display the active content. The

implemented clients often specialize. For example, they display only textual or only

audible content. Consequently, a complete user interface can require use of several

clients. Additionally, separate clients can provide different views of the content for

different execution environments—for example, on a text-only display or on a graphical

display. A second category of clients, those that display and permit editing of the Petri

net representation, communicate directly with the Petri net engine.

28

 The initial implementation of Trellis, αTrellis, supported a basic Petri net (i.e.,

without colored tokens) along with the timing facilities. In addition, later versions of

αTrellis included a Lisp interpreter and allowed the association of Lisp fragments with

transitions [Stotts and Furuta 1991]. The fragments were executed when the transition

was fired, and could modify values such as those associated with timings. Due to

changes in the available computing environment, Stotts and his students implemented a

second version of Trellis called χTrellis [Furuta and Stotts 1994a]. χTrellis provided a

cleaner separation of Petri net engine from other program functions and added colored

tokens. However, χTrellis did not retain the Lisp interpreter and associated transition

actions.

 Trellis has been used in a wide variety of applications, ranging from hypertextual

applications to protocol specification. One particular example of protocol specification is

the description of collaborative protocols [Furuta and Stotts 1994a]. The Trellis

architecture allows multiple people to interact via a common net through clients on their

individual workstations. Subsequent applications include Stotts et al.’s separation and

application of multi-headed/multi-tailed links [Ladd et al. 1995], and their application to

educational protocols [Capps et al. 1996].

2.3.1.2 Other Petri-net-based systems

Numerous models have been proposed in the literature, which are intended to provide

support for multimedia specification and development. Many are Petri-net-based models

that focus mostly on the specification of multimedia data stream synchronization

29

requirements: OCPN (Object Composition Petri Net) [Little and Ghafoor 1990] and its

derivations XOCPN (Extended Object Composition Petri Net) [Woo et al. 1994], DTPN

(Dynamic Timed Petri Nets) [Prabhakaran and Raghavan 1993], TSPN (Time Stream

Petri Net) [Diaz and Senac 1993], and TSPNUI (Time Stream Petri Net with User

Interaction) [Cooper 1995]. These models, however, are not general enough for the

specification of general hypermedia applications. In these systems, user input to a

multimedia service is not described. In other words, these systems mainly provide

rendering capabilities with no (or few) user interaction capabilities.

 Some of the Petri-net-based models that satisfy the requirements of general

hypermedia applications are HTSPN (Hierarchical Time Stream Petri Net) [Willrich et

al. 1996], MHPN (Multimedia Hypermedia Petri Net) [Wang and Wu 1995], and

MORENA (Multimedia ORganization Employing a Network Approach) [Botafogo and

Mossé 1995].

MORENA is targeted at the description and execution of hypermedia applications

that allow for flexibility and adaptability through message passing. MORENA provides

support for multimedia data, such as video and audio, and structured authoring.

Composite nodes have their own structure (nodes, transitions, and arcs) and encapsulate

information (such as synchronization specification), defining a hierarchy that can be

manipulated easily. In addition, MORENA provides fine-grained synchronization (a

dynamic medium can send synchronization messages at specified moments during its

execution). However, since MORENA does not fully follow Petri net theory, it may not

30

be easy to analyze the output model using the existing techniques developed in the Petri

net field.

MHEG (Multimedia and Hypermedia information coding Expert Group) [ISO 1997]

has established object-oriented standards for real-time interactive communication

applications. The MHEG classes are one of the main efforts to standardize all the

necessary object classes for multimedia and hypermedia applications. Therefore, MHPN

links Petri net objects to MHEG objects in order to express the complex logic

requirements of hypermedia applications such as flexible (asynchronous and concurrent)

browsing and rendering capabilities, and to provide a formal graphical model for the

structured authoring of hypermedia. A prototype object-oriented multimedia information

system called the Petri net Object Information System (POIS) has been developed for

providing an integrated facility for menu searching within a repository of filed

multimedia documents, then extracting, selecting, and merging information from these

documents.

The HTSPN model enables a unified specification of temporal and logical

synchronization within hypermedia systems using the Dexter model [Halasz and

Schwartz 1994] and Time Stream Petri Nets model (TSPN) as background. An

interpreted version of the HTSPN model (I-HTSPN) provides the means to specify

hypermedia documents on top of the hypermedia structure. In order to generate an

information structure that can be exchanged and presented in an open hypermedia

31

system, a procedure translating an interpreted HTSPN specification into an MHEG

representation has been developed [Willrich et al. 1996].

All these Petri-net-based models use a basic token (one without local values), thus

the supplement of a structured token (one with local values) will help reduce the

complexity of the models. In addition, a support of conditional statements for the

threshold of the transition fire will be useful for the dynamic adaptation. Information

presentation based on a simple paradigm (the content associated with every Petri net

node is shown on a different window) may need to be extended for more flexible

presentation of hypermedia documents.

Petri nets also have been widely used as a modeling tool in many other areas,

including office information systems [Beslmuller 1988]. Information Control Net (ICN)

[Ellis 1979] is an OIS (Office Information System) modeling tool derived from Petri

nets. It has been created to model procedures, organizational structures, social norms,

and exceptional conditions in offices. Within the context of this model, an office is

defined to be a set of office objects together with a set of mappings among these objects.

ICN allows analysis of properties such as throughput, deadlock, and streamlining [Ellis

and Naffah 1987]. The use of Petri nets as a specification medium for man-machine

interaction appears previously in the literature [Holt 1988; Van Biljon 1988].

2.3.2 Statechart-based systems

As an alternative to Petri-net-based models, the HMBS (Hypertext Model Based on

Statecharts) model [De Oliveira et al. 2001; Turine and De Oliveira 1997] uses the

32

structure and execution semantics of statecharts [Harel 1987] to specify both the

structural organization and the browsing semantics of a hyperdocument. The major

features of HMBS are its ability to model hierarchy and synchronization of information,

and its provision of mechanisms for specifying access structures, access controls,

multiple tailored versions, and hierarchical views. Analysis of the underlying statechart

model allows verification of document reachability and valid paths. HMBS is an

appropriate model for applications that have a hierarchical structure, such as books,

scientific papers, on-line tutorials and manuals, and instructional material.

 XHMBS (the eXtended Hyperdocument Model Based on Statecharts) [Paulo et al.

1998] is an extension of HMBS with additional mechanisms for describing the time

sequencing and information synchronization requirements typical of multimedia. Zheng

and Pong [1992] also use statecharts for hypertext modeling. However, they are

concerned with specifying the hypertext system user interface behavior. They use

statecharts to model the behavior of buttons and frames supported by a hypertext system.

Masiero et al. [1994] propose a method for analyzing office applications, which relies on

a statecharts-based model to record the flow of documents within the system. Each type

of document is associated with a statechart, and that enables the automatic update of the

links maintained in a hypertext database when new documents are added to the database.

 In general, statechart-based systems do not support adaptive, shared readings of a

statecharts specification since there is no identity of each reader (like colored token

33

markings in Petri nets) in the specification. Therefore, they may not be appropriate for

the authoring of adaptive hypertext documents, including cooperative documents.

In addition, Tompa [1989] uses a hypergraph formalism to model generic hypertext

structures. This formalism enables formal identification of common structures (nodes,

links, and labels) and direct reference to groups of nodes having common link semantics.

This model supports a set-oriented browsing semantics, and incorporates an arbitrary

number of layers of personalized and system structures.

2.4 Adaptive hypermedia systems

In most hypertexts, the contents of nodes and the positions of links are fixed. However, a

number of hypertext researchers have demonstrated that nodes and links need to be

dynamic, for instance to help authors both solve structural problems and reduce

cognitive overhead by providing the most relevant adapted information for readers. In

dynamic (or volatile) hypertexts, links can vary to suit the changing circumstances of

reading, and nodes can change dynamically in response to the different situations in

which the reader places them.

 For example, an author using Storyspace [Joyce 1991] can create conditional links

that are accessible to the reader only if certain criteria have been met, such as a specified

node having been previously read or not read. Trellis can express prerequisite

relationships between nodes by imposing sequence constraints on the browsing behavior

of the reader. “A Life Set for Two” [Kendall 1996] introduces floating links that are

34

positioned dynamically in response to the reader’s progress and variable nodes that

change their texts according to factors such as their context within the current reading

and global states.

 With the help of active research into dynamic hypertexts (in the hypertext field) and

user modeling (in the adaptive user-interface field), adaptive hypermedia (or hypertext)

has been introduced as a fairly new research field. Brusilovsky [1996] provides the

following definition of adaptive hypermedia systems:

“All hypertext and hypermedia systems which reflect some features of the user

in the user model and apply this model to adapt various visible aspects of the

system to the user.”

 To put it in a different way, the system should satisfy three principles: it should be a

hypermedia system; it should have a user model; and it should be able to adapt the

hypermedia using this model (i.e., the same system can appear different to users with

different models). Thus, adaptive hypermedia systems build a model of the individual

user (called the user model) and apply it to adapt the content of a hypermedia page to the

user’s knowledge and goals, or to propose the most relevant links to follow. What can be

adapted in adaptive hypermedia are the content of regular pages (content-level

adaptation) and the links from regular pages, index pages, and maps (link-level

adaptation). Adaptive presentation of information can be achieved through conditional

text, stretchtext, fragment variants, page variants, and frame-based techniques; and

adaptive navigation can be achieved through direct guidance, link sorting, link

35

annotation, link hiding, link removal, and link disabling [Brusilovsky 1996; De Bra et al.

1999a].

 There are three steps in the adaptation process: gathering data about the user,

processing the data to construct or update the user model, and applying the user model to

provide the adaptation. Brusilovsky [1996] argues that there are some general problems

related to automatic user modeling in adaptive systems. Firstly, automatic user modeling

is not fully reliable. Systems that perform both user modeling and adaptation without

user influence are twice as unreliable. Secondly, some components of the user model,

such as background and preferences of the user, cannot be deduced at all and have to be

provided directly by the user. Therefore, the only way for the system to get the required

information about the user is to involve the user in the process of user modeling and to

collaborate with the user in collecting the information. This is called collaborative or

cooperative user modeling [Kay 1995].

 Adaptive hypermedia systems are used now in several application areas where the

hyperspace is reasonably large, and where individuals with different goals, types of

knowledge, and backgrounds use a hypermedia application. The following is a list of

these application areas: educational hypermedia systems, on-line information systems,

on-line help systems, information retrieval hypermedia, institutional hypermedia, and

systems for managing personalized views [Brusilovsky 1996]. AHAM [De Bra et al.

1999b] introduces a reference model for adaptive hypermedia applications, which

includes most features supported by adaptive systems that exist today or that are being

36

developed. AHAM enhances the Dexter model [Halasz and Schwartz 1990; Halasz and

Schwartz 1994] with features for adaptation based on a user model that persists beyond

the duration of a session. The caT model uses a simple form of user modeling in support

of adaptation.

2.5 Multimedia language for Web

SMIL (Synchronized Multimedia Integration Language) [SMIL 2001] is a meta-

language that allows authors to write interactive multimedia presentations for the Web. It

supports effective timing and synchronization, adaptation to users and systems, and

modeling of a flexible and consistent presentation and user interface. SMIL 1.0 became a

W3C Recommendation on 15 June 1998, while SMIL 2.0 (including SMIL Profile and

SMIL Basic) is expected to become a W3C Recommendation soon. SMIL needs special

players that understand the script language. Currently, the RealPlayer 8, GRiNS, and

Quicktime 4.1 players support SMIL 1.0.

 SMIL, defined with a XML DTD, is a declarative language using attribute/value

pairs. In SMIL, the par element groups elements that are played in parallel. The seq

element groups elements that are played sequentially—based on the textual order,

children are played one after the other. In addition, par and seq can be nested. Using

additional attribute values such as dur, begin, and endsync, SMIL can flexibly control

presentation time (start and end time) of multiple multimedia items. Using the switch

element, SMIL supports adaptation to characteristics of the user (disabilities and

languages), the hardware environment (the bandwidth and available CPU time), and the

37

document purpose (the selection of appropriate content). In the switch element, at most,

one of its children is played; since the first acceptable element is chosen, the

specification ordering should be best first. In addition, the spatial layout provides

flexible specification of documents’ spatial locations. SMIL’s basic layout is isomorphic

and replaceable with CSS (Cascading Style Sheets). CSS is used for separating the

content of the HTML documents from their presentation.

 In general, since SMIL is based on XML syntax, it is difficult for common users to

author SMIL specifications (e.g., the nested seq and par blocks) using a simple text-

editor. Therefore, several SMIL authoring tools [Bulterman et al. 1998] have been

developed. Since Petri nets provide an easy way of authoring sequential and parallel

tasks, SMIL structure may be authored in Petri nets and converted to SMIL statements.

In this case, the SMIL structure described in Petri nets can be analyzed using the

analysis techniques of Petri nets. However, the conversion from Petri nets to SMIL

statements may only be feasible in some limited fashion since some features in SMIL

may not be represented in Petri nets, and vice versa.

 Kim et al. [2000] have performed an analysis on SMIL structures. They try to

analyze the following two document structures: the circular reference of the identifier

(deadlock situation) and the conflict between regions simultaneously represented in the

par element. However, the analysis discusses only a subset of possible analysis

properties of SMIL and is based on rather ad-hoc analysis techniques compared to the

38

Petri net’s analysis techniques, which are based on its own mathematical foundation.

More systematic solutions for the analysis of SMIL structures may be necessary.

39

CHAPTER III

SYSTEM OVERVIEW AND DESIGN

3.1 System overview of the caT system

In this chapter, we introduce context-aware Trellis (caT), a context-aware hypertext

model and associated tools. Firstly, the context-aware hypertext model is developed by

incorporating both high-level Petri net features (such as structured tokens, flexible net

description, and hierarchical nets) and user-modeling into the Trellis model. Fuzzy

knowledge handling also is added by the integration of a fuzzy logic tool with the Petri

net. The system uses the fuzzy logic tool for inferring the values of token variables using

fuzzy rulebases.

 Since Petri nets allow the specification of a document’s browsing semantics—that is,

“the dynamic properties of a reader’s experience when browsing a document” [Stotts

and Furuta 1989a]—caT generalizes the browsing semantics of a document and moves

implementation of such mechanisms into the document specification rather than the

system implementation. Therefore, the documents described in caT provide dynamic,

interactive interfaces rather than static document pages. In caT, a structured authoring

tool and an analysis tool are developed to support structured authoring and verification

of application models, respectively. The author, using the structured authoring tool, first

builds a Petri-net-based document structure and then associates net segments with the

corresponding content segments.

40

 As the reader browses a document using document browsers, the corresponding Petri

net’s states change. Dynamic documents are generated based on the net state and the

document specification—in general, the document components associated with active

net components are displayed. To allow multiple presentations of a particular

document’s specification, new browsers have been developed (or supported), such as an

image browser and a Web browser. The Web-based flexible presentation is supported by

a template file (Meta file), which specifies how active content elements are to be

displayed and how links are to be embedded.

 Consequently, by enhancing the Trellis model, caT provides good separation among

a document’s (1) structure, (2) data, and (3) browsing semantics. In the following

subsections, the formal definition of the caT model is first introduced. That is followed

by detailed descriptions of the system design. In the descriptions, when we refer to caT,

we generally mean the extensions to Trellis; however, sometimes our use of caT also

embraces Trellis. Thus, when it is necessary to distinguish between the two systems, we

explicitly indicate caT and Trellis.

3.2 System design

3.2.1 Formal definition of the caT model

The foremost objective of this research is to develop a context-aware hypertext model,

i.e., the caT model. The formal definition of the caT model is derived by adding its

extended features to the existing formal definition for Trellis [Stotts and Furuta 1989a].

41

The formal definition of the Petri net used in the caT model is as follows (some notation

used here is taken from Jensen [1992] and Stotts and Furuta [1989a]):

 A caT Petri net structure is a tuple, HCPN = <S, ST, STM, IOM, I>, in which:

• S = <Σ, P, T, A, τ, C, G, E> is a set of pages; each page, s ∈ S, is a non-

hierarchical CPN = <Σs, Ps, Ts, As, τs, Cs, Gs, Es>;

Σ, P, T, A, τ, C, G, and E represent all corresponding data (or functions) in S,

a set of pages; Σs, Ps, Ts, As, τs, Cs, Gs, and Es represent data (or functions) in

each page s. The detailed description of each item is shown below.

§ Σs is a finite set of token types called color sets;

§ Ps = {ps1, ps2, …, psn} is a finite set of places with n ≥ 0;

§ Ts = {ts1, ts2, …, tsn} is a finite set of transitions with m ≥ 0 and Ps ∩ Ts =

∅;

§ As ⊆ (Ps × Ts) ∪ (Ts × Ps) is the flow relation, a mapping representing

arcs between places and transitions;

§ τs: Ts → {0, 1, 2, …, ∞} × {0, 1, 2, …, ∞} is a function mapping each

transition to a pair of values termed release time and maximum latency,

respectively. For any transition t ∈Ts, we write τs (t) = (τs
r, τs

m), and we

require that τs
r≤τs

m;

§ Cs: Ps → Σs is a color function mapping each place to a color set (type);

42

§ Gs: Ts → Boolean Expression is a guard function mapping a Boolean

expression to each transition;

§ Es: (Ts × Ps) → Arc Expression is an arc function mapping an assignment

expression to each output arc.

• ST ⊆ T is a set of substitution transitions; T is a set of transitions in all pages;

• STM: ST → S is a substitution transition/page mapping function; no page is a

subpage of itself;

• IOM: ST ⊆ (Psource × Ptarget) is a input/output mapping function; Psource is a set of

places (especially input or output places of ST transition) in the source page, and

Ptarget is a set of places in the target page (STM(st));

• I ∈ S is a start page.

 The caT model has additional (or enhanced) properties in addition to the ones it

shares with the Trellis model. In both caT and Trellis, each token can have a color value.

caT extends this to provide optional local token variables as well. Thus, each place can

have different types of tokens (i.e., tokens with different local variables), declared by the

color function, Cs(ps). The guard function, Gs(ts), is used for mapping a Boolean

expression to each transition. The Boolean expression specifies an additional constraint

(threshold) that must be fulfilled before the transition is enabled. The arc expression

function, Es(ts×ps), is used for mapping an assignment expression to each output arc,

which changes current token values when the transition is fired. STM(st) and IOM(st)

43

are functions for building hierarchical nets. STM(st) is a page (or net) assignment

function for mapping a transition to a subpage (or subnet). IOM(st) is an input/output

assignment function that maps the input/output places of the current substitution

transition in the current page to the places in the target page.

 A hypertext in the caT structure is a tuple, <HCPN, M0, D, W, B, Pl, Pd>, in which:

• HCPN is a hierarchical colored timed Petri net <S, ST, STM, IOM, I>;

• M0 : P → “token instances of Σ” is an initial marking (or initial state) for HCPN;

• D is a set of document contents;

• W is a set of windows;

• B is a set of buttons (or links);

• Pl is a logical projection for the document, Pl = <Dl,Wl,Bl>, which maps

components of a Petri net to the human-consumable portions of a hypertext;

• Pd is a display projection for the document, a collection of mappings that

associate the logical buttons and windows of a hypertext with physical screen

representations and locations.

3.2.2 Context-aware hypertext model

We begin with the χTrellis implementation developed by Stotts et al., and add several

features to it to provide the context-aware hypertext model—i.e., the caT model. This

section describes the details of the implementation of the caT model.

44

3.2.2.1 Structured tokens

Each colored token can carry its own local variable/value pairs; the tokens with the local

values are called structured tokens. Structured tokens allow net status information to be

associated with the token rather than requiring its encoding into the state of the Petri net.

This feature helps to reduce specification complexity.

 For example, Figure 3 shows two colored tokens, black and pink, with three local

variable/value pairs: class, user, and enterTime (the behavior of the net will be discussed

in the next sections). The local token values can represent dynamically-changing

characteristics of the current token, and the token values can be updated while moving

around the net. Petri nets supporting structured tokens provide different behavior to

different valued tokens.

 For hypertext applications, each colored token may represent a different reader who

is in a dynamically-changing environment. With this token information, caT can provide

different behavior to the user under different contexts (e.g., different access times, such

as morning, evening, spring, and winter). Users can share the same Petri net, but have

context-aware, customized views from the net. On the other hand, in a CSCW

application, the colored tokens might represent different roles (e.g., access control).

 Providing an individual identity to tokens requires a mechanism that determines what

values should be used if tokens are combined or replicated during transition firing. In

caT, these transformations will be specified through predicates associated with the arcs

between the transition and the place. The token expressions are used for this purpose,

45

and different color variables in the expression are instantiated to different color tokens.

Table 1 describes the syntax and gives examples of the token expression.

Figure 3: caT Petri nets: colored tokens with local variable/value pairs

 For instance, in Figure 3, the notation on the arcs from P1 to T1 and from T1 to P2

defines a variable, r. The color of the token from P1 that is consumed when T1 fires

must match the color of the token deposited into P2 since the notation on the arcs

defines the same variable, r. Additionally, a constant value can be used on the arcs for

specifying the constant (same) color, such as black and green1. This definition of

 Before Fire After Fire

r

r
Select black

r

r

time: (20, 100)

condition:

 (r.w.class ==‘oncampus’ ||

 r.u.userType == ‘faculty’)

Black:{ (class,‘oncampus’)
 (user, ‘tom’)
 (enterTime, ‘’)}
Pink: { (class,‘offcampus’)
 (user, ‘david’)
 (enterTime, ‘’)}

Black:{ (class,‘oncampus’)
 (user, ‘tom’)
 (enterTime, ‘15:30’)}

Pink: { (class,‘offcampus’)
 (user, ‘david’)
 (enterTime,‘’)}

expr:(r.w.enterTime =

 send(time1.currTime())

P1

P2

P1

P2

T1 T1

46

variables was provided in ÷Trellis. caT, however, must extend the notation, as will be

described next.

Table 1: Syntax of the token expression

<VAR_EXP>* ::= <LIST_OF_TERM>

<LIST_OF_TERM> ::= <TERM> | <TERM> ‘+’ <LIST_OF_TERM>

<TERM> ::= integer**<COLOR>

<COLOR> ::= <VARIABLE> | <COLOR_CONSTANT>

<VARIABLE> ::= string[:integer]

<COLOR_CONSTANT> ::= black | blue1 | blue2 | blue3 | magenta1 | magenta2|
 magenta3| magenta4 | green1 | green2 | green3 |
 green4 | pink1 | pink2 | pink3 | pink4 | maroon1 |
 maroon2 | maroon3 | maroon4| red1 | red2 | red3 |
 red4 | orange1 | orange2 | orange3 | orange4 |
 purple1 | purple2 | purple3 | purple4

*: <BRACKETS> is a non-terminal symbol; ‘quotes’ is a terminal symbol.
**: Italic value is a terminal symbol (or a constant value).
Examples:
 2black // specifies 2 tokens of black color
 2x + 3y // specifies 2 tokens of one color (x) and 3 tokens of a second color (y).

 In Figure 4, the notation on the input/output arcs of the T1 transition defines a

variable, r. However, the color variables have an additional identifier after the variables,

such as r:1 and r:2. The additional identifier is necessary to merge control flows of the

same colored tokens that may have different token values. For example, black tokens in

P1 and P2 have different token values: black in P1 has three local token values, while

47

black in P2 has no local token values. The black token extracted from P1 when T1 is

fired is deposited into P3 since the notation on the arcs defines the same variable, r:1.

Similarly the black token extracted from P2 is deposited back into P2.

Figure 4: caT Petri nets: flow control specification of colored tokens

3.2.2.2 User modeling

Each caT colored token can have a link to a user-modeling profile that contains

information associated with the user’s preferences and with the external world. For

example, profile data might include a user’s ID or information about a user’s educational

background or job category. caT can use this user modeling information, in addition to

 Before Fire After Fire

r:1 r:2

r:1
Select black

r:1 r:2

r:1

time: (20, 100)
condition:
 (r:1.w.class ==‘oncampus’ ||
 r:1.u.userType == ‘faculty’)

Black:{ (class,‘oncampus’)
 (user, ‘tom’)
 (enterTime, ‘’)}
Pink: { (class,‘offcampus’)
 (user, ‘david’)
 (enterTime, ‘’)}

Black:{ }
Pink: { }

r:2 r:2

Black:{ (class,‘oncampus’)
 (user, ‘tom’)
 (enterTime, ‘15:30’)}

Pink: { (class,‘offcampus’)
 (user, ‘david’)
 (enterTime, ‘’)}

Black:{ }
Pink: { }

expr:(r:1.w.enterTime =
 send(time1.currTime())

P1 P2

P3

P1 P2

P3

T1 T1

48

local token values, to customize its behavior to different users. When a user does not

have a user profile in the system, predefined default values stored in the default user

profile are used.

 Additionally, a process external to the caT system might maintain a record of the

user’s current location—this location information is communicated to caT by updating

the associated user-model profile value. Consequently, the user model profile is visible

globally, and hooks are provided to allow modification of its values by external

processes; compare this to the local token value/variable pairs, which are maintained

separately for each individual token.

 For context-aware applications, user modeling may help supplement the limits of

current sensor devices. In the real world, some sensor devices are not available to

common users, and sometimes it is impossible to get some environmental data from the

sensor devices, such as whether or not the user is busy. Moreover, we can use the user-

modeling feature for simulating a pretend world; the user may want to see context-aware

information by simulating his context information in the user profile.

3.2.2.3 Link adaptation

For supporting dynamic link adaptation, conditional statements (or conditional

predicates) attached to transitions determine the threshold values for transition firing.

The conditional statements are evaluated with the current user model and token values—

Table 2 describes the syntax and examples of the conditional statement. Therefore, caT

can provide different user behavior with different token and user model values. caT’s

49

conditional predicate is similar to a Storyspace guard field [Joyce 1991]. However, in

addition, caT can provide different behavior to a user under different contexts (e.g.,

different access times, such as morning and evening, spring and winter, etc.).

Table 2: Syntax of the conditional statement

<CONDITION> ::= <OR_CONDITION> | <AND_CONDITION>

<OR_CONDITION> ::= <OR_CONDITION> ‘||’ <EXPRESSION> |
 <EXPRESSION>

<AND_CONDITION> ::= <AND_CONDITION> ‘&&’ <EXPRESSION> |
 <EXPRESSION>

<EXPRESSION> ::= ‘(’ <TOKEN> <OPERATOR> <TOKEN> ‘)’

<OPERATOR> ::= ‘==’ | ‘!=’ String
data
type <TOKEN> ::= ‘string’ | <VARIABLE>

<OPERATOR> ::= ‘==’ | ‘!=’ | ‘<’ | ‘>’ | ‘<=’ | ‘>=’

<TERM> ::= <TERM> ‘+’ <PRIMARY> |
 <TERM> ‘–’ <PRIMARY> | <PRIMARY>

<PRIMARY> ::= <PRIMARY> ‘/’ <TOKEN> |
 <PRIMARY> ‘*’ <TOKEN> | <TOKEN>

Nume
rical
data
type

<TOKEN> ::= integer | float | <VARIABLE> | fis() | send() |
 ‘(’ <TERM> ‘)’

<VARIABLE> ::= colorVariable.w.tokenVariable |
 colorVariable.u.userProperty

Examples:
 For string date type operation:
 r.w.class == ‘oncampus’ ; r.w.class != ‘oncampus’

 For numerical data type operation:
 r.w.accessRight >= (0.8 * 2)

 (r.w.accessRight >= fis(./libcat/accessright.fis,10,100)) || (r.w.network !=
 ‘128.194.147’)

50

 In the conditional statements, local variables of tokens and user profile property

values can be accessed. The following syntax is used for accessing a local variable of the

current colored token: colorVariable.w.tokenVariable. For example, in “r.w.class”, “r”

is a color variable that is instantiated to the current color token, and “w” denotes that the

following variable, class, is a local variable of the current token. For accessing a user

profile property value, the following syntax is used: colorVariable.u.userProperty. For

example, in “r.u.userType”, “r” is a color variable, and “u” denotes that the following

variable userType is a user profile property. A specific user profile, implemented as a

plain ASCII file, is identified by the value of the current token’s user variable. If there is

no user variable in the current token, the default user profile is accessed.

 For example, in Figure 3, the T1 transition has a following condition statement:

r.w.class == ‘oncampus’ || r.u.userType == ‘faculty’. Only the black token satisfies the

condition; the pink token, which has the userType value as student in its user profile,

does not satisfy the condition. The black token can therefore only be enabled and fired

for T1. When the T1 transition is fired, a colored token (i.e., the black token) in P1

carries its own local variable/value pairs to the output place (i.e., P2) with a new

enterTime value (the output arc expression will be discussed later in this section). The

condition statement in Figure 4 has the same statement as the one in Figure 3 except for

the additional identifier specification after the color variable, which allows specifying

one of the same colored tokens in input places.

51

 In the condition statement, some functions can be used for getting external values.

The “send()” function is used for calling system-support functions; “fis()” is used for

invoking an external fuzzy logic engine. The detailed description of these functions will

be discussed in the next section. The conditional predicates can be used with caT’s

timing values to provide more dynamic control of the reader’s traversal. Timing values

can be thought of as defining ranges for the availability of an event (refer to the formal

definition of the Trellis model in the Trellis section of Chapter II). For example, in

Figure 3, the T1 transition has a time value, (20,100). T1 will be enabled after 20 time

units (i.e., seconds) delay, and fired automatically by the system unless the user fires the

transition within 100 time units.

 Therefore, when both the conditional and timing predicates are defined, they must be

satisfied at the same time before the transition can be active. This allows the

specification of transition conditions such as: “show a link to a reader who accesses this

document during daytime and has looked at the document for at least 3 minutes”. In this

example, the “daytime” condition would be evaluated through the conditional predicate,

while the “at least 3 minutes” requirement would be specified with caT’s timing values.

 Additionally, assignment statements attached to output arcs are used for changing

current token values while the token moves around the net. For example, in Figure 3, an

arc between the T1 transition and the P2 place has the following arc assignment

statement: r.w.enterTime = send(time1.currentTime()). The send(time1.currentTime())

function returns the current time, and the return time value is assigned to the enterTime

52

variable of the current token. Thus, when the T1 transition is fired, the black token in P1

carries its own local variable/value pairs to the P2 place with a new enterTime value:

{(class,‘oncampus’), (user,‘tom’), (enterTime,‘13:30’)}. Table 3 describes the syntax

and examples of the assignment statement. In the assignment statement, the send() and

fis() functions can be used to get external values.

Table 3: Syntax of the assignment statement

<ASSIGNMENT> ::= <VARIABLE1> ‘=’ <EXPRESSION>

<VARIABLE1> ::= colorVariable.w.tokenVariable

<EXPRESSION> ::= <TERM> | ‘string’

<TERM> ::= <TERM> ‘+’ <PRIMARY> |
 <TERM> ‘–’ <PRIMARY> | <PRIMARY>

<PRIMARY> ::= <PRIMARY> ‘/’ <TOKEN> |
 <PRIMARY> ‘*’ <TOKEN> | <TOKEN>

<TOKEN> ::= integer | float | <VARIABLE2> | fis() | send() |
 ‘(’ <TERM> ‘)’

Nume-
rical data
type

<VARIABLE2> ::= colorVariable.w.tokenVariable |
 colorVariable.u.userProperty

Examples:
 For string date type operation:
 r.w.class = ‘oncampus’ // need single quotation marks for the string value
 For numerical data type operation:
 r.w.accessRight = (0.8 * 2)

 r.w.accessRight = fis(./libcat/accessright.fis,10,100)

53

 As a result, the extended net description functionality (i.e., the conditional and arc

assignment statements) provides adaptive links and the user can browse adaptive

documents based on the adaptive net behavior.

3.2.2.4 Hierarchical nets

One problem with the Petri net model is that users have difficulty specifying large,

complex nets. Thus, structured authoring support (i.e., hierarchical nets) is essential for

developing large-sized Petri net applications since it reduces graphical complexity

problems that are common to graph-based modeling tools. Structured authoring support

also allows easy system tracing for simulation and debugging purposes since large nets

can be modularized.

 In Trellis, a Petri net engine can hold only one net. Thus, hierarchical subnets are

handled by the browser—a browsing tool invokes the subnet using a content attribute of

a place, and causes invocation of a new, independent instance of the Petri net engine to

handle its execution in a loosely-coupled fashion. Consequently, there are no closely-

coupled interactions between subnets, such as control-flow coupling or data value (i.e.,

token value) passing.

 caT incorporates a hierarchical Petri net (which is one of the features of the high-

level Petri net) into the Trellis model—we mainly follow the hierarchical Petri net model

introduced in Jensen [1992]. caT shifts the responsibility for subnets from the browser to

the Petri net engine. Essentially, this shift combines the nets into a single unit. Shifting

hierarchical net handling from the content-level (i.e., a browsing tool) to the net

54

structure-level (i.e., an information server) will be more appropriate for providing

flexible interactions among subnets.

 Therefore, in caT, the Petri net engine has been extended to handle multiple subnets

that are hierarchically linked. Additionally, a multiple-window-based authoring tool has

been built to allow for the building and browsing of hierarchical subnets. The subnets

can be used like functions (or macros) in high-level programming languages. This

feature increases their reusability.

 In caT’s representation, a transition in a higher-level net may be mapped to a

separate subnet (see Figure 5) The transition that is expanded to the subnet is called the

substitution transition. Additionally, places in the higher-level net are mapped to places

in the subnet—generally, the input to the subnet corresponds to places that lead into the

substitution transition, and the output from the subnet corresponds to places that come

from the substitution transition. When a token arrives in a mapped place, it appears

simultaneously in both nets. Consequently, tokens in the higher-level net are first

conveyed to the subnet, and then back from the subnet to the higher-level net.

 The advantage of expanding a transition rather than a place is that this permits

specification of multiple input and output places—if we had chosen to expand places,

the natural mapping would allow only a single input and a single output place.

Alternatively, a place could be expanded to the lower-level net where specification of

multiple input/output (or start/finish) transitions is allowed—e.g., in the MORENA

model [Botafogo and Mossé 1995], a place can map to the lower-level net that has

55

multiple input transitions. In this case, we need a specification for selecting one of the

input transitions in the lower-level net from the place in the higher-level net. We also

need a specification for connecting the output transitions in the lower-level net to the

places in the higher-level net. This multiple input/output transitions scheme is more

complicated and less natural for specification than the scheme (i.e., multiple input/output

places) used in caT.

ClassifyUser

WebTraverse

Input/output Mapping
(ClassifyUser ->
 ClassifyUser,
 WebTraverse ->
 WebTraverse)

ClassifyUser

WebTraverse

CalcTime

Check_Status

Substitution
Transition

Subnet invocation
classify_user

Main Net Subnet

Figure 5: Subnet specification

56

 In Figure 5, the subnet (the net on the right side) is associated with the classify_user

transition in the main net. The main net’s ClassifyUser place is mapped to the subnet’s

ClassifyUser, and the main net’s WebTraverse place is mapped to the subnet’s

WebTraverse (the names are not required to match, but this is permitted, as in this

example). Note that the token in the main net’s ClassifyUser place has been replicated in

the subnet’s ClassifyUser place.

 For a more detailed explanation in this chapter, we will consider a simple example of

an online art gallery, which provides a complete set of resources to its “on-campus”

patrons and a limited one to its “off-campus” patrons. In this example, the gallery’s

owners have decided that full access (on-campus-access) will always be allowed for

patrons on the campus subnet. It also will be allowed during daytime hours for people

located physically near the campus or for faculty members regardless of their location.

The specification of the example consists of seven subnets. Figure 6 shows the segment

of the specification that first classifies the current user as being “on-campus” or “off-

campus” before invoking the Gallery_tour:#2 subnet shown in Figure 7. The figures are

actual snapshots of the subnets displayed in caT’s authoring tool, and irrelevant subnets

are iconized.

 Beginning in the subnet Start_tour:#1 in the left side window, user tokens will be

placed initially in the ReaderPool place. Each colored token has the following local

token variable/value pairs: user, accessRight, class, network, and currentTime. The user

and network values will be set initially, and the other values are inferred or calculated by

57

the system. A user profile for each user has the following values: disToCampus (distance

from a current location to campus) and userType (user occupation).

Figure 6: Classify user in gallery tour

 The Calc_currentTime transition has a timing value of (0,0). (0,0) means no delay

and no timeout; therefore, the Calc_currentTime transition will be executed immediately

by the system when it is enabled. When the Calc_currentTime transition is fired, the

currentTime value gets a new current time value by executing an expression that is

attached to the output arc of the Calc_currentTime transition: r.w.currentTime =

58

send(time1.currTime()). “r.w.currentTime” is used for accessing the local token variable

currentTime of the current colored token. The “send(time1.currTime())” function is used

for calling a system-support time function that returns the current time of day. When the

Calc_currentTime transition is fired, a colored token in ReaderPool carries its own local

variable/value pairs to the output place (i.e., ClassifyUser) with a new currentTime

value.

 Figure 7: Show lion in gallery tour

59

 Next, the subnet Classify_user:#6 associated with the Classify_user transition in the

main net is invoked. The subnet’s CalcTime place is mapped to ClassifyUser, and its

Branch place is mapped to EndClassify—note that the token in ClassifyUser has been

replicated in CalcTime. In caT’s authoring tool, the large dot in the center of the place

indicates that it has been marked. The smaller, colored dots around the perimeter of the

place show which color token(s) is (are) included, and the adjacent number outside of

the perimeter shows how many tokens of that color are present. In the authoring tool, the

subnet name located on each window’s title bar copies the source transition’s name and

has an additional unique number after the name; an inactive transition is represented as a

black rectangle; fireable transitions are flagged by coloring them red. A subnet transition

is represented as a rectangle with empty fill. The rectangle is filled with pink color when

there are active transitions inside of the corresponding subnet.

 Using the current user’s context information, the Classify_user:#6 subnet mainly

classifies the current user as being “on-campus” or “off-campus”. Here, the following

statement on the output arc of Calc_accessRight determines whether the user fits either

of the “high access” conditions: r.w.accessRight = fis(./libcat/accessright.fis,

r.w.currentTime, r.u.disToCampus). The “fis()” function invokes a fuzzy inference

engine to infer an accessRight value from the specified rulebase with input values of the

current user’s location (disToCampus) and the previously-acquired time-of-day

(currentTime)—the accessright.fis rulebase will be discussed in the later section. The

current user’s location information is stored in the user profile. We assume that the

location information is maintained by mechanisms outside of the caT system (e.g.,

60

environmental sensor devices and related computer tools). The time-of-day value is

carried in a local variable of the token.

 When a token arrives at the Check_Status place, either the Off_campus or the

On_campus transition is enabled to assign a classification to the user. Each condition

statement attached to its transition is evaluated with the current token and user profile

values. The condition predicate in Off_campus is “(r.w.accessRight < 0.8 &&

r.w.network != ‘128.194.147’ && r.u.userType != ‘faculty’)”, while the condition in

On_campus is “(r.w.accessRight >= 0.8 || r.w.network == ‘128.194.147’ ||

r.u.userType == ‘faculty’)”. When the current token’s inferred accessRight is larger

than or equal to 0.8 (this figure is rather high), its network is ‘128.194.147’ (if you want

to specify only the first two octets of the IP address, ‘128.194’ can be used instead), or

its userType is ‘faculty’, the On_campus transition is enabled; otherwise, the Off_campus

transition is enabled. When the transition is fired, the assignment statement (r.w.class =

‘oncampus’ or r.w.class = ‘offcampus’) attached to the output arc of the transition

assigns the appropriate classification value to a variable carried by the token.

 The system will then classify the current user as being “on-campus” or “off-

campus”. After the user is classified, a token is in both the Branch and EndClassify

places, so the token will move to the WebTravers1 place in Start_tour:#1. The system is

now ready to invoke the Gallery_tour:#2 subnet shown in Figure 7. Up to this point,

since all of the transitions have the time values (0,0), they are executed by the system

without interaction with the user.

61

 The net in the left window of Figure 7, Gallery_tour:#2, specifies a path for

traversing three image pages in sequential order. The subnet on the right of the figure

displays a graphical version of an image to the “on-campus” user and a text-only version

to the “off-campus” user. Either version includes help information (irrelevant subnets are

iconized). In this case, as the window name suggests, the image is that of the lion, and

the subnet is associated with the show_lion transition in the main net.

 In the figure, the subnet’s input place is mapped to lion, while its output place is

mapped to finish. Note that the token in lion has been replicated in input. There are three

subnet mappings defined in Figure 7. In caT, the parent net can pass presentation-related

values such as the contents (i.e., file names) of the image or text places in show_lion:#3

to child subnets. Using the same subnet, all three subnet transitions in Gallery_tour:#2

expand to the same structure, but each subnet transition passes different display

information. In the figure, when the Oncampus transition in show_lion:#3 is enabled and

invoked, the image, text, and template places get tokens. Then, the Web browser will

display the contents of the image and text places for an “on-campus” user (the use of the

template node for Web presentation will be discussed in a later section). On the other

hand, when the Offcampus transition is enabled and invoked, the text and template places

get tokens. The browser will then display the contents of the text places for an “off-

campus” user. As a result, the online art gallery provides a complete set of resources to

its “on-campus” patrons and a limited one to its “off-campus” patrons.

62

3.2.3 Fuzzy knowledge handling

In the real world, we need to handle uncertain knowledge everyday. This fact applies

also to context-aware applications, where we need to handle uncertain user contexts.

Fuzzy tokens have been proposed for Petri nets [Cardoso et al. 1996], but we decided

that introducing fuzzy logic into the current model would result in an unnecessarily

complex, fuzzy Petri-net-based model. Consequently, caT keeps the Trellis Petri net

model, and invokes an external fuzzy logic engine when necessary. caT uses the fuzzy

logic engine in evaluating conditional statements used for link adaptation as well as for

updating values in local variables on the transition firing.

 Matlab Fuzzy Logic Toolbox [The Mathworks, Inc. 1999] is used as caT’s fuzzy

logic engine. The rulebase and membership functions are authored by using Matlab’s

GUI-based toolbox; i.e., FIS (Fuzzy Inference System) Editor, Rule Editor, Membership

Function Editor, Rule Viewer, and Surface Viewer.

 In caT, the following function for invoking an external fuzzy logic engine is

provided: fis(rulebase name, argument1, …, argumentN). The first argument is a

rulebase name, and the following arguments are either local token values or user profile

values. In order to provide an example, we return to our earlier art gallery. In the art

gallery example, the user’s access right (accessRight) value is inferred by invoking the

following “fis()” function: fis(./libcat/accessright.fis,r.w.currentTime,r.u.disToCampus).

The first argument is a rulebase name for inferring the access right value

(accessright.fis), and the following arguments are additional argument values: the user’s

63

access time (currentTime) and the current location (disToCampus). The accessright.fis

rulebase is as follows:

Rule1: If (time is day) and (distance is close)

 then (accessRight is high) (1)

Rule2: If (time is day) and (distance is middle)

 then (accessRight is middle) (1)

Rule3: If (time is day) and (distance is far)

 then (accessRight is low) (1)

Rule4: If (time is not day)

 then (accessRight is high) (1)

 Generally, the rulebase infers an access right (accessRight) value from the current

user’s access time and distance. When the current time is day, users who are close in

distance get high access rights. However, when the current time is not day, all users get

high access rights, regardless of their distance. Fuzzy terms such as day, close, middle,

and far are defined by membership functions. A membership function is a curve that

defines how each point in the input space is mapped to a membership value (or degree of

membership) between 0 and 1.

 For example, a membership function for a fuzzy term day is shown in Figure 8. In

the figure, when time (on the horizontal-axis) is between 9:00AM and 5:00PM (17:00),

the membership value of day (on the vertical-axis) is 1. On the other hand, when time is

64

between 8:00PM and 4:00AM, the membership value is 0. Even further, when time is in

a fuzzy range, the membership value is between 0 and 1. For example, when time is

6:00AM, the membership value is around 0.5. Since the membership function defines

the meaning of a fuzzy term, the user can specify his (or her) meaning for the fuzzy term

(day) by adjusting the membership function. In a similar fashion, the other fuzzy terms

such as close, middle, far, high, middle, and low are defined by membership functions.

Figure 8: A membership function for day

65

 Figure 9 shows an output window of Matlab’s Rule Viewer for the accessright.fis

rulebase. The Rule Viewer shows a general overview of the current rulebase with its

membership functions, and it shows a result value when the user simulates input values.

According to the figure, the access right value is 0.903 when time is 2:00AM and

distance is 80 miles. The detailed algorithms for inferring a result value from the fuzzy

rulebase are described in [The Mathworks, Inc. 1999; Yen and Langari 1999].

Figure 9: Matlab’s Rule Viewer for the sample rulebase

66

3.2.4 Flexible information presentation

caT (and Trellis) supports good separation between document specification and

presentation. This separation allows multiple presentations of a particular document’s

specification. A reader can choose the appropriate presentation for a document by

selecting a browser, or he (or she) can use multiple browsers simultaneously. Moreover,

when read by multiple readers simultaneously, the behavior of documents can be

specified to range between shared and separate. Consequently, distributed readers can be

specified to be unaware of each other, sharing the document’s specification, but each

with an independent view of the document. Alternately, one reader’s action may be

specified to affect another reader’s view of documents. This specification allows for

sharing in cooperative environments.

 In Trellis, a browser called xtb displays the content associated with each active

place in a separate window. In caT, we developed additional browsers for multiple

presentations of a particular document’s specification: an image browser displays only

the image content associated with each active place; a text browser displays the text

content; and the authoring tool, which is another client browser, shows the multiple

subnets’ status changes when it is in a simulation mode (a mode that is especially useful

to the author).

The reader also can browse the caT model using Web browsers such as Netscape

Navigator. The Web-based browsing feature of caT allows the user to define

sophisticated hypertext applications using the caT model and to browse the resulting

67

information using the familiar user interface of WWW (World-Wide Web) browsers.

For example, Web pages generated by the caT model easily may inherit timing features

(e.g., time-based access control) from caT. The support for browsing with Web browsers

provides a connection between the caT hypertext model and the WWW to derive

synergy from the two different models. caT (and Trellis) provides flexible hypertext

modeling features, but the WWW has been more widely accepted due to the simplicity

and availability of its browsers. Web-based flexible information presentation will

increase the usability of caT.

The design of the earlier Trellis browsers assumed that the display environment

would be a workstation-based windowing environment. Consequently, the browsers

have made free use of multiple windows. For example, χTrellis’s xtb displays the

content associated with each active place in a separate window. When the content is

textual, the window also allows for the selection of the associated links. However, when

the content requires invocation of an external rendering program (e.g., when images are

displayed by invoking the xv program), the available links appear in a separate control

window.

In the World-Wide Web, information presentation is browser-centered rather than

screen-centered, and scroll-based rather than card-based. While it is possible to support

multiple-window displays in the Web context (see, for example, Chung [1997] and

Shipman et al. [2000]), the commonplace information presentation is in a single window.

After evaluating the different possible implementations of a Web-based presentation, we

68

decided that the most natural representation would be as a composite node—with the

active content elements and links displayed as a single Web page. The composite node

has been used in other hypertext models or systems: for example, the Dexter model

[Halasz and Schwartz 1990] defines composite components that are constructed out of

other components; the document in the Augment system [Englebart 1984] is a tree-

structured composition of atomic components called statements; and the filebox concept

in NoteCards [Halasz 1988] provides hierarchical organizational structures using a

composition mechanism.

 In caT, a template file (Meta file) specifies how active content elements are to be

displayed and how links are to be embedded. The template file is simply another Trellis

content type associated with a place. It takes control when its associated place is marked;

consequently, different template files can be active at different times during a browsing

session. The resulting Web page is a virtual composite node constructed from several

atomic nodes. Only active caT content elements are used in generating the Web

presentation of the composite node. Thus, based on the current net state, the Web display

changes dynamically.

 The template file is, essentially, an HTML page with place-holders indicating where

information is to be embedded when the corresponding places are marked. The Template

file has the following format (the default value for each option attribute is underlined):

69

<Template [[multiple_frame = “yes_3frame” | “yes_2frame” | “no”]
 [linkbullet_show = “yes” | “no”]]>
<Transition name = “[placeName^]transitionName”
 [[activelink_name = “activeTransitionName”]
 [inactivelink_name = “inactiveTransitionName”]]>
<Place name = “placeName”
 [[link_display = “all” | “none” | “show: ‘transName1’,…,‘transNameN’”]
 [link_location = “below” | “above”] [link_sort = “yes” | “no”]
 [link_duplicate = “yes” | “no”]]>

 Each template file has a <Template> construct placed in front of the other

constructs. Any number of <Transition> and <Place> constructs follow the

<Template> construct, while descriptive text can be placed in between constructs. In

general, <Template> specifies global settings for current page generation. <Transition>

specifies an embedded link that corresponds to a link in a current subnet. <Place>

specifies a target place and display options for the output links of the place.

 A detailed description of each construct in the template file is provided below.

a) The <Template> construct:

• <Template> specifies global settings for current page generation. Each template

file has one <Template> construct placed in front of the other constructs

(<Transition> and <Place>).

• multiple_frame sets for frame-based or frameless display. The frame-based

display has three frames. The left control frame replicates the transition-

associated links (called “caT links” in order to distinguish them from WWW

70

links). The controls in the top frame are provided for debugging purposes

(selection of color tokens and applications). The main contents are shown in the

main display frame that is located to the right of the control frame and below the

top frame. When multiple_frame is set to “yes_2frame”, the frame-based display

has two frames: the left and main frames.

• linkbullet_show specifies whether or not caT links should be displayed with a

preceding bullet. If it is set to “yes”, this feature allows the user to differentiate

caT links from normal Web links.

b) The <Transition> construct:

• <Transition> specifies an embedded link. This embedded link corresponds to a

link in the current net within the template’s content. We also can use the

<Transition> construct within the place’s content documents.

• name specifies a target transition in the current net. When there are several same-

named transitions, a place name, in addition to a transition name, can be used

together for identifying the target transition. Additionally, when name is a

variable name (variable names have a ‘$’ in front of the “name” to produce

“$name”), the value of the variable is used for display. Each subnet can have

global variable/value pairs.

• activelink_name is used for specifying the link name for display when the target

transition is active (or enabled). If the target transition is active and

activelink_name is not specified, the name value is used instead.

71

• inactivelink_name is used for specifying the link name for display when the

target transition is inactive. If the target transition is inactive and

inactivelink_name is not specified, the link name will not be shown to the user.

This allows dynamic display of links based on current net state.

c) The <Place> construct:

• <Place> specifies a target place and display options for its output links. The

<Place> construct is replaced with the content of the target place only when the

corresponding node is active. We expect that the user mainly uses the <Place>

construct rather than the <Transition> construct unless he (or she) needs to

control display layouts.

• link_display specifies an option for generation of a place’s output links. When

link_display is set to “all”, all enabled output links are displayed. When it is set

to “none”, the links are not displayed. For selective display of the output links,

explicit links can be specified using “show:‘transName1’,…,‘transNameN’”,

where N is an integer.

• link_location specifies the display location of the links. When link_location is set

to “below”, the output links are displayed below the content of the place. When it

is set to “above”, links are displayed above the content.

• link_sort specifies a sorting option for controlling the order of enabled links.

When link_sort is set to “yes”, the output links are displayed in alphabetical

order.

72

• link_duplicate specifies whether or not output links are allowed to be duplicated.

Since an enabled transition can be adjacent to more than one marked place—in

other words, since a link may lead from multiple content elements—this

link_duplicate specification is necessary. Additionally, some of the output links

might already be generated using the <Transition> construct above the <Place>

construct. When link_duplicate is set to “yes”, the output links are displayed

without considering link duplications.

 As an example of using the template file, reconsider the show_lion:#3 subnet in

Figure 7. The content associated with the subnet’s place, template, is a simple template

file that directs the display of a full version of the page to an “on-campus” user and a

limited one to an “off-campus” user. The template specification is as follows:

<Template multiple_frame=“no”>
<Place name=“help” link_location=“above”>
<Place name=“text” link_display=“none”>
<Transition name=“$linkname”>
<Place name=“image”>

 The first line specifies that the output page will be frameless. The second line

specifies that the output links attached to the help place will be displayed automatically

before the content of the help place. The third line specifies that the output links attached

to the text place will not be displayed automatically. Instead, the text place’s content

document has <Transition> constructs specified within it as follows:

73

This is the text file enclosed with the lion picture.
Here is where some explanations about the lion picture must be located. If you need
help, click this <Transition name=“show_help” activelink_name=“Show Help”>
link. You can hide the help if you click this <i> <Transition name= “hide_help”
activelink_name=“Hide Help” inactivelink_name=“Hide Help (inactive)”></i> link.

 The above <Transition> constructs specify embedded links, which correspond to the

show_help and hide_help transitions in the show_lion:#3 subnet. In the constructs,

activelink_name and inactivelink_name are used for specifying the link names for

display when the target transitions are active and inactive, respectively.

 In the fourth line of the template specification, the <Transition> construct is used for

specifying an embedded link, which corresponds to one of the $linkname transitions in

the current subnet. Since $linkname is a variable name, the value of the variable will be

used for display. When no variable value exists, the default value, Next, is used for the

link display. The last line specifies that output links attached to the image place will be

displayed automatically after the content of the image place. Since $linkname is only an

output link of image, and because it has been already specified in the fourth line, in the

case of this example, no output link will be generated with this construct.

 In Figure 7, when the transition Oncampus is fired for an “on-campus” user, the

places image, text, and template are marked. The content associated with all three places

is therefore used for generating the current Web page (i.e., the image and text both are

shown, as structured by the template). The output Web document produced when the

transition Oncampus is fired is shown in Figure 10. In the figure, the caT links that are

74

mapped to active transitions in the net are distinguished with a preceding circle bullet,

while normal WWW links are shown without the preceding bullet. In the Web

document, selecting a caT link fires the associated transition. This changes the state of

the net and consequently the Web page display.

 However, when the transition Offcampus is fired for an “off-campus” user, only

places text and template are marked, so only their associated content is used in

generating the Web page (i.e., no image data is shown to “off-campus” users). In both

cases, when the help place is marked by firing the show_help transition, the content

associated with the help place will be added to the displayed Web page. Figure 11 shows

the output Web document when show_help is fired by an “on-campus” user. Note that

the plain text string “Hide Help (inactive)” in Figure 10(b) is changed to an active link,

“Hide Help”, in Figure 11(b).

3.2.5 Analysis of extended Petri nets

In the context of hypertext, one benefit of Petri net-based hypertext systems is that

authors can use Petri net analysis techniques to verify and validate the behavioral

characteristics of developed hypertext systems before they are handed over to users. In

Trellis, Stotts and Furuta [1989a] explored these techniques, illustrating that it is

possible to verify that all nodes in a hypertext can be reached via some path and that

certain nodes cannot be reached from particular initial markings, giving the basis for

access control. In addition, in the context of Trellis, Stotts et al. [1998] explored the

analysis of basic Petri nets for various browsing characteristics.

75

(a) when Oncampus is fired

(b) Web display

Figure 10: Show lion for the on-campus user

76

(a) when show_help is fired

(b) Web display

Figure 11: Show lion for the on-campus user with help information

77

 caT’s extensions, such as hierarchical nets, structured tokens, and conditional

predicates, have been designed to be consistent with Petri net theory. In caT, we have

built two kinds of analysis tools, which are integrated into the authoring tool to support

the author for net analysis. The first one is an interactive debugging tool and the second

one is an analysis tool with which, by building a Reachability Tree (RT), the author can

analyze the hierarchical Petri nets. The following characteristics can be verified by the

analysis tools: liveness (i.e., if a state m exists in which no transitions are enabled),

boundedness (i.e., if there is a place that has unbounded number of tokens), and safeness

(i.e., if every place has only one token). In Petri net analysis, in addition to dead

markings, boundedness is important since the tokens may represent limited system

resources. For example, in caT, if a place has unbounded number of tokens, the content

associated with the place may be undesirably displayed for all time. The place used for

access control may also malfunction if it has unbounded number of tokens.

 The debugging tool allows interactive analysis of the net while the author simulates

the nets. After the debugging tool is activated, if a dead link or an overflow place occurs

while the user fires transitions, warning message windows pop up. The system uses the

current analysis option value for boundedness (i.e., a maximum token number in a place)

to check overflow places. Additionally, the author can move backward from the current

marking since each transition fire is saved when the debugging tool is active. After

finishing the traversal, the author can replay the traversal path using a play button, which

presents each saved marking sequentially, from an initial marking to an end marking,

78

with a specified time interval (e.g., two seconds). The author can stop the playing at any

time to check the net status.

 After building Petri nets, the author can construct a RT using the analysis tool.

Before constructing a RT, the author sets analysis options: the maximum token number

in a place, the maximum analysis time, the maximum marking number, and the

maximum dead marking number. In general, the time complexity of a RT construction is

very expensive (it can take even more than a day for large and complex Petri nets).

Therefore, the author would likely start with moderate option values such as 3-minute

analysis time rather than unlimited time. Similarly, if the maximum token number is not

set, a RT may have infinite markings (especially when we analyze an unbounded net).

Therefore, authors are likely initially to set the overflow limit number to a small number

such as 5. The options modify the analysis tool’s behavior in generating a RT. For

example, if the number of tokens in a place reaches the limit number, adding tokens does

not increase the token count and is flagged as an overflow for that place. The maximum

marking number option allows specifying that the construction should finish when a

certain number of marking nodes have been constructed. The maximum dead marking

number allows specifying that the marking construction should stop when certain

numbers of dead markings have been found.

 When a RT is infinite or too large to be constructed by the available computing

power, it may still be of interest to construct a partial RT; i.e., a subtree of the RT. As

explained above, some analysis options allow the author to build a partial RT. However,

79

the analysis of a partial RT cannot give a total proof of the system correctness since

there are those reachable markings and occurring steps that are not present in the RT.

Nevertheless, a partial RT often allows the author to identify undesired properties of the

modeled system.

 In addition, since caT’s net states can be affected by external, dynamic data sources

(i.e., dynamic environmental data and the user model profile properties), we may need to

simulate the external data’s characteristics when building a RT. For example, in the caT

specification to get a real time value we use “send(time1.currTime())”. However, if this

function is used when we build a RT, it will take 24 hours of clock time in order to get

all markings with different time values. Therefore, as a substitute, we use an integer-

generation function that returns an integer in a specified sequence:

send(simuInt.getNext(instanceNum, startNum, endNum, increaseStep)). For instance, the

“send(simuInt.getNext(0,0,24,12))” function returns an integer in the following

sequence: 0, 12, 24, 0, 12, 24, … . If the current net considers only rough time ranges

(e.g., day and night), the above function may be enough. A float-generation function is

also available: send(simuFloat.getNext(instanceNum, startNum, endNum, increaseStep)).

 After building a RT, the author can see the analysis results, and return to the

markings that cause problems. At this point the author can check the net status, including

token values. In addition, the author can see marking lists (transition invocation

sequences), and trace the marking history to find problems. In the next chapter, the

80

analysis tools will be discussed in more detail. To provide examples for these analysis

tools, the gallery tour nets are analyzed.

81

CHAPTER IV

PROTOTYPE IMPLEMENTATION

4.1 Implementation details

The Trellis prototypes were implemented on the computer hardware and operating

system that were most common in Computer Science departments at that time.

Consequently, αTrellis was implemented in the late 1980’s on the Sun workstation that

runs Sun’s operating system and proprietary windowing package. χTrellis, implemented

in the first half of the 1990’s, was implemented on a Sun, but under X windows. The

specific widget packages used for χTrellis varied as to the time of implementation.

χTed, the Petri net editor, was implemented with the Athena Toolkit, while xtb, the

client that displays content, was implemented with the Motif widget set.

 The history of Trellis’ implementation, particularly the use of different widget sets in

χTrellis, leads to user interface incompatibilities. Its client-server architecture makes

invocation and configuration of the system more complicated than that of standalone

applications. However, the separation between client and server, and especially the

separation in χTrellis between Trellis engine and user interface, has the nice

characteristic of providing a degree of resiliency to the server. In particular, buggy

behavior by newly-developed clients in caT crashes the client, but generally does not

result in loss or corruption of data since the server is unaffected.

82

 caT is implemented as an extension to χTrellis and adopts that system’s distributed

client/server architecture model. Communication between client and server is through

Remote Procedure Call (RPC). The server has no visible user interface, but it does have

an API that allows other remote processes to invoke its functions for building, editing,

annotating, and executing Petri nets. caT’s clients are separate processes that generally

have visual user interfaces and communicate with one or more engines via RPC. Clients

collectively provide the necessary views, interactions, and analyses of a net for some

specific application domain. The general architecture of the caT system is shown in

Figure 12.

Java
Applet WWW

Browser

HTTP
server

Intermediate
Server
(in Java)

Information
Server (Petri
Net Engine)

SO
C

K
E

T

H
TT

P
Client
(Web
 browser)

Server
(Linux)R

P
C

JavaScript

Web Server Interface
(Web page display)

Information Server Interface
(Petri net related transactions)

Web
Documents

Store
Documents

R
et

ri
eve

D
o

cu
m

en
ts

Browser

R
P

C

Authoring
Tool

Autofire

RPC

RPC

Client
(Linux)

Figure 12: caT system architecture

83

 Incorporation of the extended features, including hierarchical nets, required

modification both to the Petri net engine and also to χTed. The incorporation of

hierarchical nets, however, was mostly transparent to the xtb browser. Support for

timed transitions had dropped from the χTrellis implementation, so an additional client

with no visual user interface called Autofire was added to support automatic firing of

transitions that have timing predicates. The detailed description of the system

components (i.e., the server and client modules) will be described in the following

subsections.

4.1.1 Information server

In Trellis, the information server (or the Petri net engine), which has no visible user

interface, implements the Petri net-based model (i.e., Petri nets that have places,

transitions, and arcs with annotation information) and provides the needed services that

allow other remote processes to invoke its functions for building, editing, annotating,

and executing Petri nets. The Trellis engine, called netserver, is written in C++. The

server process runs in the background and provides services to zero or more client

applications. Every netserver process runs with a specific net number that makes it

possible to have more than one server running on a given machine. The server also

allows clients to specify the net (document) with which they want to interact. Internally,

the net number is used as the version number for RPC calls. In caT, the information

server has been extended to handle its extended features such as structured tokens,

84

hierarchical nets, and flexible net description functions (e.g., condition statements for

transitions, assignment statements for arcs, and fuzzy logic tool invocation).

 In the server, a list of attribute/value (A/V) pairs is kept for each place, each

transition, each arc, and for the net as a whole. Some attributes are intrinsic to the object

to which they belong, whereas other attributes may be used by some specific application

or the server itself. The attributes for place, arc, transition, and net are listed and briefly

described in Table 4, Table 5, Table 6, and Table 7, respectively. Some attributes are

marked with a specific client application name, enclosed in square brackets, when they

are used only for the application—for example, [Web] indicates the attributes used only

for Web browsing. In addition, the attributes that are generated and managed only by

netserver are indicated in bold face and the attributes that are provided by caT but

are not by χTrellis are indicated with the “*” character. Most of the attributes in the

tables are easy to understand and, even though explicit attribute names have not been

mentioned, most of them have been already described in the previous chapters. Some

new attributes will be discussed in the later sections of this chapter.

 Trellis provides a simple language for external representation of the Petri net

structure, which has been designed to be parsed in one pass. Thus, using the net

description file, the net structure can be loaded into the server process as the initial net

structure. Also, the current net structure and its marking status can be stored in the net

description file. In caT, the simple language has been extended to represent structured

tokens. Each subnet is represented in a separate net description file. Therefore,

85

Table 4: Place attributes

Attribute Description

Contents File Name* Name of the file for the contents of the place
URL (http) can be specified also for the contents of the
place especially for Web browsing.

External Viewer [xtb] Name of the application called to render the file specified
as contents (if null, it assumes simple text content)

Label Name of the place

Location (X) Position of the place in the drawing area (x-coordinate)

Location (Y) Position of the place in the drawing area (y-coordinate)

Template File Name
[Web]*

Name of the template file

Note: the following notes are applied to Table 4, Table 5, Table 6, and Table 7.

: indicates an attribute that is provided by caT but not χTrellis (‘’ also indicates an
 attribute that is extended by caT)

[client name]: indicates an attribute that is used only for the named client

Table 5: Arc attributes

Attribute Description

Expression (assignment)* Assignment expression attached to the output arc for
updating current token values when the transition is fired

Token Expression* Variable expression used by the fire procedure

Hide Button [xtb] List of colors for which the arc is closed. The value “all”
is used to hide the arc for all colors. This is used when one
wants a button to be visible only from some of the places
enabling the transition for a particular color.

Label Name of the arc

86

Table 6: Transition attributes

Attribute Description

Condition* Conditional expression that specifies an additional constraint
(threshold) that must be fulfilled before the transition is enabled

Label Name of the transition

Location (X) Position of the transition in the drawing area (x-coordinate)

Location (Y) Position of the transition in the drawing area (y-coordinate)

Orientation Transition orientation (VERT, HORIZ)

Time* Pair of time values termed release time and maximum latency
respectively

When a time value is not declared, “(0,∞)” is the default value.

Subnet Display
Values*

List of variable/value pairs (especially, “Contents File Name” and
“Label” values) that are passed to the subnet to have different
behavior for instances of the same net definition

Subnet File
Name*

Name of the subnet file for the hierarchical net specification
When a transition has a subnet file name (called substitution
transition), it will be expanded until there are no substitution
transitions specified in the subsequent subpages.

Subnet ID* Subnet identification number

Subnet
Input/Output
Map*

List of variable/value pairs used for mapping input/output places of
the substitution transition in the current page to the places in the
target page

Substitution List of one or more sets of values for the variables in case that the
transition can be fired

Table 7: Net attributes

Attribute Description

Net File Name* Name of the current net description file

Net Window Title Name* Name of the current canvas window title

Token Structure* Token type value (a list of token variable/value pairs)
used for token instantiation (or creation)

__Annotation* Annotation for the current net

87

hierarchical nets may be represented using several net description files, which are

hierarchically connected.

 Table 8 shows the syntax for the net description file. Nonterminals are in

<BRACKETS>, and terminals are in ‘quotes’. The term integer represents a digit

sequence, and all <UID> are assumed to be completely unique. The format used to store

the net file is ASCII. This ASCII format is easy to read, so it can be modified using any

text editor. However, the net file is usually not edited manually since the authoring tool

takes care of generating (or updating) it. Additionally, the user profile, used to support

user modeling, is represented as a plain text file. Each profile for a user has a list of

attribute/value pairs.

4.1.2 Authoring tool

Although graphical editing is only one of many possible ways to generate Petri nets,

Trellis prototypes have used a graphical net editor for specification of the hypertext. An

early investigation in the Trellis project defined a textual C-like language, called Alphα

[Stotts and Furuta 1989b; Stotts and Furuta 1989c], which could be used to define Trellis

hyperprograms. This specification mechanism was not included in Trellis prototypes

because of practical issues—for example, determining how to present properly formatted

graphical representations of the net.

88

Table 8: Net description file

<FILE> ::= <VERSION> <NET> <DESCRIPTION> <MARKING>

<VERSION> ::= ‘#V’ integer anything_else <EOL>
version is the version number of the description language

<EOL> ::= CR | NL | TAB

<NET> ::= ‘n’ <UID> <ATTR_VAL_LIST> ‘;’
<UID> identifies a net

<UID> ::= integer

<ATTR_VAL_LIST> ::= <ATTR_VAL_LIST> <ATTR_VAL> | empty

<ATTR_VAL> ::= ‘(’ <ATTR> ‘,’ <A_VAL> ‘)’

<ATTR> ::= a sequence of chars formed from numbers, letters, and a
underline character

<A_VAL> ::= ‘“’ a sequence of chars ‘”’

<DESCRIPTION> ::= <ITEM> <DESCRIPTION> | empty

<ITEM> ::= <PLACE> | <TRANSITION> | <ARC> | <COMMENT>

<PLACE> ::= ‘p’ <UID> <ATTR_VAL_LIST> ‘;’

<TRANSITION> ::= ‘t’ <UID> <ATTR_VAL_LIST> ‘;’

<ARC> ::= ‘a’ <UID> <ARC_INFO> <ATTR_VAL_LIST> ‘;’

<ARC_INFO> ::= ‘[’ <UID> ‘,’ <UID> ‘,’ <UID> ‘]’
the first <UID> identifies a net; the second is the source of
the arc; and the third is the destination of the arc

<COMMENT> ::= ‘#’ arbitrary characters <EOL>

<MARKING> ::= ‘m’ <UID> ‘[’ <UID> ‘]’ <MARK_INF_LIST> ‘;’
the second <UID> identifies a net

<MARK_INF_LIST> ::= <MARK_INF_LIST> <MARKING_INF> | empty

<MARKING_INF> ::= ‘<’ <UID> <TC_LIST> ‘>’ # <UID> is for a place

<TC_LIST> ::= <TC> <TC_LIST> | <TC>

<TC> ::= ‘,’ integer ‘:’ integer | ‘,’ integer ‘:’ integer ‘{’
<ATTR_VAL_LIST> ‘}’
the first is the number of token; the second is token color
number

89

 The Trellis Petri net specification is at a single level. The structure, as a whole, is

displayed in a single window, which can be scrolled if necessary. Even with scrolling,

the physical limitation of the computer display size imposes a practical limit on the

number of elements that can be shown simultaneously. Additionally, the required arcs

connecting graph elements create significant visual clutter. Effectively, these factors

mean that only relatively small-sized specifications can be created and maintained in

αTrellis and χTrellis. caT’s authoring tool is designed to manage the problem by

displaying hierarchical Petri subnets in multiple windows.

 The authoring tool has been developed as a modified version of the χTrellis χTed

editor. We have converted the editor to use the same Motif widget set as xtb.

Actually, we use LessTif [Lesstif.org]. LessTif is free software that is source compatible

with OSF/Motif 1.2. However, Motif does not support the MDI (Multi-Document

Interface) user interface that is essential for multiple windows handling of hierarchical

structure. Therefore, in addition to Motif, we use a MDI package for Motif [Sadler 1996]

with slight modifications. The MDI package for Motif is a collection of C++ classes that

emulates the behavior of the Multi-Document Interface.

4.1.3 Flexible information presentation tools

caT’s Web client required the inclusion of a new intermediate message-handling server

to translate between Web-browser-based applets and information servers. When a reader

clicks a generated link on a Web page, the server’s net state must be updated (i.e., the

corresponding transition should be fired). To accomplish this, the Java applet first

90

communicates with the message-handling server. This server then passes RPC requests

using Java JNI (Java Native Interface) [Sun Microsystems, Inc. 2001] to the information

servers. Also, when other clients change the server’s net state, the changes are reported

to the corresponding applets via the message-handling server.

 The incorporation of hierarchical nets also required slight changes to the original

χTrellis xtb browser, written in C++, to allow communication with a caT engine that

has multiple subnets (the caT xtb browser invokes one RPC function for updating each

subnet state). xtb would need no changes if we had implemented the incorporation of

hierarchical nets entirely on the server side. In addition, the image browser, which

displays only the image contents associated with each active place, has been developed

as a modified version of the χTrellis xtb browser.

4.1.4 Analysis tool

In caT, two kinds of tools have been developed and integrated into the current authoring

tool to support the author’s net analysis. The first is an interactive debugging tool, and

the second is an analysis tool that can construct a reachability tree (RT) of an arbitrary

hierarchical Petri net. The basic idea behind the reachability tree (also called the

occurrence graph) is to construct a graph that has a node for each reachable marking and

an arc for each occurring transition. Therefore, authors can use the analysis tool to

construct a RT, and verify behavioral characteristics of developed hierarchical Petri nets

with the constructed RT.

91

 In a RT construction, the practical limitation is not only determined by the time

complexity (i.e., the RT construction time), but also by the space complexity (i.e., the

memory for storing the constructed RT). A RT grows very fast when the number of

colored tokens increases. Thus, it is wise to consider rather small number of colored

tokens in order to verify the logical correctness of a given Petri net [Jensen 1995]. A RT

may become very large, even for small Petri nets. Many high-level Petri nets, in fact,

have millions of markings [Jensen 1995]. However, manual testing and debugging is

often much slower than the RT analysis, and less reliable.

 For reachability tree construction, we generally follow the algorithm introduced in

Jensen [1995]. We do, however, add an additional feature for handling the unbounded

net. Jensen’s algorithm shown below halts if and only if the RT is finite. Otherwise, the

algorithm continues forever, producing an ever larger RT.

WaitingList := ∅
CreateNode(M0)
Repeat
 Select a node M1 ∈ WaitingList
 For all (b,M2)∈ NextNode(M1) do
 Begin
 CreateNode(M2)
 CreateArc(M1,b,M2)
 End
 WaitingList := WaitingList – {M1}
Until WaitingList = ∅

 In the algorithm, WaitingList is a set of nodes. It contains those nodes for which we

have not yet found the successors. CreateNode(M) is a procedure that creates a new node

92

M, and adds M to WaitingList. If M is already a node that exists in the generated RT, the

procedure has no effect. Analogously, CreateArc(M1,b,M2) is a procedure that creates a

new arc (M1,b,M2) with source M1 and destination M2. If (M1,b,M2) is already an arc, the

procedure has no effect. For a marking M1, we use NextNode(M1) to denote the set of all

possible “next moves”, such as (b, M2). To avoid infinite markings, especially when we

analyze an unbounded net (i.e., some places have infinite number of tokens), the option

value a maximum token number can be set to a reasonably small number such as 5. In

this case, if the number of tokens in a place reaches the limit, adding tokens does not

increase the token count, and an overflow for that place is flagged. Therefore, our

implementation of NextNode(M1) actually returns markings that have at most the

specified maximum number of tokens in places. This feature prevents infinite marking

generation of the unbounded net. In the analysis of basic Petri net [Zurawski and Zhou

1994], the symbol ù, which can be thought of as infinity, is used for handling the

unbounded net. “a maximum token number” in caT is used in similar way as the symbol

ù. However, a maximum token number specifies explicitly when the place reaches the

token limit, and the symbol ù is managed automatically by the system. We use a

maximum token number because it is easier to implement and provides more control on

the user side (an option for the specification of token limit).

 In the constructed RT, a lot of markings will be nearly identical. Hence, we may save

a significant amount of memory if we avoid duplication of identical parts. To do this, we

represent each marking as a set of pointers, as depicted in Figure 13, where we follow

the analysis tool design techniques described in Jensen [1995]. Marking records have a

93

set of pointers to page records, the page records have a set of pointers to place records,

and the place records store actual token information (see Figure 13). In other words, a

marking record has pointers to its page records that have page (subnets) marking

information; a page record has pointers to its place records that have place marking

information. In Jensen [1995], the marking of a page is represented by two records for

each page instance—one for input/output mapping places that depend on other places in

other pages and one for the other places in the current page. However, for the purpose of

simplification, in caT, the marking of a page is represented by a single page record.

Page1

Page2

PageN

…...

Page1

Page2

PageN

…...

Mark1

MarkJ

Place1

PlaceL

…...

Page1-1

Place1

PlaceL

…...

Page1-2

…...

Page1

Place1

PlaceM

…...

PageN-1

Place1

PlaceM

…...

PageN-2

…...

PageN

…...
…...

…...

Record1

Record2

Record3

Record4

Record5

RecordK

Marking Records Page Records Place Records

Figure 13: Marking structure

94

 Each place record represents a unique (possible) token marking for a place. This

means the unique token marking for a place (i.e., a place record) is created once, even

though it may appear in many different places of page records. When we construct a new

marking from an existing marking, normally we need to create a small number of new

page records. This means that we can reuse most of the page and place records, and,

finally, save a lot of memory space—Jensen [1995] says that a RT for a sample net only

needs 0.35% of the space it would need without this scheme. For example, MarkJ could

be a marking obtained from MarkI by the firing of a transition that belongs to Page1. If

the transition does not have any input/output places that are related (or mapped) to its

parent or child places, it is obvious that only the record for Page1 needs to be changed,

while all the other page records can be reused.

 According to the RT construction algorithm in the CreateNode(M) procedure,

whenever a new marking has been constructed, we must check whether the marking is

identical to any of the existing markings. To do this efficiently, we keep all records

(marking, page, and place records) in binary search trees. There are separate binary trees

for marking and place records, and for page records there are separate binary trees for

each subnet (or page). To be positioned in a search tree, each record is given an integer

key calculated from the contents of the corresponding marking, page, or place records.

 The current key function of a place instance record is the summation of each color

value, between 0(black) and 31(purple4), multiplied by the number of its tokens. The

key function of a page record is calculated from the keys of the involved place records.

95

Analogously, the key function of a marking record is calculated from the keys of the

involved page instance records.

 For the implementation of the interactive debugging tool, the marking structure

developed for the RT construction is used along with the addition of a marking list

structure that stores only ordering information of marking records. In the debugging

mode, when a transition is fired, the current marking is saved to the marking records

tree, and, in addition, the address of the marking record is added to the end of the

marking list structure.

4.1.5 Porting to Linux

Recent years have seen a broadening of the computer architectures in common use in

Computer Science. Most visibly has been the increase in PC-category computers running

a variety of operating systems. Thus, one factor limiting wide-spread dissemination of

Trellis is its increasingly uncommon run-time environment.

 The caT system has been ported to Linux (Red Hat Linux 6.2) in order to make it

available to a wider group of users. The Trellis system uses ONC RPC, as part of the

UNIX System V Release 4 (SVR4), in Sun workstations—there are several RPC

standards such as ONC RPC (also known as Sun RPC), OSF DCE (based on Apollo’s

NCS system), Xerox Courier, and Netwise. In Red Hat Linux, ONC RPC is also

supported; therefore, it was straightforward to port RPC related modules to the Linux

system.

96

 However, there are some differences between rpcgen versions in SunOS and Red

Hat Linux. Generally, the rpcgen tool generates remote program interface modules

such as stub programs for the server and client, and it significantly reduces the

development time that would otherwise be spent on low-level routines. The rpcgen in

SunOS can generate MT(Multi Thread)-safe code for use in a threaded environment, and

it can generate MT-safe stubs that enable RPC servers to automatically use Solaris

threads (the predecessor to POSIX threads) to process client requests concurrently in

releases since Solaris 2.4 (Sun’s operating system and its window environment).

However, the rpcgen in Red Hat Linux does not support the generation of MT-safe

stubs for multithreaded PRC servers. Additionally, the rpcgen tools in both systems

support new features, such as TI (Transport-Independent)-RPC and C-style mode. TI-

RPC makes RPC applications transport-independent by allowing a single binary version

of a distributed program to run on multiple transports. C-style mode lets arguments be

passed by value instead of as pointers to a structure. It also supports passing multiple

arguments.

4.2 Interactions with the authoring tool

For structured authoring support, the χTrellis χTed editor has been extended to allow for

the building and browsing of hierarchical subnets in multiple windows. In the new

authoring tool, the editing functionality of Petri net objects is provided by the original

χTrellis χTed editor implementation. In caT, the author, using the multiple-window-

97

based authoring tool, first builds a Petri-net-based hierarchical document structure, and

then associates net segments with the corresponding content segments.

 The χTed interface consists of menus in the top area, a series of buttons located in

the left area of the window, and multiple graphic canvases where the nets are graphically

displayed (see Figure 14). In addition to the main menu items, a menu pops up when the

mouse is right-clicked on each drawing (or canvas) area (see Table 9). The functionality

of the menu items is described briefly in Table 10. The descriptions for the operations of

icons in the left area of the window are in Table 11 and Table 12. Table 11 describes the

meaning of icons that are used for editing Petri net objects (place, transition, arc, and

token) and how to add objects to or delete them from the canvas. For the functions

represented by the pictorial editing icons, when selected, the cursor changes shape to

become a mnemonic aid. Table 12 describes the meaning of icons for net simulation and

recording (or debugging) while detailing how to simulate and record the nets.

Table 9: Popup menu of χχTed canvas window

Menu Item Description
Annotation Show the annotation for the current net; when an annotation is

defined, the character “A” is shown at the top left corner of canvas.

Net Attributes… Show current net attributes

Save Save the current active document as the current description file
name; the active document has a blue-colored window title.

Save As… Save the current active document as a new description file name

98

Figure 14: χχTed main window

Menu

Place

Transition

Label

Scissors

Fire

Record

Stop

Backward

Move to
First

Arc

Transition

Move

Token

Auto Fire

Play

Clear

Forward

Canvas Title

Move to
Last

Color
Icons

99

Table 10: Menus of χχTed main window

Top
Menu

Sub Menu Description

New Discard the current document structure and make an
empty net

Open… Load new document structures into the engine from a
net description file (the extension of the net file is “net”)

Save All Pages Save the current running documents as description files

File

Exit Exit the editor

Hierarchical Net
Refresh

Reload all current nets from the engine for refreshing all
current windows

View

Transition
Refresh

Refresh all transitions from the engine (enabled or
disabled)

Analysis… Set the options for the construction of the reachability
tree

Appearance… Set coloring schemes for displaying graphical objects
(place, transition, background, etc)

Autofire… Set the polling interval for automatic invoking of
enabled, timed transitions

Play… Set the polling interval for automatic play of recorded
markings

Poll… Set the polling interval for updating current nets from
the engine

Options

Text Editor… Set a text editor for viewing/editing text contents
associated with places. The default editor is “/usr/bin/
gedit” (the editor is specified in a configuration file).

Construct
Reachability Tree

Construct a reachability tree

Show Net
Properties…

Show the analysis results after the reachability tree
construction

Show Mark lists… Show the mark lists of the reachability tree

Analysis

Destruct
Reachability Tree

Destruct the reachability tree

Window Cascade
Windows

Cascade the windows; each window’s title turns into a
red color if the window contains active transitions in it.

Help Show a short summary of commands Help

About caT Show the current version information

100

Table 11: Icons for editing

Icon Description

Place

Add new places to the canvas; to add new places to the net, click the Place
icon to go into adding places mode. The cursor will change to a circle (place
symbol) to reflect this. Then, move the cursor to the place where you want to
put a new place, and click the first button. Repeat as many times as you
want.

Arc

Add new arcs between places and transitions; to add arcs, select the Arc icon,
and click first over the transition (place) the arc is coming from, and then
click again over the place (transition) the arc is going. It is possible to
include knuckles in the arcs by clicking in between the two object involved.

Transi-
tion

Add new transitions to the canvas; to add new transitions to the net, click the
Transition icon to go into adding transitions mode. The cursor will change to
a bar (transition symbol) to reflect this. Then, move the cursor to the place
you want to put a new transition, and click the first button. Repeat as many
times as you want.
There are two transition icons available. One of them produces a horizontally
oriented transition, whereas the other generates those that are vertically
oriented.

Label

Add/delete/change attribute variable/value pairs (except net attributes); in
order to check/add/delete/change the attributes of the objects of the net, the
Label icon must be selected first. The cursor will change to a label-like form.
After clicking on the object, a dialog window is displayed. Especially, the
first mouse button click on the large dot in the center of the place pops up a
dialog window for showing the token contents of the place.

Move

Rearrange the nets; in order to rearrange objects, the Move icon must be
selected first. The objects can be dragged with the first button of the mouse.
It is also possible to drag the canvas itself. Just click the mouse over a place
where there is no place or transition, and move the mouse while holding the
first button pressed.

Scissors
Delete objects from the net; to delete places, transitions, or arcs, select the
Scissor icon, and click over the corresponding object. When a place (or
transition) is deleted, so are all the arcs starting or ending on it.

Token

Add/delete tokens; to add tokens to a place, first select the desired color
using the Color icons (palette), then click over the token icon. The cursor
will change to reflect token mode. Then, clicking inside a place will add one
token of the current color to it. Tokens can be removed in the same way by
clicking the third mouse button instead.

101

Table 12: Icons for simulation and recording

Tool
Group

Icon Name Description

Fire

Fire transitions
To fire a transition, select the Fire icon, and click over the
active transition; in case of more than one possible token
color combination, a menu is presented to the user to select
one of the appropriate variable instantiations.
Substitution (or subnet) transitions cannot be fired; clicking
the third mouse button instead can raise the target subnet
window of the substitution transition.

Simulation

Tool

Auto Fire Fire enabled, time-based transitions automatically with the
specified interval

Record

Record current transition fire sequences
To start recording of simulation (recording mode), select the
record icon, then click over the active transitions for
simulation. In recording mode, objects (place, transition,
arc) cannot be added or deleted.

Play Play recorded transition sequences with a specified polling
interval for automatic play

Stop Stop current play or recording

Clear Clear current stored sequence of markings

Backward

Move backward
The semantics of the backward (forward) icon are similar to
the semantics of the backward (forward) button in Web
browsers. In recording mode, when you move back to a
previous marking and click an active transition, the
markings from one step ahead from the current point to the
right most point where you came from by doing backward
icon clicks are removed from the stored markings. The new
marking is then added to the end of the stored markings.

Forward Move forward

Move to
First

Move to the first net marking

Record

Tool

Move to
Last

Move to the last net marking

Token
Color Color icons

Select the current token color
32 different colored tokens are available.

102

 In the authoring tool, to add/change/delete the attribute values of existing objects (the

place, transition, and arc), the Label icon must be selected first. Then, for example, a left

click on a transition pops up an attribute dialogue for the transition (see Figure 15). In

the dialog, we can see the values of attributes by clicking items in Attribute List. We can

then add/change/delete attribute values if it is necessary (the description of each

transition attribute is provided in Table 6 in section 4.1.1).

 The several Value buttons, shown in Figure 15, are used for handling the attribute

value in Value Field. The “Get File” and “View/Edit File” buttons, respectively, allow

getting a new file name with a file dialog interface and viewing (modifying if possible)

the current file content with an external text editor. The “Input/Output Map” button is for

specifying the input/output mapping pair values of the substitution transition. The

“Display Values” button allows seeing (or adding) the currently defined variable/value

pair values, which will be passed to the related subnet, thereby enabling different

behaviors of the same net. Finally, the “Cut”, “Copy”, and “Paste” buttons are used for

copying of the current attribute value in Value Field to other attribute values.

 To add/change/delete the token attribute values, the Label icon must be clicked first.

Subsequently, a left click on the large dot in the center of the place that has tokens opens

a token attribute dialog (see Figure 16). In the dialog, at first, we need to select a token

color in Token Color List. Then, when an attribute in Token Attribute List is selected,

the attribute value will be shown in Value Field, and we can add/change/delete the

attribute values if necessary.

103

Figure 15: Transition attribute dialog

Attribute List

Attribute Field

Attribute Option
Menu

Value Field

Value Button

104

Figure 16: Token attribute dialog

Attribute List

Attribute Field

Attribute Option
Menu

Value Field

Value Button

Color List

105

 To create hierarchical nets (i.e., to associate a normal transition with a lower-level

subnet), additional attribute values are added to the transition. To provide an example,

we will again revisit the gallery tour example introduced in Chapter III. To expand the

Classify_user transition to the “classify_user.net”, which is shown in Figure 6 (in section

3.2.2.4, Chapter III), we must select the Label icon first. Then, when we click on the

Classify_user transition, the transition attribute dialog (see Figure 15) pops up. In the

attribute dialog, we need to select the “Subnet File Name” attribute from Attribute

Option Menu, and use the “Get File” button located above Value Field to get the

“classify_user.net” file name from the Get File Dialog. When Value Field has the target

subnet description file name and the “Add/Change” button is pressed, the subnet

Classify_User:#6 is opened (or created).

 For the next step, we need to specify the input/output place mappings. In the

previous transition attribute dialog, we first need to select the “Subnet Input/Output

Map” attribute from Attribute Option Menu. Then, the “Input/Output Map” button

located above Value Field is used for opening the “Subnet Input/Output Map Dialog”

window. This window helps specify the input/output mapping pair values (see Figure

17). In the popup dialog window, we first select an origin input place name,

ClassifyUser, from Origin Page Place Option Menu. Then, we select a target input place

name, CalcTime, from Target Page Place Option Menu. To add the current value pair,

the “Add/Change” button is used. We repeat this process with an origin output place

name, EndClassify, and a target output place name, Branch. After closing the window,

the defined value pairs will appear in Value Field. Finally, the “Add/Change” button is

106

used to add the current value to the current transition. The color of mapped places will

be turned into “maroon” in order to distinguish them from the other normal places.

 In the authoring tool, the user can select one of the system-provided color schemes,

or he (or she) can define the colors using the color selection toolbox. The tool provides

the following color settings: foreground, background, active transition, active subnet

transition, input/output subnet node, template node, and active window title. For

example, each canvas window’s title turns into a color that is specified by “active

window title” if the window contains active transitions.

Figure 17: Subnet input/output map dialog

Mapping List

Origin Page
Place Field

Target Page
Place Field

Target Page Place

Origin Page Place
Option Menu

107

4.3 Interactions with the analysis tool

After building a RT using the analysis tool, the author can see the result of the analysis.

The author can set the current net to the marking that causes the problem, and check the

net status, including the token values. In addition, the author can see marking lists, and

trace the marking history to find problems.

 As an example, we will consider the analysis of the gallery tour example nets. The

nets consist of six subnets, and one “blue1” token is in the ReaderPool place of the

Start_tour:#1 subnet (see Figure 6 in section 3.2.2.4, Chapter III). The token has the

following initial (attribute, value) pairs: (accessRight, 0.0), (class, unknown),

(currentTime, 0.0), (network, 128.0.0), and (user, unknown). Before constructing a RT,

the author should set analysis options: the maximum token number in a place, the

maximum analysis time, the maximum marking number, and the maximum dead

marking number. Figure 18 shows the current option values for the RT generation. The

maximum token number in a place is 5 tokens, the maximum analysis time is 5 minutes,

and the other options are not set. The maximum token number option is especially

important because the example nets are unbounded nets—in the unbounded nets, some

transitions generate an infinite number of tokens in their output places.

 To construct a RT, the “Construct Reachability Tree” submenu item in the

“Analysis” menu (see Figure 14) is used. After the construction, the “Show Net

Properties” submenu item shows the analysis result. Figure 19 shows the results of

analysis of the gallery tour nets with the current analysis option values.

108

Figure 18: Analysis options

 Figure 19 shows the three result properties of the analysis: liveness, boundedness,

and safeness. It says that there is one dead marking out of total 521 markings. The user

can set the current net to the dead marking by selecting a mark (“Mark36”) in the

liveness list and clicking the “Go to Marking” button. Actually, the dead marking occurs

when the reader finishes a reading session; i.e., when the FinishTraverse place in the

Start_tour:#1 subnet has a token. Additionally, it says that the net is not bounded and

that the maximum token value encountered is 5 (the limit value was chosen earlier).

109

Note that the “help” places in pages (or subnets) 3, 4, and 5 are flagged as overflow

places. In the authoring tool, the window name (or the subnet name) located on each

window’s title bar copies the source transition’s name and has an additional unique

number after the name. In the figure, for example, “help(page3)” indicates the help place

in subnet 3—the “page3” value does not contain the source transition’s name for

simplicity. By clicking list items below the “Overflow places:” label, the user can move

to the corresponding subnet and the marking to check the overflow place. The net is not

safe since safeness requires all places to have at most one token.

Figure 19: Net properties

110

 If the author wants to trace a RT, he can use the Mark List dialog (see Figure 20). In

the dialog, the author can trace how the dead marking occurs. In the figure, the author

searches under “Dead Mark”, finds a dead marking, Mark36, and from there can trace

back to the marking that leads to the dead marking, Mark53. In the figure, “M53:

(hide_help@P3->M36)” means that when the hide_help transition in subnet 3 is fired

from Mark53, the current marking (i.e., Mark53) moves to Mark36. In addition, the

author can search under “->M36” to find the other markings that lead to Mark36. Here,

Mark23, Mark48, Mark53, and Mark55 lead to the dead marking. Moreover, the author

can check a sequence of transitions by tracing the mark lists in the Mark List dialog. For

example, the author can check the existence of the following transition sequences:

Calc_currentTime(subnet1), Calc_accessRight(subnet2), and On_campus(subnet2).

 Another analysis tool, the debugging tool, allows interactive analysis of the net while

the author simulates the nets. To start a debugging session (debugging or recording

mode), the author selects the Record icon. Then the author clicks over the enabled

transition for simulation. In the debugging mode, every transition fire is recorded. If a

dead link or an overflow place occurs while the user fires transitions, a warning message

window pops up. Additionally, the author can move backward/forward from the current

marking using the Backward/Forward icons. After finishing the traversal, the author can

replay the traversal path using the Play icon. This icon plays the saved markings from an

initial marking to an end marking with a specified time interval. The author can stop the

playing at any time using the Stop icon to check the net status. The Clear icon is used for

clearing the current stored sequence of markings. The Move to First and Move to Last

111

icons are used for moving the current marking pointer to the first and last net markings

in the sequence, respectively.

Figure 20: Mark lists

112

CHAPTER V

EXAMPLE APPLICATIONS

Several example applications have been built by using caT in different domains. In the

following sections, some of these applications are introduced in order to show the

usability of the caT specification and system, and also, if applicable, to provide a

comparison to Trellis specifications. The first one is a context-aware application, called

a personal document path, which provides contextualized information to the reader

based on his (or her) current environmental information. The personal path example

demonstrates another potential context-aware application that can be described in caT, in

addition to the gallery tour example introduced in the previous chapters. The second

application is a formal specification of various software requirements. In the software

engineering field, Petri nets are one of the mechanisms that have been examined for their

usefulness in providing formal specifications for software requirements [Ghezzi et al.

1991]. In addition, hypertext has been suggested as an important component of systems

that support the software engineering process [Bigelow 1988]. Therefore, in Trellis, the

requirements specification of describing the actions of a building’s elevator was

described [Furuta and Stotts 1994b]. In the second application, a new elevator protocol

specification described in caT is introduced to show how efficiently caT can represent

formal specifications as compared to Trellis. The last example is a specification of

CSCW protocol specifications. Since Petri nets inherently provide a good environment

for the synchronization of parallel actions, the caT model is also useful for expressing

113

group interactions within a document structure. In Trellis, a conference protocol was

specified for directing a meeting among several participants [Furuta and Stotts 1994a].

In this example, we restructure the conference protocol by using caT’s flexible net

description features to show the power and flexibility of the caT specifications.

5.1 Context-aware applications

Context-aware applications provide an opportunity for customizing the provision of

information in a way that reflects the user’s current needs. In this research, we introduce

a new context-aware hypertext model that supports the development of context-aware

applications. In caT, we can specify what kinds of hypertextual information will be

shown when the user enters certain contexts. The adaptive net behaviors of the caT

model are especially capable of allowing contextualized information delivery in a

dynamically-changing environment.

 In this section, a context-aware application called a personal document path is

introduced in order to illustrate a potential context-aware application that could be

described in caT. The personal document path allows a reader to identify a favorite

collection of Web documents and associate them with contextual information. When

browsing using a Web browser, it provides contextualized information to the reader

based on his (or her) current environment.

 The personal path example considers the following simple scenario of personal

space. When the reader first accesses the initial page of a personal path during office

114

hours, he (or she) will be asked if he (or she) is busy or not (this context may possibly be

inferred by using external devices that sense the surrounding environment of the current

user). If not busy, he (or she) will see a brief path of Web pages such as the news,

weather, technical information, the local Web server usage report page, etc., before

seeing a research-related search engine page; otherwise, the research-related page will be

displayed directly. When the reader accesses the path during non-office hours, the

favorite general purpose Web search engine page will appear after a brief path of Web

pages.

 Figure 21 shows the output model with start_tour:#1 and daily_tour:#2 subnets on

top, and the other subnets iconized. In the start_tour:#1 subnet, a token initiates from the

Begin place and receives current access time. Based on this access time, the token moves

either to the office_hour or not_office_hour transition. The office_hour transition has a

condition statement, “r.w.currentTime >= 9.0 && r.w.currentTime <= 17.00”; and the

not_office_hour transition has “r.w.currentTime < 9.0 || r.w.currentTime > 17.00” as its

condition statement. Therefore, when the reader accesses the net during regular office

hours, office_hour will be enabled. Otherwise, not_office_hour is enabled. Up to this

point, transitions are automatically fired by the system without the user’s interaction,

since time attributes of the transitions are defined as “(0,0)”.

 When the token passes through the office_hour transition, a query document for the

reader’s feedback is generated. The template file attached to the Template node in the

start_tour:#1 net is as follows:

115

<Template multiple_frame=“no”>
<Place name=“Question” link_display=“none”>
<Transition name=“busy” activelink_name=“(a) busy day”>
<Transition name=“not_busy” activelink_name=“(b) not busy day”>

 The first two lines specify that the output page will be frameless, and output links

attached to the Question place will not automatically be displayed after the content of the

Question place. Instead, <Transition> constructs (the last two lines) are used for

specifying the active link names for the output links. The output Web document from the

current net status is shown in Figure 22.

 Since the busy and not_busy transitions in the start_tour:#1 net have a time value of

“(0,∞)”, the system will wait for the reader’s input (i.e., a mouse click). When one of

these transitions is fired, the reader’s feedback information (i.e., schedule) is then stored

within the current token, since the output arcs of each transition have specific

assignment expressions (the output arc of the busy transition has an expression

“r.w.schedule = ‘busy’”; the output arc of not_busy has “r.w.schedule = ‘not_busy’”).

 After receiving the reader’s input, the token moves to the StartTraverse place. The

updated token value is used for matching with the conditional statements attached to

subsequent transitions. On the other hand, when the token passes through the

not_office_hour transition, it directly reaches the StartTraverse place without the query

document generation. The output arc of the not_office_hour transition has an expression

“r.w.schedule = ‘not_busy’”.

116

Figure 21: start_tour net: nets when accessed during office hours

117

Figure 22: start_tour net: Web browser-based display

 In the daily_tour substitution (or subnet) transition, StartTraverse and End in

start_tour:#1 are mapped to Begin and End in the daily_tour:#2 subnet, respectively.

Therefore, when a token arrives at StartTraverse, Begin in daily_tour:#2 receives an

identical token value. In the daily_tour:#2 subnet, the busy transition has a condition

statement “r.w.schedule == ‘busy’”; the not_busy transition has the statement

“r.w.schedule == ‘not_busy’”. Thus, the token moves to the StartPersonalTour place

before it goes to StartSearchEngine, if the reader is classified as “not busy”; otherwise, it

moves directly to the StartSearchEngine place. Therefore, a busy reader can skip the

118

brief tour of the Web pages (i.e., the personal_tour subnet), and instead view the search

engine page directly.

 Figure 23 shows the subnets and their marking status when the reader browses the

third node of the personal_tour:#3 subnet with annotation information (only related

subnets are displayed). In the personal_tour:#3 subnet, all five transitions (show_node1,

show_node2, show_node3, show_node4, and show_node5) expand to the same structure

by using the same subnet specification. However, each subnet (or substitution) transition

passes different display information, such as a different file name (or Web URL) of the

Content place, to each subnet instance.

Figure 23: personal_tour net: nets when show_node3 is accessed

119

 In Figure 23, the nodes in personal_tour:#3 have input/output mappings with nodes

in child nets. For example, in the show_node3 transition of personal_tour:#3, Node3 is

mapped to both Input and Node3 in the show_node3:#6 net; Node4 is mapped to both

Output and Node4; additionally, the other nodes have mappings that allow access of one

subnet to the other subnets through a parent net.

 The template file for the show_node3:#6 net is as follows:

<Template multiple_frame=“yes_2frame”>
<Place name=“Annotation” link_display=“none”>
<Place name=“Content” link_display=“none”>

 According to this template specification, the output page will have two frames.

Output links from the Annotation and Content places will not be displayed in the main

frame, and the links on the left control frame will instead be used for path browsing.

This system replicates the transition-associated links found on the left control frame. If

normal Web links are followed, changing the information display from that generated by

caT, the links on the left control frame will allow the user to continue to traverse the net

specification. Figure 24 shows an output page that corresponds to Figure 23. Currently,

the reader sees the third page with the annotation after clicking on the Show_annotation

link, and could hide the annotation by clicking on the Hide_annotation link. In the

current specification, a click on the Show_annotation (or Hide_annotation) link would

only affect its current subnet. Thus, to provide a persistent view (i.e., a view with or

without annotation information) for all subnets, the token status of the Annotation place

120

in the current subnet may be shared with related subnets by using the input/output

mapping mechanism—i.e., specifying the Annotation place as a global place within the

related subnets.

Figure 24: personal_tour net: Web browser-based display

 Figure 25 shows a subnet and its marking status when a reader browses the

search_engine:#9 subnet during office hours. A reader browsing during office hours

would see a research-related search page; otherwise a general Web search engine page

would be displayed. In this subnet, the office_hour transition has a condition statement

121

that is satisfied only when the token has an access time within an office hour range; the

not_office_hour transition is enabled when accessed outside of an office hour range.

Figure 25: search_engine net: net when accessed during office hours

 The template file for the search_engine:#9 net is the same as that used in the

show_node3:#6 subnet, except those used for place names (i.e., Research and General)

in the <Place> constructs. Figure 26 shows an output page that corresponds to Figure 25.

A reader seeing a research search page could move to a general search page or back to a

personal path page. Also, after moving to the general search page, the reader could

return to the original research search page.

122

Figure 26: search_engine net: Web browser-based display

 This personal document path example shows how the caT system supports both the

authoring and the browsing of contextualized Web documents. The author can describe

various dynamic documents by using the caT system, and the reader can browse

dynamic documents by using the Web browsers. In this example, context information

such as access time is provided by the system, and context information such as the

123

reader’s current schedule is acquired from the reader’s input or inferred from other

contextual information.

 Other kinds of environmental aspects that it might make sense to include relate to the

context. For example, particular changes to the context of the Web pages would trigger

(or refresh) their display—e.g., severe weather warnings, etc. Eventually, the addition of

external sensors that perceive the current reader’s contextual information would make

context-aware applications described in caT both more interesting and powerful.

5.2 Software requirement specifications

In Trellis, a requirements specification describing an elevator protocol was discussed

[Furuta and Stotts 1994b]. It illustrated the duality of document specifications and

software requirements specifications. The concepts of rapid prototyping and incremental

development, supported in Trellis, are useful in the contexts of both requirements

specifications and dynamic document writing. After the individual specification is

defined in Trellis, the reader can execute (or simulate) the output model and see their

interested hypertextual view of the simulation process by using different browsers.

 However, in Trellis, even though only one elevator is considered, the specification of

the net suffers from graphical complexity due to the fact that it is represented with

single-level (i.e., non-hierarchical) specification and simple (or non-structured) tokens.

The single-level specification of the net requires that related components be multiply

repeated in the description.

124

 In this section, a new elevator protocol specification is introduced to show how

compactly caT can represent the formal specifications of software requirements,

especially as compared to Trellis. caT’s elevator specification can be simplified because

modular subnets, which separate distinct functions into separate descriptions, can be

specified and interrelated, and also because information about the elevator’s state can be

encoded into the structured token.

 In this example, we represent elevators for a three-floor building. Each elevator has

three buttons inside of it to indicate to which floor it must travel. There are also buttons

on the wall of each of the floors to call the elevator. There are two buttons on floor two

that direct the elevator either upward or downward, and one on floors one and three to

call the elevator for an upward or downward trip, respectively.

 Figure 27 shows a caT elevator specification that consists of three subnets. Floor3-2

and Floor2-1 transitions in the main net, MainNet:#0, are associated with the Floor3-

2:#2 and Floor2-1:#1 subnets, respectively. In the Floor3-2:#2 subnet, the subnet’s

Floor3_close place is mapped to Floor3_close in MainNet:#0, its Floor2_close place to

Floor2_close, and its Floor_Buttons to Floor_Buttons; the Floor2-1:#1 subnet has

similar mappings. Note that the Floor_Buttons place in each subnet shares the same

token through the input/output mappings. In this way, the same tokens in the main net

are shared with its subnets—similar to a global variable. In MainNet:#0, the token in the

Floor_Buttons place stores the status of the button pressed such as #3Down, #2Up,

#2Down, and #1Up, and the token information provided is used in other subnets. In

125

actuality, #3Down, #2Up, #2Down, and #1Up are defined as attributes of the token in the

Floor_Buttons place, and receive the value “on” when the corresponding transitions (i.e.,

#3Down, #2Up, #2Down, and #1Up transitions in MainNet:#0) are invoked.

Figure 27: Elevator specification

126

 In caT, the colored token is discernible, so each differently colored token can be used

for different purposes. In MainNet:#0, the maroon token in the Floor_Buttons place

represents the status of the buttons on the wall; the black token in Floor1_close and the

green token in Floor3_close represent the first and second elevators, respectively. The

tokens for the elevator store the status of the button pressed such as open, goto#3,

goto#2, and goto#1. Actually, open, floor3, floor2, and floor1 are defined as attributes of

the elevator token and receive the value “on” when the corresponding transitions (i.e.,

open, goto#3, goto#2, and goto#1 transitions in both Floor3-2:#2 and Floor2-1:#1) are

invoked.

 In addition, conditional statements are specified for controlling token (elevator

tokens) flows. For example, the 2uto3 transition in Floor3-2:#2 has the condition

statement “r.w.floor3 == ‘on’ || d.w.#3Down == ‘on’”. In this statement, the color

variable r is instantiated to a token in Floor2_close, and d is instantiated to a token in

Floor_Buttons. This statement indicates that when the goto#3 button inside its elevator

or the #3Down button on floor three is pressed, the tokens in the Floor2_close place can

move through the 2uto3 transition.

 Expression statements associated with output arcs are specified to update the status

of button presses in local token variables. For example, the output arc of the #3Down

transition in MainNet:#0 has an expression statement of “r.w.#3Down = ‘on’”. On the

other hand, one of output arcs of the Open transition in Floor3-2:#2 has an expression

statement of “d.w.#3Down = ‘off’”. In this way, these expressions set/unset the status of

127

the buttons presses. In addition, timing attribute values attached to the transitions cause

the simulation to react dynamically to the rider’s action (i.e., the button selection).

 Figure 28 displays the presentations of two browsers, the standard χTrellis browser

(xtb) and an image browser, when the elevator specification is simulated. In caT, each

place may contain several different types of contents for selective presentation, such as

text, image, and sound. The image browser displays only the image contents of the

active places.

 Figure 28(a) shows a window that presents the available buttons on the wall of each

of the three floors; the buttons are grouped together for convenience. Figure 28(a) is the

presentation of xtb for the token color maroon. In the browser, only those places with

tokens of a given color can generate a new window. Figure 28(b) shows the status of the

two elevators—the first elevator (the black token) idle on the first floor, and the second

(the green token) idle on the third. The windows in the “Text Presentation” column show

the text-based presentations of xtb. The selection of links corresponds to the pushing of

buttons inside an elevator. Following the links (i.e., the execution of the net) produces a

display that corresponds to the states of operation in the elevator. On the other hand, the

windows in the “Image Presentation” column show the graphic presentations of the

image browser. In the image browser, the available links appear in a separate control

window. The elevator protocol specification example shows how separate browsers

could provide different views of a document’s state which, when viewed together, would

increase the understanding of the document’s content.

128

(a) Presentation of floor buttons

 Text Presentation Image Presentation

Elevator 1

(idle on

 first floor)

Elevator 2

(idle on

 third floor)

(b) Presentation of two elevators

Figure 28: Executing the elevator specification

129

 In the elevator protocol specification, we can add another elevator using a differently

colored token. However, if we are required to add another floor, we need another subnet

similar to the Floor3-2:#2 subnet. In addition, the current subnets including the token

variables in the Floor_Buttons place, need some modifications to take into account the

added floor.

 Since caT implementations interpret their own specifications, caT (and Trellis)

provides an environment for the rapid prototyping and incremental development of

various protocols. In addition, the analysis tool which is integrated with the authoring

tool, helps to investigate the output specification by identifying conditions such as dead

links (i.e., deadlock in the software context). To explore the potential usability of caT, it

will be interesting to build a variety of further software processes (or protocols) in the

caT model. There is an on-line process support tool called the “process handbook”

[Malone et al. 1999] that helps people to redesign existing organizational processes,

invent new organizational process, and share ideas about organizational practices in

general. It may be interesting to build some of these interesting processes in caT.

5.3 CSCW specification

When read by multiple readers simultaneously, the behavior of caT documents can be

specified to range between shared and separate. Distributed readers can be specified to

be unaware of each other, sharing the document’s specification but with an independent

view of the document. Alternately, one reader’s actions may be specified to affect

130

another reader’s view, thus allowing the sharing of documents in cooperative

environments. This section discusses documents shared by multiple users.

 In an early Trellis paper [Furuta and Stotts 1994a], a conference protocol is specified

for directing a meeting of several participants. A moderator leads this meeting, and its

participants can be in either listening or speaking modes. In the listening mode, a

participant can either take the floor for speaking, or leave the meeting. The moderator

and each participant are represented by different colored tokens. This paper also

illustrates the flexibility with which the specifications can be changed in order to

implement new policies.

 In caT, we restructure the conference protocol by using caT’s flexible net description

features, including the hierarchical net specification, in order to show the power and

flexibility of the caT specifications. We extend this meeting protocol to implement new

policies such as setting the maximum times a listener can get the floor, as well as

providing for the possibility of a listener with a high privilege to swap places with the

moderator, and a participant who releases the floor to receive a lower priority for the

next taking of the floor. In addition, we add a voting function to the protocol—after the

agenda is fully discussed, participants can be asked to vote for topics on the agenda. The

protocol is designed to be displayed on a Web browser. In this section, only the extended

features are discussed; the details of the basic conference protocol can be found in

[Furuta and Stotts 1994a].

131

 This specification consists of three subnets: MainNet:#0, getFloor:#1, and

vote_subnet:#2. The MainNet:#0 net (see Figure 29) specifies most of the conference

protocol features and associates some of its transitions with getFloor:#1 (see Figure 30)

and vote_subnet:#2 (see Figure 31 and Figure 32) for specifying floor-taking and voting

actions, respectively. In the MainNet:#0 net, there is one token (magenta1) in the

moderate place and one token (orange1) in listen. We can interpret from the current

marking that there is one moderator and one listener. With the current marking, the

moderator can delete or suspend the current listener, or begin voting. He also can swap

the role of moderator with the current listener. In the getFloor:#1 subnet, there is one

token in the listen place, and the getFloor and finish transitions are enabled. With the

current marking, the listener can take the floor or leave the current conference session.

To restrict a listener from taking a floor more than 5 times, the getFloor transition has

the conditional statement “d.w.numvisit <= 5”, and one of the output arcs of getFloor

has an assignment expression “d.w.numvisit = d.w.numvisit + 1” to increase the number

of visits. In the net, when a listener takes the floor, other listeners who had the floor

previously move to the listen_pool place, thereby letting new listeners who have not yet

had the floor have a higher priority for the next opportunity. In addition, a listener just

returning from speaking remains in the wait place, thereby letting other listeners have a

higher priority for the floor. The time attribute is used to specify the length of each wait.

In addition, it may be possible for a listener to take the floor in any situation, if no one

else wants it. For this purpose, we may need another transition that is the same as

132

getFloor, but does not have a conditional statement and has a certain time delay for

allowing the current getFloor transition to first be applied.

Figure 29: Conference protocol: MainNet net

133

Figure 30: Conference protocol: getFloor net

134

Figure 31: vote_subnet net: listening state

135

Figure 32: vote_subnet net: voting state

136

 Figure 31 represents the vote_subnet:#3 subnet and its marking status when a

participant is in the listening mode, and Figure 32 represents the subnet and its marking

status when a moderator forces all participants to the voting mode. A general description

of the subnet is as follows. When the moderator clicks the start_vote link in MainNet:#0

(see Figure 29) in his (or her) page, the vote_mutex place (in both MainNet:#0 and

vote_subnet:#3) receives a token, and all tokens in the listen place move to the question

place (see Figure 31 and Figure 32). After finishing the vote (clicking the yes or no

links), the participant waits in the wait place until the moderator clicks on the finish_vote

link in MainNet:#0 in order to put a token in finishvote_mutex. Then, the participant can

view the results of the vote and move back to the listening mode or leave the meeting.

 For example, the condition statement for the pro transition is as follows: s.w.numpro

> (2/3 * s.w.numparticipant). This statement enables the pro transition when two thirds

of the current participants vote “Yes”. The token in the system place stores the number

of participants and the number of pros and cons using its output arc expressions.

 The template file for the vote_subnet:#2 is as follows:

<Template multiple_frame=“yes_3frame”>
<Place name=“question” >
<Place name=“wait”>
<Place name=“pro_result”>
<Place name=“con_result”>

 According to this template specification, the output page will have three frames.

Note that the listen place is not specified because it is instead specified in the template

137

file of the getFloor:#1 subnet. Figure 33 and Figure 34 show the output result pages for

a listener in the net state, shown in Figure 31 and Figure 32, respectively. Since Petri

nets provide an inherently good environment for the synchronization of parallel actions,

it will be interesting to develop further cooperative documents in the caT model.

Figure 33: Output page in the listening state

138

Figure 34: Output page in the voting state

139

CHAPTER VI

EVALUATION AND DISCUSSION

To acquire information about the usability of the prototype system and to guide the

direction of future related research, a system evaluation was performed. The evaluation

approach used for this prototype system is a general-usability analysis rather than a

statistically significant study. The main target objects for this evaluation were a

hypertext document authoring tool and a browsing tool that allowed for Web-based

browsing of the resulting documents.

 In this chapter, the objectives and methods of the evaluation, as well as the subjects

who participated in this evaluation process, are described first. An analysis and

discussion of the resulting data that was collected from the subjects follows. Lastly, our

evaluation of the specification mechanism is detailed. The general procedures and

methods used for this evaluation partly follow the experimental methodology described

in Nielsen [1993] and Shneiderman [1992].

6.1 Evaluation of the caT system

6.1.1 Objectives

This evaluation took the form of a usability study with the goal of gaining information

regarding current research and that of identifying future research opportunities in the

area of hypertext document authoring and browsing with a Petri net-based hypertext

140

system, i.e., caT. The usability evaluation experiments investigated whether or not

subjects could effectively use the authoring tool for creating hypertext documents, and

could browse the resulting documents using the browsing tool.

6.1.2 Subjects

Since human subjects were involved in the evaluation of this prototype software system,

the evaluation experiment required that three documents (the IRB Application, the

Protocol Format for Use of Human Subjects in Research, and the Informed Consent

Document) be submitted to the Institutional Review Board (IRB) at Texas A&M

University—these three documents can be found in Appendices A, B, and C. After the

approval from the IRB, the human subjects of this evaluation experiment were recruited

via E-mail or person-to-person contact.

 Five subjects were recruited to evaluate the caT system. All of them were graduate

students (four doctoral and one master’s student) at Texas A&M University. All subjects

were in the Department of Computer Science and worked with the Center for the Study

of Digital Libraries (CSDL). The subjects who had at least some experience with

hypertext or Web document development were selected because they could best compare

the caT system to other hypertext authoring systems or techniques. However, it was not

easy to find subjects who had some experience with Petri nets and their tools. Two of the

subjects knew about Petri nets before the evaluation and had some familiarity with

Trellis concepts. However, none of the subjects had actually used Petri net tools. Profiles

of the subjects who participated in this evaluation are shown in Table 13.

141

Table 13: Profiles of subjects

Subject Characteristics

User 1 User 2 User 3 User 4 User 5

Major Field Computer
Science

Computer
Science

Computer
Science

Computer
Science

Computer
Science

Years in authoring Web
documents or
developing Web-based
software

More than
2 years

More than
2 years

More than
2 years

More than
2 years

1-2 years

Knew Petri nets No Yes No Yes No

Used Petri net tools No No No No No

Could read Web-based
customizable documents

Yes Yes No No Yes

6.1.3 Methods

This experiment conducted a usability evaluation of the prototype system. To understand

how well the target users would be able to interact with the prototype system, the

subjects were instructed to perform a sequence of pre-planned tasks with the software

system. Then, in order to collect evaluation information, the subjects were required to

answer questionnaires.

At the beginning of each evaluation, a brief overview of the system was

demonstrated for each subject. In the demonstration, Web presentation and current

analysis features were introduced by several applications described in the caT model. In

addition, the subjects were introduced to Petri nets and had an opportunity to actually

build high-level Petri nets using xted.

142

 Next, each subject began the evaluation with a tutorial that was specially designed to

give the subject step-by-step instructions for the caT system. Each subject actually used

the system while following the tutorial. Several simple tasks were given for the system

usability evaluation. The features covered in the tutorial were:

• An introduction to caT and high-level Petri nets

• The creation of hierarchical, colored timed Petri nets using xted

• The building of a caT model for a simple context-aware application, followed by

Web browsing of the resulting model

Since the entire evaluation experiment was designed to take no more than two hours,

and some features required background knowledge for the task, the following features

were not evaluated by the subjects even though some of these were demonstrated at the

beginning of the evaluation:

• Petri net analysis and debugging tools in xted

• Fuzzy rule base creation and interface

• User model profiles and the xtb browser

 After completing the assigned tasks in the tutorial, the subjects were requested to

answer the questionnaire shown in Appendix D. The first part of the questionnaire asked

several questions about the subject. The second part of the questionnaire was comprised

of evaluation questions about the caT system. Both qualitative and quantitative

evaluations were included in the questionnaires.

143

6.1.4 Results analysis and discussion

The evaluation results collected from the subjects through the questionnaire are

summarized in Table 14. In this table, the scale range for each item is between 1 and 9

with the value of 1 being “Strongly Disagree” and 9 being “Strongly Agree.” The

results indicate that the subjects were generally satisfied with the caT system even

though the results were not statistically significant. Most of the subjects especially

believed that caT could be useful for adaptive Web document publishing. They would

use caT if it was available to them. However, they thought that caT needed further

enhancements to provide an intuitive interface.

Table 14: Evaluation data

Subjects’
Assessment Evaluation Item

Average

The tool provides an intuitive interface. 6.6

Authors can easily and independently use the program. 7.4

Interface
Design

The program runs properly (bug-free). 7.6

Rate your experience with the tool. 7.6

The tool is useful for adaptive Web document
publishing.

8

The length of time to use the program is not excessive;
learning justifies amount of time spent.

7.8

Overall
Evaluation

Will you use the tool if the tool is available to you? Yes
(all subjects)

 Before performing the evaluation, a number of usability improvements were made to

χTed (caT’s authoring tool), identified in part by informal reviews of the user interface.

144

For example, attribute names displayed to the user were modified to reflect their

function, rather than their internal name. Fireable transitions in χTed’s display were

flagged by coloring them red (color mappings used in the authoring tool can be specified

by the user; colors identified here are the default colors). With the addition of

hierarchical nets, we also found it useful to graphically distinguish those transitions that

represented subnets (with an open box) and further to indicate whether transitions in the

subnet were active (the open box is colored pink when the subnet contains enabled

transitions). Places mapped to inputs and outputs of subnets are also distinguished by

coloring. We are considering the use of color to reflect the content type associated with

places as well. In the present implementation of caT’s authoring tool, places associated

with template content (for the WWW client) are colored blue. Additionally, windows

that contain active transitions are flagged by coloring those window titles red when the

Cascade Windows menu item is invoked. This allows for easy finding of the currently

active transitions among many subnets.

 Common difficulties found during the evaluation and comments from subjects were

mainly related to the user interface, and they are described as follows (the first and

second items have been incorporated into a new version of the caT system, while the

other items provide valuable perspective needed to enhance the current system):

• Attribute dialog (see Figure 15 in Chapter IV): Some of the subjects had

difficulties with the attribute dialog. The most commonly recurring problem was

that they did not press the “Add/Change” button before they closed the dialog

145

with the “OK” button. In that case, the current attribute value was not transferred

to the information server. To solve the problem, a warning dialog was added.

Currently, whenever the current attribute dialog is closed with the “OK” button,

the current value in the Attribute Value field is compared to the one in the server.

If the values are different, a warning dialog window pops up to inform the user

that these values don’t match. Another confusion regarded the Attribute List and

the Attribute Option Menu in the attribute dialog. The Attribute List shows the

current object’s attribute variables stored in the server, and the Attribute Option

Menu is a combo box (or control menu) that provides an easy way of adding a

new attribute variable to the Attribute Value field. The meaning and usage of

these features were not intuitive to some subjects. However, the confusion was

resolved after the evaluation investigator explained their function to the subjects.

• Three mouse button operation: The system uses three mouse buttons, but the

evaluation pointed out that there were some inconsistencies among the uses of

these buttons. For example, in the attribute mode (when the Label icon is

pressed, see Figure 14 in Chapter IV), the first mouse button is used for opening

an attribute dialog window. However, in the token mode (when the Token icon is

pressed), the third mouse button popped up an attribute dialog window for

showing the token contents of the current place. Currently, a first button click on

a place is defined to open either a place or a token attribute dialog, depending on

the clicked location. The large dot region in the center of the place is defined to

pop up a token attribute dialog window when there is a first mouse button click

146

on it. The region outside of the large dot but inside the place circle is defined to

pop up a place attribute dialog window. As another example, the second mouse

button was used in different modes for both object dragging and token removal.

To simplify this, the second button is now reserved for object dragging and the

third mouse button is instead used for token removal in the token mode. In

addition, a Move icon has been added to the Edit Tool box to allow object

dragging with the first mouse button, and the Label Net icon that was duplicated

by a popup window submenu (“Net Attributes…”) was deleted in order to make

room for the addition of the Move icon. As a result, the user now usually uses the

first button except for token deletion with the third button (object rearrangement

with the second button is still available). Since the token deletion operation

deletes one colored token at a time, we may need another operation for one-click

deleting of all tokens in a particular place. A cut operation, provided by the

Scissors icon, may be used for this purpose.

• Direct manipulation operation: In the current user interface, most of the object’s

attribute values are added/deleted/updated through the attribute window.

However, for the specification of some attribute values, more direct user

interface may help the user to efficiently use the system, such as specifying

external files (template, content files, etc.) of places through a drag and drop

interface and mapping input/output places of subnets by direct mouse clicks. In

addition, a more direct way to clone places, transitions, and arcs will be useful in

prohibiting the repeated opening and closing of attribute windows to copy and

147

paste an object’s attribute values. Furthermore, in the authoring tool, drawing

objects such as places and transitions are not defined as selectable objects—i.e.,

individual objects cannot be selected with a mouse click. They are drawn directly

on the canvas with their location and size information. If the drawing objects

could be made selectable, it would be easier to manipulate grouped objects such

as move operations of grouped objects.

• Help function: The current authoring tool does not provide functionally useful

help. Context-sensitive help and/or interactive help sessions with online

examples would be helpful. Additionally, a library of example nets that could be

easily modified to meet the author’s design requirements would also be useful.

• Link display decision: For Web-based browsing of the caT model, a template file

specifies how links are to be embedded. On the other hand, xtb has link display

decisions enabled into the attribute/value pairs of arcs on the net. The Hide

Button attribute is used when the author wants a link to be visible only from

some of the places enabling the transition for a particular color. It is a little

inconsistent to have different mechanisms for link display decisions in different

browsers. Thus, these mechanisms should be unified to provide consistent

control of link displays among multiple browsers. One easy solution for the

current problem is that the Hide Button attribute is consistently used in all

browsers for the link display control. In the Web-based browsing, in addition to

the template file, the Hide Button attribute will be used.

148

• Miscellaneous functions: If many subnets are displayed in the authoring tool, it

may be easy to get lost. Thus, a hierarchical summary viewing tool that shows a

summarized hierarchical subnet tree may reduce disorientation and provide for

the easy navigation of multiple subnets. As another issue, when in simulation

mode, we can see the token movement around the nets. However, the tokens’

local values are not visible. Thus, the visualization of token attribute values while

the net is running will help the user to monitor the tokens’ local value changes.

6.1.5 Evaluation of specification mechanism

The caT model provides a good abstraction and separation of the structure from the

content of hypertext, using it helps to discipline the authoring activity by encouraging

development in a structured fashion, requiring that the structure be designed before the

actual contents are associated with the nodes of the structure. When the document

structure is well organized from the initial phase, it will provide more manageability and

expandability. On the other hand, in the Web, authors create fragments of content,

including within them pointers to other pieces of content. In a sense, the caT

specification mechanism is top-down while the Web mechanism is bottom-up.

 As one of the evaluation tasks, subjects were asked to build a simple caT model

(similar to Figure 25 in Chapter V) to evaluate the caT’s specification mechanism. In the

task, subjects who had prior knowledge of Petri nets performed the task a little better

(i.e., with less help from the evaluation investigator) than those subjects who had not

known Petri nets. The overhead for familiarizing themselves with Petri nets, especially

149

for those subjects who were new to the Petri nets concept, might cause this difference. It

did not seem straightforward to design document structures in Petri nets, especially for

first-time users (i.e., the subjects). It may also be true that, in the programming

discipline, the structured design process requires some experience. The template node,

i.e., a composite node, especially made the design process more complicated since the

subjects had to consider token flow between the templates and among related places in

order to achieve dynamic composition from the contents of the places. In addition,

subjects learning the semantics and syntax of caT’s additions to the basic Petri net’s

formalism, such as the transition’s conditional and the arc’s assignment statements,

caused overhead. However, the work of associating the actual contents to the nodes in

the structure was not difficult when compared to the authoring of document structures.

 After the subjects were accustomed to the design process in caT’s Petri nets, they

could generate document structures and successfully finish the task. However, we expect

that a certain amount of experience with using Petri nets will be necessary for authoring

well-designed documents in caT. In addition, a more intuitive user interface for

structured authoring will be necessary to reduce the complexity of the design processes.

An easy way of creating/deleting subnets and a user-friendly navigation among subnets

will be especially helpful.

150

CHAPTER VII

DISCUSSION AND CONCLUSION

In this chapter, future research opportunities for the caT system are discussed first, and

the overall description of this research work and conclusions follow.

7.1 Discussion

7.1.1 Different client interpretations of content specification

The Trellis models and their prototype implementations, including caT, primarily focus

on representation and distribution of hypertextual browsing semantics—another way to

say this is that they specify the hypertext’s structure and manage its traversal. The

mapping of the content to the structure is managed in the prototypes by the clients. It is

the role of the prototype to determine how this mapping is to take place. The clients

determine both how to interpret the different data types (perhaps even choosing not to

present the type to the reader) and also how to acquire the data (generally, by using the

default action of looking in a known location in the file system).

 The earlier Trellis project investigated the flexibility obtainable by adopting different

client interpretations of content specification. For example, in a collaborative

environment, it is possible that the participants may benefit from individual

interpretations. One example of this would be different participants simultaneously

viewing information in their own different native languages. Another might be

151

participants in remote locations cooperatively traversing a structure via network, but

obtaining content from CD-ROMs that had been mailed to them previously rather than

over the network (the bandwidth necessary to support control flow will be significantly

less than that needed to transfer data).

 The above scenarios become possible when the browsers have an option for how to

acquire the data; i.e., file location information. For example, a local file system may be

specified instead of the default file system in the server. In this case, the local file system

may have a file directory structure that is similar to the one in the server. However, the

local file system has different contents with the same named files. For example, a

Korean user has a Korean version of files in his local file system, and a Chinese user has

a Chinese version in his file system. The server may store an English version for the user

who does not have his own favorite version in his local file system, or who is interested

in the English version.

 To support multiple readers who may use their own data in distributed environments

client browsers need to be runnable on multiple platform environments. In the caT

implementation, the current browsers, especially xtb and the image browsers, only run

in the Linux environment. Thus, the distribution of client browsers is rather restricted.

The current programs may be ported for multiple platforms. In this case, the managing

of multiple versions for multiple platforms becomes burdensome, and system-dependent

components such as X-Window system make it difficult to port some of the programs

(such as χTed) to other Window systems. To resolve this problem, the current browsers

152

may need to be reimplemented in Java. Eventually, the server (i.e., the information

server) may also need to be reimplemented in Java.

 For different client interpretations of content specification, an interesting extension is

to map multiple kinds of contents to an individual place. In the Trellis implementations,

places only hold one level of content. The flexible specification of the relationships

among different representations of a node’s content (as to both type and location) will be

useful to provide customized documents for each reader. We can think of the case of

different browsers choosing to render a particular type in different ways. In addition, the

modeling of relationships between device and data representation selection are

investigations that should be relevant to future applications of caT. As the characteristics

of the devices used will vary greatly, the flexibility gained from describing and

managing these relationships should be especially applicable to context-aware

applications.

 In caT, to show the potential for the above features, each place is allowed to contain,

for the selective presentations, several different types of contents, such as text, image,

and sound. Thus, browsers for specific data types that display only their own specific

type contents of the active places are necessary. Here, we can think of the following

prospective browsers: image browser, text browser, and sound browser. In caT, an image

browser that shows only the image contents of the active places has been developed.

This image browser has been developed to provide a common framework that allows

easy building of additional client browsers.

153

 The current xtb is a kind of general browser, which shows various different kinds of

data type contents with different viewers in multiple windows. It also allows invocation

of an executable program such as an E-mail program. xtb assumes that each place has

only one content element, and uses the following attributes: Contents File Name and

External Viewer. The Contents File Name attribute specifies the name of the file that

holds the contents of the place, and the External Viewer attribute specifies the name of

the application called to render the file specified as contents (if null, it assumes the

content is simple text).

 The early Trellis implementations [Stotts and Furuta 1993] show how separate

browsers (xtb and an image browser) can provide different views of a document’s

state, which, when viewed together, increase the understanding of the document’s

content. In caT, this approach is also taken in the elevator protocol specification example

introduced in Chapter V. In comparison to the Trellis image browser, the caT image

browser allows the user to browse the nets (i.e., fire transitions), including rendering

images of active places.

 In caT, the image browser uses an additional attribute for the image data

specification, Image File Name. In Trellis, this is done only by the file name stored in

the Contents File Name attribute, which is less flexible (the browser only sees a specific

file extension, such as bit-mapped images). Thus, in caT, if we need to specify sound

data, we may need an additional attribute such as Sound File Name. However, this

approach is not general enough for incorporating many different types of contents. Thus,

154

it needs to be improved. One possible approach is having another attribute, Secondary

Content File Name, which contains a list of content file names. Each browser will use

implicit MIME (Multipurpose Internet Mail Extensions) type information for selecting

one of files from both the Content File Name and the Secondary Content File Name

attribute values. When multiple same-typed files are defined in a place, we may need to

specify additional information (such as priority information among the same-typed files)

for selecting one of the files.

7.1.2 The analysis tool

The current analysis tool is mainly focused on the analysis of a high-level Petri net itself.

It needs to be extended to provide more useful analyses of hypertext document

properties. In the context of Trellis, Stotts et al. [1992; 1998] explored the analysis of

basic Petri nets for various browsing characteristics. In Trellis, the reader specifies

dynamic document properties, such as “in some browsing path, Node X and Y must be

concurrently visible”, with a branching temporal logic [Galton 1987]. The temporal logic

reasons about the ordering of events in time, and a branching temporal logic supports

special logic symbols that allow for the formulation of assertions involving relative

ordering as well as the quantification over paths in a tree-like model of time. Trellis uses

CTL* [Emerson and Halpern 1986], one of the general languages for branching time

logics, as the basis for the hyperdocument notation called HTL* (Hypertext Temporal

Logic).

155

 The reader can analyze the document for the presence or absence of dynamic

properties described in HTL (a restriction of HTL*) with a program verification

technique called model checking [Clarke et al. 1986]. The HTL formulae are actually

translated into equivalent CTL (a restriction of CTL*) formulae for applying an

algorithm developed by Clarke. The coverability graph (i.e., a finite-state machine)

generated from the Petri net is used as the input for Clarke’s model checker. Taking a

similar approach, Atlee and Gannon [1993] use a similar technique for the verification of

software requirements specifications. They present a technique for transforming

software requirements into state-based structures, which can then be analyzed using a

state-based model checker.

 However, the Trellis implementation does not provide an integrated environment for

document property analysis, and there are several separate steps involved in completing

the analysis. For example, the analysis and checking tools are separate programs, so the

coverability graph, computed by the analysis tool, needs to be translated into the input

format required by the model checker. In addition, the colored Petri net must be

converted to a basic Petri net for model checking.

 Therefore, for handy document property analysis, the Trellis implementation needs

to be improved, especially concerning integrating individual steps together to improve

quality and efficiency. Eventually, the authoring tool in caT may support the query of

desired document properties in HTL, and it may present the analysis results within the

tool. A translator that converts the desired document properties described in natural

156

language-like syntax to the temporal logic syntax may be necessary for easy

specification of the desired document properties.

 In the current caT implementation, the analysis tool has been integrated into the

authoring tool. This allows interactive interfaces for the net analysis, while, in Trellis,

the support of separate authoring and analysis tools allows batch mode interfaces.

Converting Trellis’s analysis method from a batch mode to an interactive mode raises

many research (and implementation) issues. First of all, in the interactive mode,

incremental analysis support will be required while the net is being developed. For

example, the analysis tool may allow specifying analysis regions of the current nets

(such as a subset of all subnets, a specific subnet, or some nodes within a subnet) for the

analysis of partial nets. The partial net analysis feature will help the author to analyze

only interested parts of nets before he (or she) finally performs the analysis of complete

nets, which may take lengthy computation time. In addition, the current client-server

architecture needs to consider slow response time of some interactive analysis

transactions such as a RT construction. For instance, a client may wish to be interrupted

when the analysis returns results rather than just waiting for the response. For improving

the performance (i.e., time and size) of a RT construction, more complex analysis

techniques such as a RT with equivalent classes and a RT with symmetries may be

applied to the current analysis implementation [Jensen 1995].

157

7.1.3 Miscellaneous issues

In the authoring tool, i.e., χTed, the author can simulate Petri nets to test dynamic

behavior of the nets. However, if the author wants to see resulting dynamic documents

from the current net status, additional browsers such as xtb or a Web browser must be

involved. Therefore, in the authoring tool, it would be convenient to have a document

layout window that provides resulting document layouts (or at least resulting document

file name lists). In this case, the author may not need to invoke additional clients to

examine resulting documents. Furthermore, a simple version of the current χTed

browser called Net Displayer may be implemented for providing a current document

structure (i.e. a Petri net) view to the reader. The reader will mainly see resulting

documents using regular browsers, and he (or she) will see the net status (such as

marked places and active transitions) as additional information with Net Displayer.

 caT supports a simple form of user modeling. Thus, it will be interesting to extend

the current user modeling feature. For instance, to support educational hypertext

applications, a reader’s current knowledge values (e.g., known or not known) of the

concepts in the current documents can be added (and updated) in the user profile. The

system then provides different link annotations (e.g., different link colors) or link

removal based on the current knowledge values. To support this feature, the system must

support additional functions that set initial knowledge values for the current reader, and

it must update the values based on the reader’s traversal of the documents. In addition,

the current net description statements (such as the conditional statements of transitions

158

and the assignment statements of arcs) may need to be extended for the link adaptation

to the knowledge value information. Moreover, there will be many open, interesting

problems related to automatic user modeling. For example, the system may infer the

current user’s knowledge value from his (or her) several browsing patterns, and it may

set initial knowledge values for the current documents.

 In caT, synchronization is rather coarse-grained, especially for multimedia

presentation. For example, media can only be synchronized at their beginning or end.

The maximum latency value associated with the Time attribute of each transition

specifies the following condition: when all input tokens of a transition have stayed in

their places for more than the specified maximum latency time, the transition is

automatically fired. In fact, the maximum latency time indicates the maximum

presentation time for the contents of the marked input places of the current transition.

caT may need to support fine-grained synchronization (or presentation) controls. For

example, when we have sound and video media objects and a text document as the

contents of the current transition’s input places, we may want to specify the following

conditions: when either the sound or video object finishes presentation, finish all the

other places’ presentations, start the sound presentation five seconds after the video

presentation starts, and start the video object from a specific clip point. It is possible that

some of these scenarios may be described in the current caT model. However, since caT

does not consider the delay of data transfer especially when the data are loaded from

remote machines, it may be possible that it moves to the next state without presenting

the sound and video objects at all. To support these features more obviously, the current

159

time-based Petri nets may need to be enhanced. In addition, browsers may need

additional communications with the server for presentation controls, such as control of

their presentation (e.g., start from a specific frame) and report of their presentation states

(e.g., load, start, play, finish, etc.)—SMIL supports some of these features.

 In caT, every caT model (i.e., a document application) is an instance of an

information server (i.e., a Petri net engine). Clients, which are separate processes,

communicate with the server via RPC. In the current caT implementation, clients poll

the server to check net status changes. When there are a limited number of clients, this is

acceptable. However, when there are many clients working together, this places a heavy

load on the server. A different possible approach is broadcasting the net status changes

from the server to the clients that ask for reports of net changes in advance (this was the

mechanism in αTrellis). The server also breaks down with larger numbers of clients if it

is point to point. Thus, it will be interesting to improve the current communication

scheme using other approaches like multicasting [Stevens 1994]. Multicast-capable

networks implement one-to-many (or many-to-one) communication at the physical level,

using addressing schemes that allow a single transmitted message to be routed to many

receivers.

 In caT, there is no communication support among servers. When it is supported, each

server located in each user’s computer can communicate with other servers to support

cooperative applications. For example, we can think of a scheduling tool in which each

reader has his (or her) own scheduling server and the server communicates with other

160

servers to support cooperative scheduling works. First of all, to support this feature, the

server must be easily portable to multiple platforms. In the current implementation, the

colored tokens are used in cooperative document applications. With this extension (i.e.,

the communication support among servers), it will be interesting to compare the

usability of two approaches. It will also be possible to use the server communication

feature together with the colored tokens. For example, we may build large-scale

cooperative applications, where each group has one server that communicates with other

servers. As another example, each user in each server has a unique colored token for his

(or her) identification, and he (or she) interacts with other participants in other servers

using the unique colored token. For example, a user in a server sends, by firing a

transition, his (or her) unique colored tokens to other participants (i.e., input places of

transitions in other nets) to allow them to see his (or her) schedule data—in this case, the

received tokens are used for access control.

7.2 Conclusions

In this research, we have developed an extended hypertext model called caT (for

Context-Aware Trellis) in order to support flexible adaptation in a dynamically-changing

environment. In summary, caT is an extension of the earlier Trellis model that is

designed for supporting the authoring, browsing, and analysis of fairly complex,

dynamic documents. It supports these functions in the following ways:

• Introduces a new context-aware hypertext model for the development of context-

aware hypertext documents;

161

• Presents mechanisms for reducing complexity of specification representation in

the high-level Petri net-based hypertext system;

• Provides a mechanism to create a dynamic composite node from the active

content elements and to embed the link anchors for flexible Web-based

information presentation of the caT model;

• Develops structured authoring and analysis tools for the high-level Petri net-

based hypertext system; and

• Improves the Trellis implementation, especially aspects of the Trellis prototypes

and their environment that restricted their general application.

 In caT, the author who is accustomed to the caT model and its underlying formalism

can specify various dynamic documents using the structured GUI (Graphical User

Interface) authoring tool. Afterward, the reader who is not required to know the model

can browse the dynamic documents using various browsers to have his selective

document views in different environments. Especially, the Web-based browsing of the

caT model allows the reader to define sophisticated hypertext applications using the caT

model and to browse result information using the familiar user interface of WWW

(World-Wide Web) browsers.

 Unlike many hypertext systems, caT (and Trellis) specifications are centered around

the structure of the hypertext rather than the nodes of the hypertext. This is particularly

noticeable when comparing the process of caT specifications with the process used in

authoring World-Wide Web collections. In χTed, authors initiate their design (i.e.,

162

document structures) by specifying a Petri net. In the Web, authors create fragments of

content, including within them pointers to other pieces of content. In a sense, the χTed

specification mechanism is top-down, while the Web mechanism is bottom-up. In

another interpretation, χTed specifications are link-centric, while Web specifications are

node-centric. As the number of authors using caT increases with the distribution of the

caT system to potential authors, it will be interesting to see whether the differences in

specification genres are reflected in the resulting hypertexts.

 Potential target applications of the caT model are context-aware hypermedia

applications running on mobile systems with attached sensors to capture their

environment. In caT, several prototype examples have been developed to show its

usability for specifying and presenting various dynamic documents: context-aware

documents, executable formal specifications of software requirements, cooperative

documents, and customized Web documents. The further investigation and development

of more appealing documents that are described in caT will be interesting.

 In caT, the extensions of the Trellis model, such as hierarchical nets, structured

tokens, and conditional predicates, have been designed to be consistent with Petri net

theory in order to apply analysis techniques to investigate the document specification.

Consequently, we have built two kinds of analysis tools, which are integrated into the

authoring tool. The first one is an interactive debugging tool that allows interactive

analysis of the net while the author simulates the nets. The second one is an analysis tool

with which the author can analyze the hierarchical Petri nets by building a Reachability

163

Tree. However, the current analysis tools are mainly focused on the analysis of a high-

level Petri net itself. Further research work to support more useful analysis of hypertext

document properties will be interesting.

 Finally, to acquire information about the usability of the prototype system and to

guide the direction of future related research, a system evaluation was performed. The

successful result of the evaluation showed the potential usability of the model as a

context-ware hypertext system. This research work will provide some background

techniques and experiences for further context-aware research in the hypertext field.

With the increased availability of computing devices equipped with environmental

sensors, further research work will enhance the usability of the caT system.

164

REFERENCES

ABOWD, G. D., ATKESON, C. G., HONG, J., LONG, S., KOOPER, R., AND

PINKERTON, M. 1997. Cyberguide: a mobile context-aware tour guide. ACM

Wireless Networks, 3, 5 (Oct.), 421-433.

AKSCYN, R. M., McCRACKEN, D. L., AND YODER, E. A. 1988. KMS: a distributed

hypermedia system for managing knowledge in organizations. Communications of the

ACM, 31, 7 (July), 820-835.

ATLEE, J. M. AND GANNON, J. D. 1993. State-based model checking of event-driven

system requirements. IEEE Transactions on Software Engineering, 19, 1 (Jan.), 24-

40.

BENNETT, F., RICHARDSON, T., AND HARTER, A. 1994. Teleporting – making

applications portable. In Proceedings of the Workshop on Mobile Computing Systems

and Applications (Santa Cruz, CA, Dec.), 82-84.

BESLMULLER, E. 1988. Office modeling based on Petri nets. In Proceedings of the 5th

Annual ESPRIT Conference (Brussels, Belgium), 977-987.

BIGELOW, J. 1988. Hypertext and CASE. IEEE Software, 5, 2 (Mar.), 23-27.

BOTAFOGO, R. AND MOSSÉ, D. 1995. The MORENA model for hypermedia

authoring and browsing. In Proceedings of the International Conference on

Multimedia Computing and Systems (Los Alamitos, CA, May), 42-49.

165

BROWN, P. J., BOVEY, J. D., AND CHEN, X. 1997. Context-aware applications:

from the laboratory to the marketplace. IEEE Personal Communications, 4, 5 (Oct.),

58-64.

BROWN, P. J. 1998a. Some lessons for location-aware applications. In Proceedings of

First Workshop on HCI for Mobile Devices (Glasgow University, Scotland, UK,

May), 58-63.

BROWN, P. J. 1998b. Triggering information by context. Personal Technologies, 2, 1

(Sept.), 1-9.

BRUSILOVSKY, P. 1996. Methods and techniques of adaptive hypermedia. User

Modeling and User Adapted Interaction, 6, 2-3, 87-129.

BUSH, V. 1945. As we may think. The Atlantic Monthly, 176, 1 (July), 101-108.

BULTERMAN, D. C. A., HARDMAN, L., JANSEN, J., MULLENDER, K. S., AND

RUTLEDGE, L. 1998. GriNS: a graphical interface for creating and playing SMIL

documents. In Proceedings of the Seventh International World Wide Web Conference

(Brisbane, Australia, April), 519-529.

CAMPBELL, B. AND GOODMAN, J. M. 1988. HAM: a general purpose hypertext

abstract machine. Communications of the ACM, 31, 7 (July), 856-861.

CAPPS, M., LADD, B., STOTTS, D., AND NYLAND, L. 1996. Educational

applications of multi-client synchronization through improved web graph semantics.

In Proceedings of 5th Workshop on Enabling Technologies: Infrastructure for

Collaborative Enterprises (Stanford, CA, June), 21-26.

166

CARDOSO, J., VALETTE, R., AND DUBOIS, D. 1990. Petri nets with uncertain

markings. In Lecture Notes in Computer Science, Advances in Petri Nets 1990, 483,

G. Rozenberg, Ed., Springer-Verlag, Berlin, Germany, 64-78.

CARDOSO, J., VALETTE, R., AND DUBOIS, D. 1996. Fuzzy Petri nets: an

overview. In Proceedings of 13th IFAC World Congress (San Francisco, CA, June 30

– July 5), 443-448.

CARDOSO, J. AND PRADIN-CHÉZALVIEL, B. 1997. Logic and fuzzy Petri nets. In

Proceedings of Workshop on Manufacturing and Petri Nets within International

Conference on Applications and Theory of Petri Nets (Toulouse, France, June), 17-34.

CHEN, S. M., KE, J. S., AND CHANG, J. F. 1990. Knowledge representation using

fuzzy Petri nets. IEEE Transactions on Knowledge and Data Engineering, 2, 3

(Sept.), 311-319.

CHUNG, C.-C. 1997. subWeb: creating a guided path of concurrent and synchronized

browsing streams on the World Wide Web. Master Report. Department of Computer

Science, Texas A&M University, College Station, TX.

CLARKE, E. M., EMERSON, E. A., AND SISTLA, A. P. 1986. Automatic verification

of finite-state concurrent systems using temporal logic specifications. ACM

Transactions on Programming Languages and Systems, 8, 2 (April), 244-263.

CONKLIN, J. 1987. Hypertext: an introduction and survey. IEEE Computer, 20, 9

(Sept.), 17-41.

167

COOPER, K. 1995. TSPNui: a Petri net model for specifying user interactions in

multimedia presentations. MSC Thesis. University of British Columbia, British

Columbia, Canada.

DE BRA, P. D., EKLUND, J., AND KOBSA, A. 1999a. Adaptive hypermedia:

purpose, methods, and techniques. In Proceedings of the 10th ACM Conference on

Hypertext and Hypermedia (Darmstadt, Germany, Feb.), 199-200.

DE BRA, P. D., HOUBEN, G., AND WU, H. 1999b. AHAM: a Dexter-based reference

model for adaptive hypermedia. In Proceedings of the 10th ACM Conference on

Hypertext and Hypermedia (Darmstadt, Germany, Feb.), 147-156.

DELISLE, N. M. AND SCHWARTZ, M. D. 1986. Neptune: a hypertext system for

CAD applications, In Proceedings of ACM SIGMOD for International Conference on

Management of Data (Washington DC, May), 132-143.

DE OLIVEIRA, M. C. F., TURINE, M. A. S., AND MASIERO, P. C. 2001. A

statechart-based model for hypermedia applications. ACM Transactions on

Information Systems, 19, 1 (Jan.), 28-52.

DEY, A. K. AND ABOWD, G. D. 1999a. Toward a better understanding of context

and context-awareness. Tech. Rep. GIT-GVU-99-22. Department of Computer

Science, Georgia Institute of Technology, Atlanta, GA.

DEY, A. K., SALBER, D., ABOWD, G. D., AND FUTAKAWA, M. 1999b. The

conference assistant: combining context-awareness with wearable computing. In

Proceedings of the Third International Symposium on Wearable Computers (San

Francisco, CA, Oct.), 21-28.

168

DIAZ, M. AND SENAC, P. 1993. Time stream Petri nets: a model for multimedia

streams synchronization. In Proceedings of the International Conference on

Multimedia Modeling (Singapore, Nov.), 257-273.

ELLIS, C. 1979. Information Control Nets: a mathematical model of office information

flow. In Proceedings of the 1979 ACM Conference on Simulation, Measurement and

Modeling of Computer Systems, (Boulder, CO, Aug.), 225-240.

ELLIS, C. AND NAFFAH, N. 1987. Design of office information systems. Springer-

Verlag, New York, NY.

EMERSON, E. A. AND HALPERN, J. Y. 1986. “Sometimes” and “not never” revisited:

on branching vs. linear time. Journal of ACM, 33, 1 (Jan.), 151-176.

ENGLEBART, D. C. 1984. Authorship provisions in Augment. In Proceedings of the

IEEE COMPCON (San Francisco, CA, Feb. 27 - Mar. 1), 465-472.

FURUTA, R. AND STOTTS, D. 1989. Programming browsing semantics in Trellis. In

Proceedings of Hypertext ’89 (Pittsburgh, PA, Nov.), 27-42.

FURUTA, R. AND STOTTS, D. 1994a. Interpreted collaboration protocols and their

use in groupware prototyping. In Proceedings of the Conference on Computer

Supported Cooperative Work (Chapel Hill, NC, Oct.), 121-131.

FURUTA, R. AND STOTTS, D. 1994b. A hypermedia basis for the specification,

documentation, verification, and prototyping of concurrent protocols. Tech. Rep.

TAMU-HRL 94-003. Department of Computer Science, Texas A&M University,

College Station, TX.

169

FURUTA, R. AND STOTTS, D. 2001. Trellis: a formally-defined hypertextual basis

for integrating task and information. Lawrence Erlbaum Associates, Mahwah, NJ.

GALTON, A. 1987. Temporal logics and their applications. Academic Press, New

York, NY.

GENRICH, H. J. AND LAUTENBACH, K. 1981. System modeling with high-level

Petri nets. Theoretical Computer Science, 13, 109-136.

GHEZZI, C., JAZAYERI, M., AND MANDRIOLI, D. 1991. Fundamentals of software

engineering. Prentice Hall, Englewood Cliffs, NJ.

GUDWIN, R. AND GOMIDE, F. 1998. Object networks – a modeling tool. In

Proceedings of FUZZ-IEEE98, 1998 IEEE World Congress on Computational

Intelligence (Anchorage, AK, May), 77-82.

HALASZ, F. G. 1988. Reflections on NoteCards: seven issues for the next generation

of hypermedia systems. Communications of the ACM, 31, 7 (July), 836-855.

HALASZ, F. G. 1991. ’Seven issues’: revisited. Keynote for Hypertext ’91. See

transcript at http://www.parc.xerox.com/spl/projects/halasz-keynote.

HALASZ, F. AND SCHWARTZ, M. 1990. The Dexter reference model. In

Proceedings of NIST Hypertext Standardization Workshop (Gaithersburg, MD, Jan.),

95-133.

HALASZ, F. AND SCHWARTZ, M. 1994. The Dexter hypertext reference model.

Communications of the ACM, 37, 2 (Feb.), 30-39.

HAREL, D. 1987. Statecharts: a visual formalism for complex systems. Science of

Computer Programming, 8, 3 (June), 231-274.

170

HODES, T. D. AND KATZ, R. H. 1999. Composable ad hoc location-based services

for heterogeneous mobile clients. ACM Wireless Networks 5, 5 (Oct.), 411-427.

HOLT, A. W. 1988. Diplans: a new language for the study and implementation of

coordination. ACM Transactions on Office Information Systems, 6, 2 (Jan.), 109-125.

ISO. 1997. Information technology – coding of multimedia and hypermedia information

– part 1: MHEG object representation, base notation (ASN. 1). ISO 13522-1.

JENSEN, K. 1992. Coloured Petri nets: basic concepts, analysis methods and practical

use volume 1. Springer-Verlag, New York, NY.

JENSEN, K. 1995. Coloured Petri nets: basic concepts, analysis methods and practical

use volume 2. Springer-Verlag, New York, NY.

JOYCE, M. 1991. Storyspace as a hypertext system for writers and readers of varying

ability. In Proceeding of Hypertext ’91 (San Antonio, TX, Dec.), 381-387.

KAY, J. 1995. The UM toolkit for cooperative user models. User Models and User

Adapted Interaction, 4, 3, 149-196.

KENDALL, R. 1996. Hypertextual dynamics in A Life Set for Two. In Proceedings of

Hypertext ’96 (Washington, DC, Mar.), 74-83.

KIM, T.-H., KIM, K.-I, AND LEE, K.-C. 2000. Simple and consistent SMIL authoring:

no more structure editing and no more errors. In Proceedings of Multimedia

Computing on the World Wide Web 2000 (Seattle, WA, Sept.).

LADD, B., CAPPS, M., STOTTS, D., AND FURUTA, R. 1995. Multi-head/Multi-tail

Mosaic: adding parallel automata semantics to the Web. In Proceedings of the 4th

WWW Conference (Boston, MA, Dec.), 433-440.

171

LESSTIF.ORG. 2001. The LessTif homepage. http://www.lesstif.org.

LITTLE, T. AND GHAFOOR, A. 1990. Synchronization and storage for multimedia

objects. IEEE Journal on Selected Areas in Communications 8, 3 (Apr.), 413-427.

LOONEY, C. G. 1988. Fuzzy Petri nets for rule-based decisionmaking. IEEE

Transactions on Systems, Man, and Cybernetics, 18, 1 (Jan. - Feb.), 178-183.

MALONE, T. W., CROWSTON, K., LEE, J., PENTLAND, B., DELLAROCAS, C.,

WYNER, G., QUIMBY, J., OSBORNE, C., BERNSTEIN, A., HERMAN, G.,

KLEIN, M., AND O'DONNELL, E. 1999. Tools for inventing organizations: toward

a handbook of organizational processes. Management Science, 45, 3 (Mar.), 425-443.

MASIERO, P. C., OLIVEIRA, M. C. F., GERMANO, F. S. R., AND SANTOS, G. P. B.

1994. Authoring and searching in dynamically growing hypertext databases.

Hypermedia Journal, 6, 2, 124-148.

NA, J.-C. AND FURUTA, R. 2000a. Context-aware hypermedia in a dynamically-

changing environment, supported by a high-level Petri net. In Proceedings of

Hypertext ’2000 (San Antonio, TX, May), 222-223.

NA, J.-C. AND FURUTA, R. 2000b. Context-aware digital documents described in a

high-level Petri-net-based hypermedia system. In Proceedings of International

Conference on Digital Documents and Electronic Publishing (Munich, Germany,

Sept.).

NA, J.-C. AND FURUTA, R. 2001. Dynamic documents: authoring, browsing, and

analysis using a high-level Petri net-based hypermedia system. In ACM Symposium on

Document Engineering 2001 (Atlanta, GA, Nov.). To appear.

172

NIELSEN, J. 1993. Usability engineering. AP Professional, Cambridge, MA.

PAULO, F. B., TURINE, M. A. S., DE OLIVEIRA, M. C. F., AND MASIERO, P. C.

1998. XHMBS: a formal model to support hypermedia specification. In Proceedings

of Hypertext ’98 (Pittsburgh, PA, June), 161-170.

PETERSON, J. L. 1981. Petri net theory and the modeling of systems. Prentice-Hall,

Englewood Cliffs, NJ.

PRABHAKARAN, B. AND RAGHAVAN, S. V. 1993. Synchronization models for

multimedia presentation with user interaction. In Proceedings of ACM Multimedia ’93

(Anaheim, CA, Aug.), 157-166.

REISIG, W. 1985. Petri nets: an introduction. Springer-Verlag, New York, NY.

RHODES, B. J. 1997. The wearable remembrance agent. In Proceedings of 1st

International Symposium on Wearable Computers (Cambridge, MA, Oct.), 123-128.

SADLER, S. W. 1996. Motif multi-document interface version 1.0.

ftp://ftp.x.org/contrib/widgets/motif/MDI-1.0.README.

SALBER, D., DEY A. K., AND ABOWD, G. D. 1999. The context toolkit: aiding the

development of context-enabled applications. In Proceedings of ACM SIGCHI

Conference on Human Factors in Computing Systems (Pittsburgh, PA, May), 434-

441.

SCHILIT, W. N., ADAMS, N., AND WANT, R. 1994. Context-aware computing

applications. In Proceedings of the Workshop on Mobile Computing Systems and

Applications (Santa Cruz, CA, Dec.), 85-90.

173

SHIPMAN, F., FURUTA, R., BRENNER, D., CHUNG, C., AND HSIEH, H. 2000.

Guided paths through web-based collections: design, experiences, and adaptations.

Journal of the American Society of Information Sciences 51, 3 (Mar.), 260-272.

SHNEIDERMAN, B. 1992. Designing the user interface: strategies for effective

human-computer interaction, second edition. Addison-Wesley, Reading, MA.

SIBERTIN-BLANC, C. 1985. High level Petri nets with data structures. In

Proceedings of 6th European Workshop on Application and Theory of Petri Nets

(Espoo, Finland, June), 141-170.

SMIL. 2001. Synchronized Multimedia Integration Language (SMIL 2.0) specification,

W3C proposed recommendation (05 June 2001). http://www.w3.org/TR/smil20/.

STEVENS, W. R. 1994. TCP/IP illustrated, volume1: the protocols. Addison-Wesley

Publishing Company, Reading, MA.

STOTTS, P. D. AND FURUTA, R. 1989a. Petri-net-based hypertext: document

structure with browsing semantics. ACM Transactions on Information Systems, 7, 1

(Jan.), 3-29.

STOTTS, P. D. AND FURUTA, R. 1989b. Alphα: an authoring language for Petri-net-

based hypertext. In Proceedings of the Hypertext II Conference (University of York,

UK, June).

STOTTS, P. D. AND FURUTA, R. 1989c. αTrellis: a system for writing and browsing

Petri-net-based hypertext. In Proceedings of the Tenth International Conference on

Application and Theory of Petri Nets (Bonn, Germany, June), 312-328.

174

STOTTS, P. D. AND FURUTA, R. 1990. Hierarchy, composition, scripting languages,

and translators for structured hypertext. In Proceedings of Hypertext ’90, (Inria,

France, Nov.), 180-193.

STOTTS, P. D. AND FURUTA, R. 1991. Dynamic adaptation of hypertext structure.

In Proceedings of Hypertext ’91 (San Antonio, TX, Dec.), 219-231.

STOTTS, D. AND FURUTA, R. 1993. The Trellis project: process modeling for

CSCW. Tech. Rep. TAMU-HRL 93-005. Department of Computer Science, Texas

A&M University, College Station, TX.

STOTTS, P. D., FURUTA, R., AND RUIZ, J. C. 1992. Hyperdocuments as automata:

trace-based browsing property verification. In Proceedings of the 1992 European

Conference on Hypertext (Milan, Italy, Nov. 30 - Dec. 4), 272-281.

STOTTS, P. D., FURUTA, R., AND CABARRUS, C. R. 1998. Hyperdocuments as

automata: verification of trace-based browsing properties by model checking. ACM

Transaction on Information Systems, 16, 1 (Jan.), 1-30.

SUCHMAN, L. A. 1987. Plans and situated actions. Cambridge University Press, New

York, NY.

SUN MICROSYSTEMS, INC. (Palo Alto, CA) 2001. Java homepage.

http://java.sun.com/.

THE MATHWORKS, INC. (Natick, MA) 1999. Fuzzy logic toolbox user’s guide. The

Mathworks Home Page, http://www.mathworks.com/.

TOMPA, F. W. 1989. A data model for flexible hypertext database systems. ACM

Transaction on Information Systems, 7, 1 (Jan.), 85-100.

175

TURINE, M. A. S. AND DE OLIVEIRA, M. C. F. 1997. A navigation-oriented

hypertext model based on statecharts. In Proceedings of Hypertext ’97 (Southampton,

UK, April), 102-111.

VAN BILJON, W. R. 1988. Extending Petri nets for specifying man-machine

dialogues. International Journal of Man-Machine Studies, 28, 4, 437-455.

WANG, H. K. AND WU, J.-L. C. 1995. Interactive hypermedia applications: a model

and its implementation. Software-Practice and Experience, 25, 9 (Sept.), 1045-1063.

WANT, R., HOPPER, A., FALCAO, V., AND GIBBONS, J. 1992. The active badge

location system. ACM Transactions on Information Systems, 10, 1 (Jan.), 91-102.

WANT, R., SCHILIT, B., ADAMS, N., GOLD, R., PETERSON, K., ELLIS, J.,

GOLDBERG, D., AND WEISER, M. 1995. The PARCTAB ubiquitous computing

experiment. Tech. Rep. CSL-95-1. Xerox Palo Alto Research Center, Palo Alto, CA.

WILLRICH, R., SÉNAC, P., DIAZ, M., AND DE SAQUI-SANNES, P. 1996. A formal

framework for the specification, analysis and generation of standardized hypermedia

documents. In Proceedings of Multimedia ’96 (Boston, MA, Nov.), 399-406.

WOO, M., QAZI, N., AND GHAFOOR, A. 1994. A synchronization framework for

communication of pre-orchestrated multimedia information over broadband networks.

IEEE Network, 8, 1 (Jan.-Feb.), 52-61.

YEN, J. AND LANGARI, R. 1999. Fuzzy logic: intelligence, control, and information.

Prentice-Hall, Upper Saddle River, NJ.

ZADEH, L. A. 1989. Knowledge representation in fuzzy logic. IEEE Transaction on

Knowledge and Data Engineering, 1, 1 (March), 89-100.

176

ZHENG, Y. AND PONG, M.-C. 1992. Using statecharts to model hypertext. In

Proceedings of Hypertext ’92 (Milan, Italy, Nov.), 242-250.

ZURAWSKI, R. AND ZHOU, M. 1994. Petri nets and industrial applications: a

tutorial. IEEE Transactions on Industrial Electronics, 41, 6 (Dec.), 567-583.

177

APPENDIX A

IRB APPLICATION

178

179

APPENDIX B

PROTOCOL FORMAT FOR USE OF HUMAN SUBJECTS IN RESEARCH

180

181

APPENDIX C

INFORMED CONSENT DOCUMENT

182

183

APPENDIX D

EVALUATION QUESTIONNAIRE

184

185

186

VITA

 Jin-Cheon Na was born in Seoul, Korea on July 30, 1964. He earned his Bachelor’s

degree in Electrical Engineering from Hanyang University, Seoul, Korea in 1987, and

earned his Master’s degree in Computer Science from Oklahoma State University,

Stillwater, in 1990. He worked at Agency for Defense Development (ADD), TaeJon,

Korea, as a researcher, from May 1991 through May 1997. He enrolled in the

Department of Computer Science at Texas A&M University, College Station, in the

Spring of 1998, and started his research under the direction of Dr. Richard Furuta. He

worked with the Center for the Study of Digital Libraries (CSDL) at Texas A&M

University from July 1998 through August 2001, under the supervision of Dr. Richard

Furuta, Dr. John J. Leggett, and Dr. John D. Oswald. His research interests include

hypertext, computer-human interaction, digital libraries, CSCW (Computer Supported

Cooperative Work), and knowledge-based systems. His permanent address is:

1021-23 Bangbae-3-Dong

Seocho-Gu

Seoul, Republic of Korea

The typist for this dissertation was Jin-Cheon Na.

