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Abstract. The concept of disjointness preserving mappings has proved
to be a useful unifying idea in the study of Banach-Stone type theorems.
In this paper, we examine disjointness preserving relations between sets
of continuous functions (valued in general topological spaces). Under
very mild assumptions, it is shown that a disjointness preserving rela-
tion is completely determined by a Boolean isomorphism between the
Boolean algebras of regular open sets in the domain spaces. Building
on this result, certain Banach-Stone type theorems are obtained for dis-
jointness preserving relations. From these, we deduce a generalization
of Kaplansky’s classical theorem concerning order isomorphisms to sets
of continuous functions with values topological lattices. As another ap-
plication, we prove some results on the characterization of nonvanishing
preservers. Throughout, the domains of the function spaces need not be
compact.
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1. Introduction

If Q is a compact Hausdorff space, the space C(Q2) of continuous real val-
ued functions on €2 contains rich information on its underlying space 2. In
particular, C () carries with it a wealth of structures. It is a Banach space
under the norm || f|| = sup,,¢cq | f(w)|, a ring (with unit) under pointwise ad-
dition and multiplication and a vector lattice under pointwise order. Each
of these aspects of C'(2) has been shown to determine the space £ up to
homeomorphism. These are the famous classical theorems of Banach-Stone
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[6, 29], Gelfand-Kolmogorov [15] and Kaplansky [21]. These three classical
theorems can be summarized as follows.

Theorem 1.1. Let Q, Y be compact Hausdorff spaces and let T : C(Q) — C(X)
be a bijection. If T is a

(1) linear isometry (Banach-Stone), or
(2) algebra isomorphism (Gelfand-Kolmogorov), or
(3) wector lattice isomorphism (Kaplansky),

then there are a homeomorphism ¢ : ¥ — Q and a function h € C(X)
so that

Tf(o) =h(o)f(e(o)) for all f € C(Q) and all o € X.

Moreover |h| =1, h =1 and h > 0 under assumptions (a), (b), (c) respec-
tively.

A particularly fruitful concept that unifies the three classical theorems
is that of disjointness preserving operators. Two functions f,g € C(Q) are
said to be disjoint if the pointwise product fg = 0. Suppose that A(Q)
and A(X) are vector subspaces of C'(£2) and C(X) respectively. A linear op-
erator T' : A(Q) — A(X) is disjointness preserving if T f,Tg are disjoint
whenever f, g are disjoint functions in A(2). A biseparating operator or L -
isomorphism (see [10]) is a linear bijection T : A(Q) — A(X) so that both
T and T~ are disjointness preserving. It is evident that if A(Q) and A(X)
are algebras under pointwise operations, then every algebraic isomorphism
T: A(Q) — A(Y) is biseparating. A similar statement holds for lattice iso-
morphisms. In the past three decades, many results concerning biseparating
maps have been obtained. See, e.g., [1, 2, 3, 4, 5, 14, 18, 19, 20]. Most of
these are in the context of linear or additive maps. Recently, the papers
[10, 13] appeared that took the study of isomorphisms of disjointness struc-
ture to very general settings. For a recent survey on disjointness preservers
and Banach-Stone Theorems, see [24]. In particular, the paper [10] shows how
disjointness preserving mappings can be used to prove and/or extend many
results regarding “preservers” of various sorts. The purpose of this paper is
to build and expand on the ideas found in [10, 13]. We obtain several results
of Banach-Stone type for relations that are |-isomorphims. Applications to
order isomorphisms, generalizing Kaplansky’s classical theorem, as well as to
nonvanishing preservers are given.

In §2, we extend the definition of l-isomorphism to a general rela-
tion R between sets of continuous functions. The first main result (Theorem
2.4) shows that as long as there are sufficiently many elements in R, a L-
isomorphism is characterized by a Boolean isomorphism between the Boolean
algebras of regular open sets in the domains of definition.

§3 examines the question of when a Boolean isomorphism between the
Boolean algebras of regular open sets in the topological spaces X; and Xs
respectively gives rise to a homeomorphism ¢ : X3 — X5. Combining the re-
sults in §2 and §3 leads to several results of Banach-Stone type. See Theorems
4.2, 4.3 and 4.5 in §4.
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The paper ends with two applications. In §5, it is shown that under
general assumptions, an order isomorphism between lattices of continuous
functions taking values in topological lattices are 1-isomorphisms. As a re-
sult we obtain in Theorem 5.4 a generalization of Kaplansky’s classical result
to topological lattice-valued lattices of continuous functions. §6 contains the
application to nonvanishing preservers, which has been studied in, for in-
stance, [ , 11, 17, 22, ], sometimes under the name of maps preserving
common zeros. Proposition 6.1 shows that a nonvanishing preservers is a |-
isomorphism in many instances. As a result, we obtain Banach-Stone type
theorems for nonvanishing preservers (Theorems 6.5 and 6.7).

The authors are grateful to the referee for the careful reading of the
manuscript and the suggestions given.

2. Characterization of | -isomorphisms in terms of regular open
sets

A topological space is Tychonoff if it is Hausdorff and completely regular. In
this section, let X7, X5 be Tychonoff spaces and F;, F» be Hausdorff spaces.
If f,9,h € C(X, E), the set of continuous E-valued functions on X, let [f #
hl ={z € X : f(z) # h(x)} and o,(f) = int [f # h]. Say that
L f Lugif [f KN # b = 0.
2. f Ch g if Uh(f) - gh(g)'
Note that f L, g if and only if o4 (f) Nop(g) = 0. Let R C C(X1, Ep) %
C (X2, Es) be a relation and suppose that (hi,hs) € R. R is a Lp, po-
isomorphism, respectively, a Cj, p,-isomorphism, if for any (f1, f2), (g1, 92) €
R, fi Ln, 1 <= fa Lp, g2, respectively, fi Cp, g1 <= f2 Cp, g2. De-
note the projection from C(X;, E1) x C(Xa, Es) onto C(X;, E;) by m;. Set
A(XZ,EZ) = 7T7;(R), 1 =1,2 and let Ehi = {Jhl(fz) : fz € A(XZ,El)} Say
that A(X;, F;) is h;-weakly regular if ¥, is a basis for the topology of X;.
R is (hy, ha)-weakly regular if A(X;, E;) is h;-weakly regular for ¢ = 1, 2.
The following simple yet fundamental result was used in [10]; its ancestry
goes back to at least [2].

Proposition 2.1. Suppose that R is (hy,hs)-weakly regular. Then R is a
Ly ho-tsomorphism if and only if it is a Ch, p,-i1Somorphism.

Proof. Suppose that Risa L, p,-isomorphism. Assume that there are (f1, f2),
(91,92) € R so that on,(f1) C op,(g1) but on,(f2) € on,(g2), so that

ony(f2) € [g2 # ho]. Pick y and ko € A(Xa, E2) so that y € op,(k2) C
ohy (f2)\[g2 # h2]. Let k1 be such that (kq,k2) € R. Since ko Ly, go, k1 Lp,
g1. Hence k1 Lp, fi, which implies that ks Lj, fa. This contradicts the
fact that y € op,(f2) N op,(k2). This shows that op, (f1) C op, (1) =
ony(f2) € on,(g2). By symmetry, R is a Cp, p,-isomorphism. Conversely,
suppose that R is a Cp, p,-isomorphism, but there are (f1, f2), (91,92) € R
so that f1 Lp, g1 but on,(f2) N on,(g2) # 0. There exists (k1,k2) € R so

that 0 # op,(k2) C on,(f2) N ony(g2). Thus op, (k1) C on, (f1) Non, (91)-
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Since f1 Lp, g1, on, (k1) = 0. In particular, op, (k1) C op,(h1) and thus
Ohy(ka) C op,(ha) = 0, contrary to the choice of ko. This shows that f; Lp, g1
= fo Lp, g2. By symmetry, R is a L, p,-isomorphism. O

In a Tychonoff space X, an open set U C X is a regular open set if
U = intU. Note that all sets of the form o, (f) are regular open sets. The
collection RO(X) of all regular open sets in X is a Boolean algebra with the
operations Uy AUy = Uy NUy, Uy VUy = intU; UU; and -U = int(UC).
Moreover, RO(X) is complete; that is, every nonempty subset of RO(X) has
a supremum. Refer to [28] for an exposition of the theory of Boolean algebras.
The next result shows that every Ly, ,,-isomorphism determines a Boolean
isomorphism 6, p, : RO(X;7) — RO(X3).

Proposition 2.2. Let R be a (hi, ho)-weakly reqular Ly, p,-isomorphism. De-
ﬁne 9h1’h2 : RO(Xl) — RO(XQ) by

0h17h2(U) = int U{th(fQ) : (flafZ) € R70h1 (fl) - U}

Then 0y, 1, is a Boolean isomorphism from RO(X1) onto RO(X3) so that for
any (f1, f2) € R and any U € RO(X1), f1 = h1 on U if and only if fo = ho
on 0h17h2 (U)

Proof. Clearly 6, 5, is order preserving in the sense that if Uy, Uy € RO(X7)
and Uy C Uy, then 0, 4,(U1) C 0p, 1, (Uz). Define w : RO(X2) — RO(X;)
by

w(V) = int| J{on, (£1) : (f1, f2) € Ron,(f2) C VY.

We claim that w(fp, 5, (U)) = U for any U € RO(X;). By symmetry, we
would also have 0, p,(w(V)) = V for any V € RO(X3). Hence 6y, 1, is a
Boolean isomorphism. Let us prove the claim. Assume that z € U € RO(X7).
By weak regularity, there exists (fi, f2) € R so that © € o,,(f1) C U.
In particular, Ohy (fZ) c 0h1,h2 (U) Thus = € Ohy (fl) c w(9h1,h2(U))' This
proves that U C w(0p, n,(U)). Conversely, suppose that w(0p, n,(U))\U #
(. By weak regularity, there exists (f1,f2) € R so that § # op,(f1) C
w(0n, 1y (U))\U. By definition of w, there exists (g1, g2) € R so that o, (g2) C
Oh, .1, (U) and that op,, (f1)Non, (g1) # 0. Thus op, (f2)Non, (g2) # 0. By weak
regularity again, choose (k1, k2) € R so that O # op,,(k2) C on, (f2) Non,(g2)-
By Proposition 2.1, op, (k1) C on, (f1) Non, (91). In particular, oy, (k1) NU C
on, (f1) NU = 0. However, op,(k2) C ony(92) C 6,0, (U). Hence there
exists (I1,l2) € R so that op,(l1) € U and that op,(ke) N op,(I2) # 0.
This implies that oy, (k1) N op, (l1) # 0 and hence o4, (k1) NU # 0, con-
trary to what was established above. We have shown that w(6p,, n,(U)) C U.
Since U € RO(X), w(0h,,1,(U)) C U. The proof of the claim is complete.
Thus 6}, 5, is a Boolean isomorphism. Finally, assume that (f1, f2) € R and
fi = h1 on U € RO(Xy). Then op,(f1) € =U = int(U°). By definition
of thhm Ohy (fg) g 9h17h2 (—|U) = —|9h17h2 (U) = int(0h17h2 (U)C) Therefore,
fo = ho on 0j, 4, (U). The converse follows by symmetry. O
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In terms of the order on RO(X32), 0, 1, (U) can be described by
ehlth(U) = \/{Uh2(f2) : (f17f2) € R, Uhl(fl) < U}

In fact, existence of a Boolean isomorphism satisfying the last condition of
Proposition 2.2 implies that R is a L, j,-isomorphism. In order to see this,
we first prove an easy lemma.

Lemma 2.3. Let R be (hy, he)-weakly regular. Suppose that 6 : RO(X;) —
RO(X3) is a Boolean isomorphism so that for any (f1, f2) € R and any U €
RO(X1), fi =h1 onU < fo = hy on 6(U). Then for any (g1,92) € R,
Thy(92) = 0(on, (91))-

Proof. Tt suffices to show that op,(g2) C 0(on,(g1)). The reverse inclusion
follows by symmetry. Assume that y ¢ 0(op,(g1)). Choose (f1, f2) € R so
that
Y € ony(f2) C [0(on, (91))]° = —0(on, (91))-

Since on, (f2) N1 0(on (91)) = B, 6~ ony(f2)) N on (1) = 0. Thus g1 = Iy
on 0~ Y(on,(f2)), which implies that go = ho on oy, (f2) by assumption. In
particular, go(y) = hao(y). This shows that go = ho on the set [6(op, (91))]°-
Hence o4,(92) C 0(on,(g1)), as required. O

We can now prove the main result of this section characterizing a L, p,-
isomorphism in terms of an associated Boolean isomorphism 6 : RO(X;) —
RO(X3).

Theorem 2.4. Let R be (hq, ha)-weakly regular. Then R is a Ly, p,-isomorph-
ism if and only if there is a Boolean isomorphism 6 : RO(X;) — RO(X3)
such that for any (f1, fo) € R and for any U € RO (X4), f1 = hy on U if
and only if fo = ha on 6(U).

Proof. If R is a Ly, p,-isomorphism, then we may take § = 6, p,. The re-
quired conclusion follows from Proposition 2.2. Conversely, suppose that there
is a Boolean isomorphism 6 : RO(X;) — RO(X3) with the given property.
Let (f1, f2), (91,92) € R besuch that fi Ly, g1. Then fi = hy on op,(g1). By
assumption, fo = hg on 0(op,(g1)) = on,(g2), where the last equality follows
from Lemma 2.3. Therefore, fo Lp, go. By symmetry, we also have fo Lj, g2
= f1Ln g1- O

A Boolean isomorphism satisfying the condition in Theorem 2.4 is said
to be associated with (R, hy, hs), or simply with R. If a Boolean isomorphism
6 : RO(X1) — RO(Xy,) is associated with a L, 5,-isomorphism R and R
is (h1, he)-weakly regular, then it follows easily from Proposition 2.2 and
Lemma 2.3 that 6 = 0y, p,.

2.1. Comparing associated Boolean isomorphisms

Suppose that another pair (k1, k2) € R is given, where Ris a Ly, j,-isomorphism
and A(X;, E;) is k;-weakly regular, ¢ = 1,2. In general, 0y, x, and 0y, j, may
be unrelated. Below, we give a sufficient condition in terms of R so that
Ok, 1y (U) = Opy 1, (U) for any U € RO(X7). This will be useful in §4.
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Lemma 2.5. Suppose that R is a (h1, h2)- and (k1, k2)-weakly reqular Ly, p,-
and Ly, k,-isomorphism. If hy = k1 on a set U € RO(X1), then Op, 5, (U) =
0k1,k2 (U)

Proof. Let (f1, f2) € R be such that o, (f1) C U. Since

[f1 # ha]\on, (k1) C [fi # ] N [h = k1] C [f1 # k1] € ok, (f1)s

ohy (f1)\on, (k1) C o, (f1). In terms of the lattice operations on RO(X1), we

have o, (f1) A —opn, (k1) C ok, (f1). Apply Oh, n, to this inclusion and use

Lemma 2.3 to obtain

Thy (f2) N 0hy (K2) = Ony hy (00, (F1)) A 200y 0o (hy (K1) S Ony g (0, (f1))-

(2.1)

Since Oky (fl) g [hl = k’l] f1 = kl on og, (hl) Hence fg = kg on

O s (71, (1)) = 0w, () = o, (k2). Thus o, (f2) C ona (k) - In particular,

if fo(y) # k2(y), then ka(y) = ha(y) and hence fa(y) # ha(y). So [f2 # k2] €

[fg # hg]\O’hQ (k’g) Thus Oky (fg) C op, (fg) N —0p, (k}g) Combining with (21)
gives

Oksy (fQ) - ehl,h2 (0k1 (fl)) - 9h1,h2 (U)
As this holds for any (f1, f2) € R with ok, (f1) C U, it follows from the
definition of O, k, that 0, 1, (U) C Op, 4, (U). The lemma follows by sym-
metry. (I

Definition 2.6. Assume that R is a (h1, he)-weakly reqular Ly, p,-isomorphism.
Let us say that (k1,k2) < (h1, he) if
(1) Ris a (ki, k2)-weakly reqular Ly, k,-isomorphism.
(2) For any U € RO(X4), « ¢ U, there exist (f1, f2) € R and U' € RO(X;)
so that x € U’ and that f{ = hy on U and f1 =k; on U’.
(3) For anyV € RO(Xs), y ¢ V, there exist (g1,92) € R and V' € RO(X>)
so that y € V' and that go = ha on'V and ga = ko on V.

Proposition 2.7. Suppose that R is a (h1, he)-weakly reqular L, p,-isomorph-
ism. If (k1,k2) =< (h1, he), then Ok, 1, (U) = O, 1, (U) for any U € RO(X4).

Proof. First we show that 6k, k,(U) C 6p, 5, (U) for any U € RO(X;).
Set W := 0O, ky (U)\On, .1, (U) and let y € W. By assumption, there exist
(91,92) € R and V' € RO(X3) so that y € V', g2 = hg on 0, 5, (U) and
g2 = kg on V'. We may assume that V' C 6y, ,(U). Now gy = hy on U
and g1 = k1 on 91;11,1@(‘//) C U. Thus hy = g1 = k1 on 0,;117,62(1/’) and hence
he = ko on V'. In particular, ho(y) = ka2(y). This proves that he = ko on
W. By Lemma 2.5, Hgll}hz w) = Hk_ll’kz(W). For any (l1,l2) € R such that

on, (l1) C 0.1, (W) =0, 1, (W), it follows from Lemma 2.3 that

Ohy(l2) = Ony ny(on, (1)) C W.
By definition of 0y, j,, we can conclude that 0y, 5, (91;1,1@2 (W)) CW. As are-
sult, 0,;1,6 (W) C 9;1&2 (W). By choice of W, we also have 0,6_11,,62 (W) CU.So
0., (W) C O, (W)NU. But O, 5, (60, (W)NU) = W N0, 1, (U) = 0.
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Thus ) = 9,;,12 W)ynu 2 91;1,1@ (W). Since 9;117,62 is a Boolean isomor-
phism, this means that W = 0. As 0, x,(U) is a regular open set, this
shows that 0y, 1, (U) C 0p, 5, (U) for any U € RO(X7). Similarly, 9,;117,02(1/) C
9,:11&2 (V) for any V € RO(X3). Given U € RO(X3), set V = 0, 1, (U). Then
91;11,1@2 (Ony,ho(U)) CU, L., Oy 1y (U) S Oy, (U). O

3. Homeomorphism induced by a Boolean isomorphism

In the previous section, we have seen that, under some general assumptions,
a Lp, ny-isomorphism induces a Boolean isomorphism between RO(X;) and
RO(X3). A question that has been much investigated under the broad heading
of “Banach-Stone Theorem” is when does a Lj, p,-isomorphism induce a
homeomorphism between X; and Xs. In view of §2, this leads to the question
of when a Boolean isomorphism between RO(X;) and RO(X32) induces a
homeomorphism between X; and X5. The next result gives an answer to
this question. For terminology and facts concerning filterbases, refer to [12].
A Boolean isomorphism 6 : RO(X;) — RO(X3) is called a strong Boolean
isomorphism if for any Uy, Uy € RO(X1), Uy N Us # 0 if and only if §(U;) N
6(Uz) # 0. Denote the cardinality of a set A by |A|.

Theorem 3.1. Let X1, X2 be Tychonoff spaces and let 8 : RO(X1) — RO(X3)
be a Boolean isomorphism. Assume that

(1) 0 is a strong Boolean isomorphism.

(2) If F is a convergent filterbase in RO(X1), then ez 0(U) # 0.

(3) If F is a convergent filterbase in RO(Xs), then ez 0-1(V) # 0.
Then there is a homeomorphism ¢ : X1 — Xo so that o(U) = 0(U) for

all U € RO(X71). Conversely, if such a homeomorphism exists, then condi-
tions (1), (2) and (3) hold.

Proof. 1t is clear that if ¢ : X7 — X3 is a homeomorphism so that p(U) =
O(U) for all U € RO(X3), then (1), (2) and (3) hold. Conversely, assume
that (1), (2) and (3) hold. Denote by A, the family of all U € RO(X;)
such that x € U. Similarly for Ny, y € Xp. Claim. |(Nyep, oU) =1 =

INven, =1(V)|. We only show the second part of the equality. By (3),
ﬂVe/\/ 6=1(V) # (. Suppose that there are distinct 21,29 € ﬂVeN 0=1(V).
Then there are Wi, Wy € RO(X;) such that ; € W, i = 1,2, and Wi NW, =
0. Let i € {1,2}. For all V € N, z; € 6= (V). Thus W; N6~ (V) # (). Hence,
VNO(W;) # 0 for all V e N,,. It follows that y € §(W;)NO(W>). This contra-
dicts (1). Hence | nVeNy 0—1(V)| = 1. This completes the proof of the claim.
According to the claim, there are functions ¢ : X3 — X5 and ¥ : X2 — X7 so

that {¢(z)} = Nyen, A(U) and that {t(y)} = Nven, 0~ 6=1(V). Observe that
e(U) C O(U) for any U € RO(X1). If ¢ is not continuous at zg € X1, then
there exists Vy € RO(X2), yo := ¢(z0) € Vo, and p(U) € Vj for all U € N, .




8 Denny H. Leung and Wee Kee Tang

In particular, 0(U) € Vy. Thus (U) A (=Vy) # 0, whence U A (=0~1(Vp)) # 0
for all U € N,,. Therefore F := {U A (=071(V})) : U € N, } is a filterbase
in RO(X7), which clearly converges to xg. By (3), ﬂUeNIO O(U) A (=Vo) # 0.

Let y; be a point in the intersection. Then y; € mUeNmO O(U) and y; ¢ Vp; in

particular, y; # yo. Therefore, (¢ Ny m contains at least two points, con-
trary to the claim. This completes the proof of continuity for ¢. By symmetry,
v is also continuous. Let z € X1. If U € N, and V' € N, then p(z) € 6(U)
and hence (U)NV # 0. Thus, UNO~(V) # 0. Hence = € Nven,., (V).
On the other hand, by definition of ¥, ¥ (¢(x)) € mVerm 0—1(V). It follows

by the claim that ¢(¢(x)) = z. By symmetry, ¢ and ¢ are mutual inverses,
Hence ¢ is a homeomorphism from X; onto Xs. Finally, let U € RO(X4).

Since p(U) C O(U) and 0(U) € RO(X32), p(U) C (U). Suppose that y €
O(U)\p(U). For any V € Ny, VNO(U) # B and hence 6~ (V)NU # (. Choose
z €071 (V)NU. Then ¢(z) € (0-1(V)NU) C V. Thus ¢(z) € p(U)NV.
This proves that ¢p(U) NV # 0 for all V € N,,. Hence y € p(U), contrary to
its choice. Therefore, (U) C o(U) and hence 8(U) C ¢(U) on account of the
fact that p(U) € RO(X3). This shows that o(U) = 6(U) for all U € RO(X4),

as required. (I

A homeomorphism ¢ : X; — X5 satisfying the conclusion of Theorem
3.1 is said to be associated with 6.

Corollary 3.2. Let X1, X5 be Tychonoff spaces and let 6 : RO(X1) — RO(X3)
be a Boolean isomorphism. Assume that for any x € X1,y € Xa, there are
UeN; and V € Ny so that 0(U) and 0=1(V') are compact in X; and X,
respectively. Then there is a homeomorphism ¢ : X1 — Xo associated with 0
if and only if 0 is a strong Boolean isomorphism.

Proof. Tt suffices to show the “if” statement. By Theorem 3.1 and symmetry,
it is enough to show that (. 60(U) # 0 for any filterbase 7 C RO(X1)
that converges to some x € X;. Let such a F be given. By assumption, there
exists Uy € N, so that 0(Up) is compact. Then {§(UNUp) : U € F} is a
family of closed subsets of 8(Up) that has the finite intersection property.
Thus e 0(U) 2 Nyer 0(U NUo) # 0, as required. O

The next corollary is immediate.

Corollary 3.3. Let X1, X5 be compact Hausdorff spaces and let 6 : RO(X;) —
RO(X3) be a Boolean isomorphism. Then there is a homeomorphism ¢ :
X1 — Xs associated with 0 if and only if 0 is a strong Boolean isomorphism.

4. Homeomorphism induced by a | -isomorphism

We are now ready to use the results from the previous sections to obtain
Banach-Stone type theorems for |-isomorphisms. As before, let X7, X5 be
Tychonoff spaces and E7, Es be Hausdorff topological spaces. Assume that
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R C C(Xy,E1)xC (X2, E9) and (h1, he) € R. We are interested in obtaining a
homeomorphism ¢ : X; — X5 so that for any (f1, f2) € R and U € RO(X4),
fi = hy on U if and only if fo = hs on ¢(U). Such a homeomorphism ¢ is
said to be associated with (R, h, hs). The first application is a known result
from [10, Theorem 1.17].

Lemma 4.1. Suppose that R is (hy, ha)-weakly regular and that for any (f1,
(91,92) € R, [f1 # ha]N[g1 # ha] = 0 if and only if [f2 # ho] N [g2 # ho]

Then R is a Ly, p,-isomorphism.

7

f2)
=0.

Proof. By Proposition 2.1, it suffices to show that R is a Cp, p,-isomorphism.
Suppose that (f1, f2), (91,92) € R with o, (f1) € on,(91). If y ¢ [g2 # hol,
then there exists (k1,k2) € R so that y € op,(k2) and that op,(ke) N
[g2 # ho] = (). Hence we have

(k2 # ha]N[g2 # ho] =0 = [k1 # ha] N [g1 # ha] =0
= [m#m|N[fiFtn]=0 = [k #h]N[fs# h] =

In particular, y ¢ [f2 # ho]. This shows that [fo # ha] C [g2 # he] and

hence op,(f2) C op,(g2). By symmetry, we also have the reverse implica-
tion ahz(f?) - Jh2(92) = Jhl(fl) - Jhl(gl)' U

Theorem 4.2. (Cordeiro) Let X1, X5 be compact Hausdorff spaces. Suppose
that R is (h1, ha)-weakly regular and that for any (f1, f2), (91, 92) € R, [f1 # h1]N
lg1 # h1] = 0 if and only if [fo # ha| N [ga # he] = 0. Then there is a homeo-
morphism ¢ associated with (R, hy,hs).

Proof. By Lemma 4.1 and Theorem 2.4, there is a Boolean isomorphism
6 : RO(X1) — RO(X3) associated with (R, hq,hs). We claim that 6 is a
strong Boolean isomorphism. Indeed, suppose that Uy, Us € RO(X;) and
that U; N Uy = ). There are (fF, f¥), (¢%,95) in R, 1 < k < n, so that
Ur € Up—y on, (£5), U2 © Up—y on, (9F) and that [f] # ha] 0 [of # ha] = 0
for any j, k. By assumption [f] # ha] 0 [g5 # ha] = 0. Now \/7_, on, (fF) =
int Jy_, on, (fF) 2 Uy. Hence

0(U1) CO(\/ on, (1)) V%JéQUh#M

k=1 k=1

Hence 0(U1) C Up_; [f§ # ho). Similarly, 0(Us) C Up_; [g5 # ho]. Thus
0(Uy) NO(Uz) = 0. Allowmg for symmetry, this completes the proof of the
claim that 6 is a strong Boolean isomorphism. By Corollary 3.3, there is a

homeomorphism ¢ : X7 — X5 associated with 6. Hence ¢ is associated with
(R, h1, hs), as required. ]

Recall that for any y € Xo, N, consists of all V' € RO(X3) such that
y € V. Similarly for NV, if z € X;.
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Theorem 4.3. Let X1, X5 be compact Hausdorff spaces and let Fy, E5 be Haus-
dorff spaces. Suppose that R is a (hi, he)-weakly reqular Ly, p,-isomorphism.
Assume that for any x € X1, y € Xa, there are (k1,k2),(l1,1l2) € R so that
(k1,k2), (I1,12) = (hi1,he) and that ki(x) # hi(z), l2(y) # ha(y). Then there
exists a homeomorphism ¢ : X1 — Xs associated with (R, hy, hs).

Proof. We aim to apply Theorem 4.2. Let (f1, f2),(91,92) € R be such
that [f1 # hi1] N [g1 # h1] = 0. Assume, if possible, that there exists y €
[f2 # ha] N [g2 # hz]. Use Proposition 2.2 to find a Boolean isomorphism
0 = On, h, : RO(X1) — RO(X>) associated with (R, hy, ha). For any V € N,
V N on,(f2) # 0 and hence 6=1(V) N oy, (f1) # 0. By compactness of X,
there exists z € [f1 # hi]N({0~1(V) : V € N, }. By assumption, there exists
(ll,lg) S R, (ll,lz) j (hl,hg) so that lg(y) # hg(y) Since = ¢ Oh, (gl), there
exist (p1,p2) € R and U’ € N, so that p; = hy on op,(g1) and p; =1 on
U’. Since Oy, 1, = 01,1, by Proposition 2.7, ps = hg on op,(g92) and pa = la
on O(U’). By continuity of pa, po = h2 on op,(92) = [g2 # ho] 2 y. On the
other hand, if V € N, then z € #—1(V) and hence U’ N O~1(V) # 0; so
O(U")NV # (. Hence y € O(U’). Thus we also have p2(y) = l2(y). This is
impossible since l3(y) # h2(y). We have shown that [fi # hi]N[g1 # k1] =0
implies [f2 # ha] N [g2 # ha] = 0. The reverse implication follows by symme-
try. The theorem now follows from Theorem 4.2. O

Given a Tychonoff space X, denote its Stone-Cech compactification by
BX. If X, E are Tychonoff spaces, then every f € C(X, E) extends uniquely
toa f? € C(BX,BE).
Definition 4.4. Assume that R is a (hi, he)-weakly regular Lp, p,-isomorph-
ism. Let us say that (ki,ke) < (h1,he) if
(1) R is a (ki, ko)-weakly regular Ly, x,-isomorphism.

(2) for any Uy,Uy in RO(X1) so that ﬁﬂxl N EBXI = (), there exists
(f1, f2) € R so that f1 = hq on Uy and f1 = k1 on Us.
or any Vi, Vs in 2) so that T 072 = (), there exists
3) fi Vi, Vs in RO(X. hat V72 07 = 0, th

(91,92) € R so that go = hy on Vi and go = ko on V.

Theorem 4.5. Let X1, Xo, E1, B2 be Tychonoff spaces and let R be a (hy, ha)-
weakly regular Ly, p,-isomorphism. Assume that for any x € fX1, y € X2,
there are (ki,k2), (l1,l2) € R so that (k1,k2),(l1,l2) < (h1,h2) and that
kP (@) # Wi (), 15(y) # hE(y). Then there exists a homeomorphism ¢ :
BX1 — X5 so that for any (f1, f2) € R and any U € RO(BX1), f1 = h1 on
U N Xy if and only if fo = ho on o?(U)N Xs.

Proof. Every f; € C(X;, E;) extends uniquely to a ff € C(BX;,BE;). Define
a relation R® C C(BX1,BFE:) x C(BX2, BE,) by

R* = {(f{.1;): (1. f2) € R}.
We claim that R” is a (hf, hg)—weakly regular J'hf hg—isomorphism. Let (flﬁ, fzﬁ),
(¢7,4%) € RP be such that f Ly g7, Then f, Ly, g1 and thus fo Ly, g.
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If O = [f§ # h5] N g5 # M) # 0, then [fa # ho] N [go # ha] = O N Xy # 0,
a contradiction. Hence fg J_hg gg. Similarly, flﬁ J-hf glﬁ if fg J_hg gg.
This shows that R® is a Lyp pg-isomorphism. To see that RP is (h? h5)-
weakly regular, let U € RO(8X;). Then U N X; is nonempty and open in
X;. There exists (f1,f2) € R so that O # op,(fi) € U N X;. Therefore,
U°NX; C[fi = hi] C [f° = h?]. Since U is regular open,

BX:
)

U =it (09) = (intax, 0N N X CTAK [ =hf).
Therefore,
. —5 5 5PN . +=BX;

0 # on,(fi) S oys(f)) = mtgx, [f] #RB]] Cintex, T =U.
So RP is (h?, hlY)-weakly regular. Let (ky, k) be given by the assumption. We
claim that (k7, k5) < (b, h3). It suffices to check conditions (2) and (3) in the
definition of "<". Let U; € RO(8X1), z ¢ 716)(1. There exists Uy € RO(6X7)
such that x € Us, ﬁﬁxl ﬂﬁgﬁxl = 0. Set V; = intU; N X; € RO(X3),
i =1,2. Then 715)(1 072“1 = (). By assumption, (k1,ks) < (h1, h2). Thus
there exists (f1, f2) € R so that f; = h; on V; and f; = k1 on V. Hence
fig = hf on VlﬁXl D U;. Similarly, fiB = kf on Uy 3 x. This verifies condition
(2) in the definition of (klﬁ, kg) = (h?, hg) Condition (3) can be shown in the
same way. This shows that (k7, k) < (kY hS). Similarly, (i7,15) < (b2, h5).
Apply Theorem 4.3 to R® to obtain a homeomorphism ¢? : X — X,
associated with (R, hf , hg ). The conclusion of the theorem follows easily. O
Remark. In the notation of Theorem 4.5, suppose that V' is an open set in
BX1. Let U = intsy, V' \'. Then U € RO(BX;) and V C U C V"' If
(fl, f2) € R, then

f1:h1 onVﬂXl < f1:h1 OnUﬂXl
—= fa=hyon QP(U)NXy < fo=hyon ¢’ (V)N Xo.

Corollary 4.6. Let X1, X5, E1, Es be Tychonoff spaces so that X1, X are first
countable. Suppose that R is a (h1, he)-weakly regular Ly, n,-isomorphism.
Assume that for any © € X1, y € BXa, there are (k1,k2), (l1,l2) € R so
that (ky, ko), (I1,ls) < (ha, he) and that k2 (z) # hP (), 15 (y) # h3(y). Then
there exist a homeomorphism ¢ : X1 — Xo associated with (R, hy,hs).

Proof. Obtain a homeomorphism ¢? : 3X; — 3X5 by Theorem 4.5. We claim
that if € X3, then SX; has a countable basis at x. Indeed, let (U,) be a
countable basis at « in X;. For each n, choose an open set V,, in fX; so that
U, =V, N X;. Suppose that W is an open neighborhood of z in 8X;. There

exists n such that U,, C WNX;. If Vn\Wﬁx1 # (), then (Vn\WﬁXl) NX; # 0.

Hence Un\WﬁX1 # (0, contradicting the choice of n. This shows that for any
open neighborhood W of z in 5X7, there exists n so that x € V,, C W
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Since 5X; is a regular topological space, we conclude that (V,,) is a basis at
x in BX;. As ¢ is a homeomorphism, 3X> has a countable basis at ¢®(z).
However, by [16, Corollary 9.6], no point in X5\ X2 can be a Gs-point. Thus
©?(x) € Xy. Hence ¢?(X1) C X,. By symmetry, ©” maps X; onto Xs. Let
¢ = ¢?|x,. Then ¢ is a homeomorphism associated with (R, hy, hs). (See the
Remark before the corollary.) O

Recall that m; is the projection from C(X;, E1) x C(X2, E3) onto the
tth factor, i =1, 2.

Corollary 4.7. Let X1, Xo be Tychonoff spaces and let FEy, E5 be infinite con-
vex sets in Hausdorff topological vector spaces. Suppose that R C C(X1, Eq) X

C (X3, E3) so that m;(R) = C(X;, E;). Assume that there are (k1,ks2), (K}, k),
(I1,12), (13,15) € R so that R is a Ly, g,-, Lis gy - Liy1,- and Ly s -isomorphism;
ki, Kk} are distinct constant functions, as are ly,ly. Then SX;1 and X, are
homeomorphic. If, in addition, either both X1, Xs are compact or both are
first countable, then X1, Xo are homeomorphic.

Proof. Every Hausdorff topological vector space is Tychonoff; see, e.g., [27,
pl6, 1.4]. Thus, E;, E2 are Tychonoff spaces. Since m;(R) = C(X;, E;), it is
clear the R is (f1, f2)-weakly regular for any (f1, f2) € R. We will attempt to
apply Theorem 4.5 with (hy, ha) = (k1, k2). Let o € 5X;. Then (k’lﬁ(zo) #
kP (20). We claim that (K}, k}) < (ki,ks). By assumption, condition (1) in

Definition 4.4 holds for (k}, k). Assume that Uy, Uy € RO(X;) with Uilﬁxl N

@BXz = (). There exists a continuous function g : X; — [0, 1] so that g(z) =0

on U; and g(z) = 1 on Us. Define

f1: X1 — E1 by fi(z) = (1 —g(x))ki(x) + g(z)k] ().
Then f; € 7 (R), fi = k1 on Uy and f; = k] on Us. This completes the
proof of condition (2) in Definition 4.4. Condition (3) is verified similarly.
Analogously, for any yo € 58Xz, either f(yo) # kgﬁ(yo) or (/f(yo) + kg(yo)
Moreover, both (I1,l2) and (I7,15) < (ki1,k2). By Theorem 4.5, SX; and
58X, are homeomorphic. In particular X7, Xs are homeomorphic if both are

compact. If both X;, X5 are first countable, then they are homeomorphic by
Corollary 4.6. O

5. Application: Order isomorphisms

In this part, we give applications of the results in the preceding sections
to order isomorphisms. Order isomorphisms between spaces of real valued
functions have been studied in e.g., [7, 8, 9, 23]. A classical result of Kaplansky
[21] dealt with order isomorphisms between spaces of functions taking values
in totally ordered spaces with the order topology. We generalize this result to
functions taking values in topological lattices. A lattice is a partially ordered
set E so that the least upper bound vV v and the greatest lower bound u A v
exist for any u,v € E. A topological lattice is a lattice with a topology so
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that the lattice operations (u,v) — u A v,u V v are continuous on E x E.
If X is a Tychonoff space and E is a topological lattice, then C(X, FE) is a
lattice under the pointwise order. A subset A(X, E) of C(X, E) is said to be
FE-normal if for any disjoint closed subsets K71, Ko of X and any ej,es € F,
there exists f € A(X, E) so that f(z) =e¢; if z € K;. A function f: X — F
is order bounded if there are e1,es € F so that e; < f(z) < eq forall z € X.

Lemma 5.1. Assume that A(X, E) is a E-normal sublattice of C(X, E) that
consists of order bounded functions. Let h,k € A(X,E) and let H, K be
disjoint closed sets in X. Then there exists g € A(X, E) so that g =h on H,
g=k on K.

Proof. Let h,k and H, K be as in the statement of the lemma. There are
e1,e2 € E so that ey < h,k < e on X. By E-normality, there are fi, fo €
A(X, E) so that

H H
f= ey on and  fo = e1 on .
e; on K es on K

Set g = (f2VRh)A(f1 VEk). Then g € A(X, E). Tt is easy to see that g = h on
Hand g=Fkon K. (|

For the rest of the section, let X; be a Tychonoff space and E; be a
non-singleton Hausdorff topological lattice, ¢ = 1,2. Assume that A(X;, F;)
is a F;-normal sublattice of C(X;, F;) consisting of order bounded functions
and let R : A(X1, E;) — A(Xs, Es) be an order isomorphism; that is, R is
a bijection so that f; < g1 <= Rf1 < Rgy for any f1,g1 € A(X1, Ey).
In this case, R preserves the lattice operations: if f1,g1 € A(Xq1, E1), then
R(f1 Ng1) = Rfi A Rgy. Of course we may view R as the relation

{(fi,Rf1) : fr € A(X1, E1)} C C(Xq, Er) x C(X2, Ba).

If 7; is the projection from C'(X4, E1) x C(Xs, E2) onto the i-th component,
then 7T1(R) = 14()(17 E7)

Proposition 5.2. R is a Ly, gn,-isomorphism for any hy € A(X1, E1).

Proof. Let hy € A(X1, F1). Consider hy, g1 € A(Xy, Eq) so that f1 Lp, g1.
If fi,91 > hy, then fi A g1 = h; and hence Rf; A Rgy = Rhi; whence
Rf1 Lrp, Rg1. Similarly, Rfi Lrn, Rg1 if f1 Ly, g1 and fi1,¢g1 < hy. Claim.

If f1,g1 S A(Xl,El), f1 J—h1 g1 and f1 > hy > g1, then Rf1 J—Rhl Rgl.
Otherwise, there exists y € Xa so that Rf;(y) > Rhi1(y) > Rgi(y). (Here
u,v € By, u > v means u > v and u # v.) Let U = opg, (Rh1) € RO(X>).
By Lemma 5.1, there exists ko € A(X2, E2) so that ko(y) = Rfi(y) and
ks = Rg1 = Rhy on U°. Replace ko by (k2V Rh1) ARf; if necessary to assume
additionally that Rh; < ky < Rf;. Let k;y = R~ 'ky. Since g1 < hy < ky, we
have o4, (h1) C 04, (k1). We will show that o4, (k1) C o4, (h1). Suppose that
it does not hold. There exists a nonempty open set W contained in og, (k1)

so that WNay,, (h1) = 0. By Lemma 5.1 again, there exists l; € A(X1, E1) so
that I; = g1 on agl(hl) and [; = k1 on W. Replace [y by [ V g7 if necessary
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to assume that [; > g1. (Note that g1 < hy < ky < f1.) Then Iy, hy > g1 and
ly Ly, hi. Hence Rl Lry, Rhi by the paragraph before the claim. Thus

ORg1 (Rll) N oRg, (kQ) < ORg: (Rll) nU = ORg: (Rll) N OoRg, (Rhl) = 0.
Hence Rl LRy, ko. Since l1,k1 > g1 as well, I; Ly, k1. But iy = k3 on W.
Hence k1 = g1 on W C oy, (k1). So we must have W = (), contrary to its

choice. Thus oy, (k1) C 04, (h1) and hence oy, (k1) € 04, (h1). By assumption,
Oh,y (fl) Nog, (hl) =0n (fl) Non, (91) = 0. Therefore, Og1 (kl) N oh, (fl) = 0.
If z € 04, (k1), then = ¢ oy, (f1) and hence fi(z) = hi(z). So ki(z) = hi(z)
since fi > k1 > hi. On the other hand, if ¢ oy, (k1), then gi(z) = ki(z)
and hence ki (z) = hy(x) since k1 > hy > ¢g1. Combining the two cases yields
k1 = hy and hence k3 = Rh1, which is impossible since they differ at y. This
completes the proof of the claim. Finally, for any f1,91 € A(X1, E1) with
f1 Ln, g1, it follows from the first paragraph and the claim that

Rf1®#Rhy Lgp, Rg1ORM, (5.1)

where each of the symbols ¢ and ¢ is chosen from the set {V,A}. Observe
that

[Rfl 7é Rhl] = [(Rfl \Y Rhl) 7& Rhl} @] [(Rfl A Rhl) 7é Rhl], and
[R91 75 Rhl] = [(R91 \Y Rhl) 75 Rhl] U [(Rgl A\ Rhl) 75 Rhl]

Therefore, it follows from (5.1) that [Rfi # Rhi] N [Rg1 # Rhi] = 0, i.e.,
Rfi Lgn, Rgi. By symmetry, Rf1 Lrn, Rg1 implies fi Lj, ¢g1. This com-
pletes the proof of the proposition. O

Proposition 5.3. R is (h1, he)-weakly regular for any (hi,hs) € R.

Proof. Let (hi,hs) € R and let z € X;. Since |E1| > 1, there exists e € Fy
so that e # hy(x). As A(Xy, Eq) is Fi-normal, there exists f; € m1(R) so
that fi(z) = e. Let U be an open neighborhood of z in X;. Choose an open
neighborhood V of z so that V' C U. By Lemma 5.1, there exists g; € 7 (FE)
so that g1(z) = fi(x) and g = hy on V¢. Then = € op,,(g1) €V C U. This
proves that A(X7, E1) is hy-weakly regular. Similarly A(X2, Fs) is ho-weakly
regular. O

The following theorem generalizes the classical theorem of Kaplansky
[21] and also [10, Theorem 3.9].

Theorem 5.4. Let X1, Xo be Tychonoff spaces and let E1, Fy be Tychonoff
topological lattices. Suppose that A(X;, E;) is a E;-normal sublattice of C(X;, F;)
consisting of order bounded functions, i = 1,2, and that R : A(Xy, E1) —
A(Xy, Ey) is an order isomorphism. Then there is a homeomorphism P :
BX1 — PXo such that for any fi1,hn € A(Xi1,E1) and U in RO(BXy),
fi =hy onUN X, if and only if Rfy = Rhy on ©?(U)N X,.

Proof. Let hy € A(Xy, Ep). By Propositions 5.2 and 5.3, R is a (hy, Rhy)-
weakly regular L, grp,-isomorphism. Let € fX;. We wish to obtain k; €
A(X1, Ey) so that (ki, Rk;) < (h1, Rhy) and kP (z) # hP(z). Once this is
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shown, a similar statement for any y € X5 can be proved in the same way.
The theorem then follows from Theorem 4.5. Now we proceed to prove the
assertion in the previous paragraph. Choose an open neighborhood U of z
in BX; and let e € By\{h?(x)}. Since A(Xy,E;) is Ej-normal, there exists
k1 € A(Xy, Eq) so that k; = e on U N X;. (The second set in the definition
of Ey-normality can be taken to be 0).) In particular, kY (z) = e # hY ().
To complete the proof, it suffices to show that (ki, Rk;) < (h1, Rh1). By
Proposition 5.3, R is (k1, Rk )-weakly regular. Let Uy, Us in RO(X7) be such
that mﬁxl N Eﬂxl = (). Then U; and U, are disjoint closed sets in X;.
By Lemma 5.1, there exists g1 € A(Xy, Fy) so that g1 = hy on U; 2 Uy
and g1 = k1 on Us D Us. This completes the verification of condition (2) in
Definition 4.4. Condition (3) in the definition can be shown similarly. This
completes the proof that (ki, Rk1) < (h1, Rh1), as required. O

In Theorem 5.4, if in addition both X7, X5 are compact or both are first
countable, then they are homeomorphic. Indeed, the claim is obvious if both
X1, X5 are compact; if both are first countable, the conclusion follows as in
Corollary 4.6.

6. Application: Nonvanishing preservers

For i = 1,2, let X; be a Tychonoff space and let F; be a Hausdorff space.
As above, let R C C(Xl,El) X O(XQ,EQ) and (hl,hQ) € R. Set A(X“Ez) =
m;(R), where m; is the projection from C(X1, E1) x C(Xz, E2) onto the -
th component. Say that R is a N} , -isomorphism if for any (fF, %) € R,
k=1,...,n,

n n
(VA =h)#0 <= (Ifi =ha] #0.

k=1 k=1
A non-vanishing preserver is a relation R that is a N}, , -isomorphism for
all n € N. Characterizations of non-vanishing preservers in various scenarios
have been given in [10, 11, 17, 22, 25, 26]. It is clear that if n > m, then a
Mh, pp-isomorphism is a N3’ , -isomorphism. In this section, we prove several
general theorems concerning (nonlinear) 0,2117h2—isomorphisms7 generalizing,
in particular, recent results from [25]. Say that A(X;, E;) is h;-fine if for any
nonempty U € RO(X;), there exists k € A(X;, E;) so that 0 # [k = h;] C U.

Proposition 6.1. Assume that A(X;, E;) is h;-fine, i = 1,2. If R is a ﬂ%lyhg-
isomorphism, then it is a Ly, p,-isomorphism.

Proof. Suppose that there are (f1, f2),(g1,92) € R so that f1 L, g1, but
fo Xn, g2- Pick V € RO(X3) so that § #£ V C [fa # ha] N [ga # ha]. Since
A(Xa, Es) is ho-fine, there exists (k1,k2) € R so that 00 # [ke = ho] C V.
Now [fg = hg} N [kQ = hz] = (Z); hence [fl = hl} n [/ﬁ = hl] = (Z) Similarly,
[91 = ha] N [k1 = h1] = 0. However, fi Ly, g1 implies that [f; = hi]U [g1 =
hi] = X1. Thus [k; = hq] = 0. This implies that [ke = hy] = (), contrary to
choice of k9. Therefore, fo Lj, go. The proposition follows by symmetry. [
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Following [25], we say that A(X;, E;) is h;-strongly regular if given
0 #£ U € RO(X;) and = € U, there are (f1, f2), (g1,92) € R so that z € [f; #
hi] C U, g; = h; on a neighborhood of z and that [f; = h;] N [g; = hi] = 0.
Note that it follows from the conditions in the definition that § # [g; =
h;] € U. In particular, h;-strong regularity implies h;-weak regularity and
hi-fineness. Therefore, the next result follows immediately from Proposition
6.1 and Theorem 2.4.

Corollary 6.2. Assume that A(X;, E;) is hi-strongly reqular, i = 1,2. If R is
a ﬁ%l)hrz -isomorphism, then there is a Boolean isomorphism 6 : RO(X;) —
RO(X32) associated with (R, hy, hs).

Recall that for any z € X3, MV, = {U € RO(X3) : z € U}. If y € Xo,
N, is defined similarly.

Proposition 6.3. Assume that A(X;, E;) is h;-strongly reqular, i = 1,2. Let R
be a ﬂ,%l,,w -isomorphism, with associated Boolean isomorphism 0 : RO(X1) —
RO(X3). Suppose that for any filterbase F C RO(X3) that converges in X,

Nyert0 (V) # 0. Then 6(Ur) N O(Uz) = 0 for any Uy, Us € RO(X1) such
that Uy N Uz = 0.

Proof. Let Uy,Us € RO(X;) such that U; N Uy = (. If there exists y €
6(Ur) N O(Us), then for all W € N, WNOU;) # 0 # W N G(Us). Hence
O *W)NUL #0 # 67 (W)NUs. Let F = {WnNOU,) : W € Ny}. Then
F is a filterbase in RO(X3) that is convergent to y. By assumption, C; :=
Nwen, 01 (W)NUL # (). Similarly, Cs := Nwen, 01 W)NUz # (. Pick
points u; and up from C; and Cy respectively. Since u; # uq, there are
01,05 € RO(X7) so that u; € O1,uz € Oz and O; N Oy = . By h;-strong
regularity, there are (f1, f2), (¢1,92) € R and an open neighborhood O of w4
so that

Uy € [f1 7é hl] - 01,91 = hy on O and [f1 = hl] N [91 ﬂhl] = (Z),

where O is some regular neighborhood of uy. For any W € Ny, u; € 6=1(W).
So O N~ (W) # 0. Hence, (O) N W # . Thus y € 6(O). Similarly,
y € 0(05). Since g1 = hy on O, go = hy on 6(O). In particular, g(y) = ha(y).
On the other hand, oy, (f1) € O; and thus o4, (f1)NO2 = 0 ; whence fi = hy
on Os. Tt follows that fo = hy on 8(Os) and hence fs(y) = ha(y). Therefore,
y € [f2 = h2] N [g2 = hs]. This contradicts the fact that R is a ﬂ%lth—
isomorphism and that [f; = hi] N [g1 N hi] = 0. O

Lemma 6.4. Let R be a ﬂihhz -isomorphism so that A(X;, E;) is h;-strongly
reqular, i = 1,2. Assume that R has an associated homeomorphism ¢ : X1 —
Xy. For any x € X1 and (f1,f2) € R, fi(z) = hi(z) <= falp(z)) =
ha(p(2)).

Proof. Suppose that (f1, f2) € R, fi(x) = hi(x) and that fa(o(x)) # ha(p(z)).
Let U € RO(X3) be such that ¢(z) € U C [f2 # he]. Since A(Xq, Es) is ha-
strongly regular, there exist (¢g1,¢92) € R and V € RO(X3) so that ¢(x) € V,
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g2 = hp on V and that [go = hy] C U. Then g; = h; on ¢~ }(V) > 2. However,
[fg = hg] N [gg = h2] = (Z) and thus [fl = hl] n [91 = hl] = (Z) This is impos—
sible since the latter set contains x. This proves that fi(x) = hq(z) implies
fa(p(x)) # ha(p(x)). The reverse implication follows by symmetry. O

The next result generalizes [25, Theorem 2.2].

Theorem 6.5. Assume that fori = 1,2, X, is compact Hausdorff and A(X;, E;)
s h;-strongly reqular. Then R is a ﬂi211,h2 -isomorphism if and only if there
exists a homeomorphism ¢ : X1 — Xo so that for any (f1, f2) € R and any
z € X1, filz) = h(z) <= faolp(@)) = ha(p(x)).

Proof. Obviously, if such a ¢ exists, then R is a 0,211’ h,-isomorphism. Con-
versely, assume that R is a ﬂ%lth-isomorphism. By Corollary 6.2, there is a
Boolean isomorphism 6 : RO(X;) — RO(X32) associated with (R, hy, ho).
Let F C RO(X32) be a convergent filterbase. Then F has the finite in-
tersection property and hence (y,c6071(V) # 0. By the same argument
Nyer (V) # 0 if 7 C RO(X)) is a convergent filterbase. By Proposition
6.3, 0 is a strong Boolean isomorphism. It now follows from Corollary 3.2 that
there is a homeomorphism ¢ : X; — X, associated with # and hence with
(R, h1, h2). The final conclusion of the theorem follows from Lemma 6.4. O

In the absence of compactness of X;, we make a stronger assumption on
A(X;, E;). Say that A(X;, E;) identifies points in X; precisely (with respect
to h;) if for any x € X, there exists f; € A(X,, E;) so that [f; = h;] = {z}.
See [25].

Lemma 6.6. Suppose that R is a ﬂi2z1,h2 -isomorphism, A(X1, E1) is hy-strongly

reqular and identifies points in Xy precisely. Then Nyepr, 0(U) # 0 for any
xz € Xq.

Proof. Let z € X;. There exists f; € A(X1, F1) so that [fi = hi] = {z}.
Suppose that (N cpr, O(U) = 0. Let y € Xy. There exists U € N, so that

y ¢ O(U). Choose V € N, so that VNO(U) = 0. As A(X1, E1) is hy-strongly
regular, there exists (g1, g2) € R so that « € [g1 # h1] C U. Since g1 = hy on
U, g2 = hy on =0(U). Thus ¢2(y) = ha(y). However, [f1 = h1]N]g1 = h1] =
(. Hence [f2 = ha] N [g2 = ha] = 0. It follows that fa(y) # ha(y). As y € X5
is arbitrary, [fo = hs] = 0, from which we see that [f; = hi] = 0, which is
absurd. O

Theorem 6.7. Assume that fori =1,2, X;, E; are Tychonoff spaces, A(X;, E;)
1s h;-strongly regular and identifies points in X; precisely. Then R is a ﬂ,zh’hz -
isomorphism if and only if there exists a homeomorphism ¢ : X1 — X5 so
that for any (fi1, f2) € R and any x € X1, fi(z) = hi(z) < fa(p(z)) =
ha(p(x)).

Proof. The “if” part is clear. Conversely, assume that R is a ﬂ,%h h,-isomorph-

ism. By Corollary 6.2, there is a Boolean isomorphism 6 : RO(X;) — RO(X3)
associated with (R, h1,he). Let © € RO(X7). By Lemma 6.6, there exists
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— —_BX

Y1 € Nuen, 0U). Claim. Nycp, 9(U)'6 C Xs. If the claim fails, there is
——BX

also a y2 € Nyepr, (U )B *\ X,. Obviously y; and y, are distinct points in

$X5. Choose open sets Vi, V5 in X5 so that y; € Vi, yo € V5 and that

WBXQ N Vs A = (). Let W7 = int V; N X5, with interior and closure taken in
Xs. Then y; € Wy € RO(X3). Since A(Xa, Es) is ha-strongly regular, there
are (f1, f2),(91,92) € R and W’ € RO(X3) so that y; € [f2 # he] C Wh,
g2 = hg on W', y; € W and that [fo = ha] N [g2 = ko] = 0. If U € N, then
y1 € O(U). Hence W/ NO(U) # 0, which implies that =1 (W') N U # 0. This
shows that x € 6—1(W'). Moreover, go = he on W' implies that g; = h; on
6=L(W’). Thus g1(x) = hi(z). On the other hand, set W = int V3 N X5. Then
f2 = hy on Wy € RO(XQ) and hence f1 = h; on 0~ ( ) For any U e Nx,

yg € H(U)BX and thus V2NO(U) # 0, which implies that Won0(U) # 0. Hence

(Wz)ﬂU # (). This proves that z € 6~ (WQ) Since fo = hg on Wa, fi = hy
on =1 (Ws). In particular, fi(z) = hy(x). It follows from the preceding that
z € [fr = h1i] N [g1 = hi], which implies that [fo = ho] N [g2 = ho] # 0,
contradicting the choices of f, and g5. This completes the proof of the claim.
Now let F be a filterbase in RO(X7) that converges to x. Since the collection

of closed sets {Q(V)’BX2

compact space 5Xo,

0+ (o) e () 00 <

VeFr UEN,

Hence (7 0(V) # 0. We have verified condition (2) in Theorem 3.1. Con-
dition (3) in the same theorem follows by symmetry. Condition (1) in the
theorem follows from Proposition 6.3. By Theorem 3.1, there is a homeomor-
phism ¢ associated with 6 and thus with (R, hy, hs), as required. The final
conclusion follows from Lemma 6.4. ]

: V € F} has finite intersection property in the
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