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Abstract. The concept of disjointness preserving mappings has proved
to be a useful unifying idea in the study of Banach-Stone type theorems.
In this paper, we examine disjointness preserving relations between sets
of continuous functions (valued in general topological spaces). Under
very mild assumptions, it is shown that a disjointness preserving rela-
tion is completely determined by a Boolean isomorphism between the
Boolean algebras of regular open sets in the domain spaces. Building
on this result, certain Banach-Stone type theorems are obtained for dis-
jointness preserving relations. From these, we deduce a generalization
of Kaplansky’s classical theorem concerning order isomorphisms to sets
of continuous functions with values topological lattices. As another ap-
plication, we prove some results on the characterization of nonvanishing
preservers. Throughout, the domains of the function spaces need not be
compact.
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1. Introduction

If Ω is a compact Hausdorff space, the space C(Ω) of continuous real val-
ued functions on Ω contains rich information on its underlying space Ω. In
particular, C(Ω) carries with it a wealth of structures. It is a Banach space
under the norm ‖f‖ = supω∈Ω |f(ω)|, a ring (with unit) under pointwise ad-
dition and multiplication and a vector lattice under pointwise order. Each
of these aspects of C(Ω) has been shown to determine the space Ω up to
homeomorphism. These are the famous classical theorems of Banach-Stone
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[6, 29], Gelfand-Kolmogorov [15] and Kaplansky [21]. These three classical
theorems can be summarized as follows.

Theorem 1.1. Let Ω,Σ be compact Hausdorff spaces and let T : C(Ω)→ C(Σ)
be a bijection. If T is a
(1) linear isometry (Banach-Stone), or
(2) algebra isomorphism (Gelfand-Kolmogorov), or
(3) vector lattice isomorphism (Kaplansky),

then there are a homeomorphism ϕ : Σ → Ω and a function h ∈ C(Σ)
so that

Tf(σ) = h(σ)f(ϕ(σ)) for all f ∈ C(Ω) and all σ ∈ Σ.

Moreover |h| = 1, h = 1 and h > 0 under assumptions (a), (b), (c) respec-
tively.

A particularly fruitful concept that unifies the three classical theorems
is that of disjointness preserving operators. Two functions f, g ∈ C(Ω) are
said to be disjoint if the pointwise product fg = 0. Suppose that A(Ω)
and A(Σ) are vector subspaces of C(Ω) and C(Σ) respectively. A linear op-
erator T : A(Ω) → A(Σ) is disjointness preserving if Tf, Tg are disjoint
whenever f, g are disjoint functions in A(Ω). A biseparating operator or ⊥-
isomorphism (see [10]) is a linear bijection T : A(Ω) → A(Σ) so that both
T and T−1 are disjointness preserving. It is evident that if A(Ω) and A(Σ)
are algebras under pointwise operations, then every algebraic isomorphism
T : A(Ω) → A(Σ) is biseparating. A similar statement holds for lattice iso-
morphisms. In the past three decades, many results concerning biseparating
maps have been obtained. See, e.g., [1, 2, 3, 4, 5, 14, 18, 19, 20]. Most of
these are in the context of linear or additive maps. Recently, the papers
[10, 13] appeared that took the study of isomorphisms of disjointness struc-
ture to very general settings. For a recent survey on disjointness preservers
and Banach-Stone Theorems, see [24]. In particular, the paper [10] shows how
disjointness preserving mappings can be used to prove and/or extend many
results regarding “preservers”of various sorts. The purpose of this paper is
to build and expand on the ideas found in [10, 13]. We obtain several results
of Banach-Stone type for relations that are ⊥-isomorphims. Applications to
order isomorphisms, generalizing Kaplansky’s classical theorem, as well as to
nonvanishing preservers are given.

In §2, we extend the definition of ⊥-isomorphism to a general rela-
tion R between sets of continuous functions. The first main result (Theorem
2.4) shows that as long as there are suffi ciently many elements in R, a ⊥-
isomorphism is characterized by a Boolean isomorphism between the Boolean
algebras of regular open sets in the domains of definition.

§3 examines the question of when a Boolean isomorphism between the
Boolean algebras of regular open sets in the topological spaces X1 and X2

respectively gives rise to a homeomorphism ϕ : X1 → X2. Combining the re-
sults in §2 and §3 leads to several results of Banach-Stone type. See Theorems
4.2, 4.3 and 4.5 in §4.
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The paper ends with two applications. In §5, it is shown that under
general assumptions, an order isomorphism between lattices of continuous
functions taking values in topological lattices are ⊥-isomorphisms. As a re-
sult we obtain in Theorem 5.4 a generalization of Kaplansky’s classical result
to topological lattice-valued lattices of continuous functions. §6 contains the
application to nonvanishing preservers, which has been studied in, for in-
stance, [10, 11, 17, 22, 25], sometimes under the name of maps preserving
common zeros. Proposition 6.1 shows that a nonvanishing preservers is a ⊥-
isomorphism in many instances. As a result, we obtain Banach-Stone type
theorems for nonvanishing preservers (Theorems 6.5 and 6.7).

The authors are grateful to the referee for the careful reading of the
manuscript and the suggestions given.

2. Characterization of ⊥-isomorphisms in terms of regular open
sets

A topological space is Tychonoff if it is Hausdorff and completely regular. In
this section, let X1, X2 be Tychonoff spaces and E1, E2 be Hausdorff spaces.
If f, g, h ∈ C(X,E), the set of continuous E-valued functions on X, let [f 6=
h] = {x ∈ X : f(x) 6= h(x)} and σh(f) = int [f 6= h]. Say that
1. f ⊥h g if [f 6= h] ∩ [g 6= h] = ∅.
2. f ⊆h g if σh(f) ⊆ σh(g).
Note that f ⊥h g if and only if σh(f)∩σh(g) = ∅. Let R ⊆ C(X1, E1)×

C(X2, E2) be a relation and suppose that (h1, h2) ∈ R. R is a ⊥h1,h2 -
isomorphism, respectively, a ⊆h1,h2-isomorphism, if for any (f1, f2), (g1, g2) ∈
R, f1 ⊥h1 g1 ⇐⇒ f2 ⊥h2 g2, respectively, f1 ⊆h1 g1 ⇐⇒ f2 ⊆h2 g2. De-
note the projection from C(X1, E1) × C(X2, E2) onto C(Xi, Ei) by πi. Set
A(Xi, Ei) = πi(R), i = 1, 2 and let Σhi = {σhi(fi) : fi ∈ A(Xi, Ei)}. Say
that A(Xi, Ei) is hi-weakly regular if Σhi is a basis for the topology of Xi.
R is (h1, h2)-weakly regular if A(Xi, Ei) is hi-weakly regular for i = 1, 2.

The following simple yet fundamental result was used in [10]; its ancestry
goes back to at least [2].

Proposition 2.1. Suppose that R is (h1, h2)-weakly regular. Then R is a
⊥h1,h2-isomorphism if and only if it is a ⊆h1,h2-isomorphism.

Proof. Suppose thatR is a⊥h1,h2-isomorphism. Assume that there are (f1, f2),
(g1, g2) ∈ R so that σh1(f1) ⊆ σh1(g1) but σh2(f2) 6⊆ σh2(g2), so that
σh2(f2) 6⊆ [g2 6= h2]. Pick y and k2 ∈ A(X2, E2) so that y ∈ σh2(k2) ⊆
σh2(f2)\[g2 6= h2]. Let k1 be such that (k1, k2) ∈ R. Since k2 ⊥h2 g2, k1 ⊥h1
g1. Hence k1 ⊥h1 f1, which implies that k2 ⊥h2 f2. This contradicts the
fact that y ∈ σh2(f2) ∩ σh2(k2). This shows that σh1(f1) ⊆ σh1(g1) =⇒
σh2(f2) ⊆ σh2(g2). By symmetry, R is a ⊆h1,h2 -isomorphism. Conversely,
suppose that R is a ⊆h1,h2-isomorphism, but there are (f1, f2), (g1, g2) ∈ R
so that f1 ⊥h1 g1 but σh2(f2) ∩ σh2(g2) 6= ∅. There exists (k1, k2) ∈ R so
that ∅ 6= σh2(k2) ⊆ σh2(f2) ∩ σh2(g2). Thus σh1(k1) ⊆ σh1(f1) ∩ σh1(g1).
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Since f1 ⊥h1 g1, σh1(k1) = ∅. In particular, σh1(k1) ⊆ σh1(h1) and thus
σh2(k2) ⊆ σh2(h2) = ∅, contrary to the choice of k2. This shows that f1 ⊥h1 g1

=⇒ f2 ⊥h2 g2. By symmetry, R is a ⊥h1,h2 -isomorphism. �

In a Tychonoff space X, an open set U ⊆ X is a regular open set if
U = intU . Note that all sets of the form σh(f) are regular open sets. The
collection RO(X) of all regular open sets in X is a Boolean algebra with the
operations U1 ∧ U2 = U1 ∩ U2, U1 ∨ U2 = intU1 ∪ U2 and ¬U = int(U c).
Moreover, RO(X) is complete; that is, every nonempty subset of RO(X) has
a supremum. Refer to [28] for an exposition of the theory of Boolean algebras.
The next result shows that every ⊥h1,h2-isomorphism determines a Boolean
isomorphism θh1,h2 : RO(X1)→ RO(X2).

Proposition 2.2. Let R be a (h1, h2)-weakly regular ⊥h1,h2-isomorphism. De-
fine θh1,h2 : RO(X1)→ RO(X2) by

θh1,h2(U) = int
⋃
{σh2(f2) : (f1, f2) ∈ R, σh1(f1) ⊆ U}.

Then θh1,h2 is a Boolean isomorphism from RO(X1) onto RO(X2) so that for
any (f1, f2) ∈ R and any U ∈ RO(X1), f1 = h1 on U if and only if f2 = h2

on θh1,h2(U).

Proof. Clearly θh1,h2 is order preserving in the sense that if U1, U2 ∈ RO(X1)
and U1 ⊆ U2, then θh1,h2(U1) ⊆ θh1,h2(U2). Define ω : RO(X2) → RO(X1)
by

ω(V ) = int
⋃
{σh1(f1) : (f1, f2) ∈ R, σh2(f2) ⊆ V }.

We claim that ω(θh1,h2(U)) = U for any U ∈ RO(X1). By symmetry, we
would also have θh1,h2(ω(V )) = V for any V ∈ RO(X2). Hence θh1,h2 is a
Boolean isomorphism. Let us prove the claim. Assume that x ∈ U ∈ RO(X1).
By weak regularity, there exists (f1, f2) ∈ R so that x ∈ σh1(f1) ⊆ U .
In particular, σh2(f2) ⊆ θh1,h2(U). Thus x ∈ σh1(f1) ⊆ ω(θh1,h2(U)). This
proves that U ⊆ ω(θh1,h2(U)). Conversely, suppose that ω(θh1,h2(U))\U 6=
∅. By weak regularity, there exists (f1, f2) ∈ R so that ∅ 6= σh1(f1) ⊆
ω(θh1,h2(U))\U . By definition of ω, there exists (g1, g2) ∈ R so that σh2(g2) ⊆
θh1,h2(U) and that σh1(f1)∩σh1(g1) 6= ∅. Thus σh2(f2)∩σh2(g2) 6= ∅. By weak
regularity again, choose (k1, k2) ∈ R so that ∅ 6= σh2(k2) ⊆ σh2(f2)∩σh2(g2).
By Proposition 2.1, σh1(k1) ⊆ σh1(f1)∩σh1(g1). In particular, σh1(k1)∩U ⊆
σh1(f1) ∩ U = ∅. However, σh2(k2) ⊆ σh2(g2) ⊆ θh1,h2(U). Hence there
exists (l1, l2) ∈ R so that σh1(l1) ⊆ U and that σh2(k2) ∩ σh2(l2) 6= ∅.
This implies that σh1(k1) ∩ σh1(l1) 6= ∅ and hence σh1(k1) ∩ U 6= ∅, con-
trary to what was established above. We have shown that ω(θh1,h2(U)) ⊆ U .
Since U ∈ RO(X), ω(θh1,h2(U)) ⊆ U . The proof of the claim is complete.
Thus θh1,h2 is a Boolean isomorphism. Finally, assume that (f1, f2) ∈ R and
f1 = h1 on U ∈ RO(X1). Then σh1(f1) ⊆ ¬U = int(U c). By definition
of θh1,h2 , σh2(f2) ⊆ θh1,h2(¬U) = ¬θh1,h2(U) = int(θh1,h2(U)c). Therefore,
f2 = h2 on θh1,h2(U). The converse follows by symmetry. �
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In terms of the order on RO(X2), θh1,h2(U) can be described by

θh1,h2(U) =
∨
{σh2(f2) : (f1, f2) ∈ R, σh1(f1) ⊆ U}.

In fact, existence of a Boolean isomorphism satisfying the last condition of
Proposition 2.2 implies that R is a ⊥h1,h2 -isomorphism. In order to see this,
we first prove an easy lemma.

Lemma 2.3. Let R be (h1, h2)-weakly regular. Suppose that θ : RO(X1) →
RO(X2) is a Boolean isomorphism so that for any (f1, f2) ∈ R and any U ∈
RO(X1), f1 = h1 on U ⇐⇒ f2 = h2 on θ(U). Then for any (g1, g2) ∈ R,
σh2(g2) = θ(σh1(g1)).

Proof. It suffi ces to show that σh2(g2) ⊆ θ(σh1(g1)). The reverse inclusion
follows by symmetry. Assume that y /∈ θ(σh1(g1)). Choose (f1, f2) ∈ R so
that

y ∈ σh2(f2) ⊆ [θ(σh1(g1))]c = ¬θ(σh1(g1)).

Since σh2(f2) ∩ θ(σh1(g1)) = ∅, θ−1(σh2(f2)) ∩ σh1(g1) = ∅. Thus g1 = h1

on θ−1(σh2(f2)), which implies that g2 = h2 on σh2(f2) by assumption. In
particular, g2(y) = h2(y). This shows that g2 = h2 on the set [θ(σh1(g1))]c.
Hence σh2(g2) ⊆ θ(σh1(g1)), as required. �

We can now prove the main result of this section characterizing a ⊥h1,h2 -
isomorphism in terms of an associated Boolean isomorphism θ : RO(X1) →
RO(X2).

Theorem 2.4. Let R be (h1, h2)-weakly regular. Then R is a ⊥h1,h2-isomorph-
ism if and only if there is a Boolean isomorphism θ : RO(X1) → RO(X2)
such that for any (f1, f2) ∈ R and for any U ∈ RO (X1), f1 = h1 on U if
and only if f2 = h2 on θ(U).

Proof. If R is a ⊥h1,h2 -isomorphism, then we may take θ = θh1,h2 . The re-
quired conclusion follows from Proposition 2.2. Conversely, suppose that there
is a Boolean isomorphism θ : RO(X1) → RO(X2) with the given property.
Let (f1, f2), (g1, g2) ∈ R be such that f1 ⊥h1 g1. Then f1 = h1 on σh1(g1). By
assumption, f2 = h2 on θ(σh1(g1)) = σh2(g2), where the last equality follows
from Lemma 2.3. Therefore, f2 ⊥h2 g2. By symmetry, we also have f2 ⊥h2 g2

=⇒ f1 ⊥h1 g1. �
A Boolean isomorphism satisfying the condition in Theorem 2.4 is said

to be associated with (R, h1, h2), or simply with R. If a Boolean isomorphism
θ : RO(X1) → RO(X2) is associated with a ⊥h1,h2-isomorphism R and R
is (h1, h2)-weakly regular, then it follows easily from Proposition 2.2 and
Lemma 2.3 that θ = θh1,h2 .

2.1. Comparing associated Boolean isomorphisms
Suppose that another pair (k1, k2) ∈ R is given, whereR is a⊥k1,k2-isomorphism
and A(Xi, Ei) is ki-weakly regular, i = 1, 2. In general, θk1,k2 and θh1,h2 may
be unrelated. Below, we give a suffi cient condition in terms of R so that
θk1,k2(U) = θh1,h2(U) for any U ∈ RO(X1). This will be useful in §4.
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Lemma 2.5. Suppose that R is a (h1, h2)- and (k1, k2)-weakly regular ⊥h1,h2-
and ⊥k1,k2-isomorphism. If h1 = k1 on a set U ∈ RO(X1), then θh1,h2(U) =
θk1,k2(U).

Proof. Let (f1, f2) ∈ R be such that σk1(f1) ⊆ U . Since
[f1 6= h1]\σh1(k1) ⊆ [f1 6= h1] ∩ [h1 = k1] ⊆ [f1 6= k1] ⊆ σk1(f1),

σh1(f1)\σh1(k1) ⊆ σk1(f1). In terms of the lattice operations on RO(X1), we
have σh1(f1) ∧ ¬σh1(k1) ⊆ σk1(f1). Apply θh1,h2 to this inclusion and use
Lemma 2.3 to obtain

σh2(f2) ∧ ¬σh2(k2) = θh1,h2(σh1(f1)) ∧ ¬θh1,h2(σh1(k1)) ⊆ θh1,h2(σk1(f1)).
(2.1)

Since σk1(f1) ⊆ U ⊆ [h1 = k1], f1 = k1 on σk1(h1). Hence f2 = k2 on
θk1,k2(σk1(h1)) = σk2(h2) = σh2(k2). Thus σk2(f2) ⊆ σh2(k2)

c
. In particular,

if f2(y) 6= k2(y), then k2(y) = h2(y) and hence f2(y) 6= h2(y). So [f2 6= k2] ⊆
[f2 6= h2]\σh2(k2). Thus σk2(f2) ⊆ σh2(f2)∧¬σh2(k2). Combining with (2.1)
gives

σk2(f2) ⊆ θh1,h2(σk1(f1)) ⊆ θh1,h2(U).

As this holds for any (f1, f2) ∈ R with σk1(f1) ⊆ U , it follows from the
definition of θk1,k2 that θk1,k2(U) ⊆ θh1,h2(U). The lemma follows by sym-
metry. �

Definition 2.6. Assume that R is a (h1, h2)-weakly regular ⊥h1,h2-isomorphism.
Let us say that (k1, k2) � (h1, h2) if

(1) R is a (k1, k2)-weakly regular ⊥k1,k2-isomorphism.
(2) For any U ∈ RO(X1), x /∈ U , there exist (f1, f2) ∈ R and U ′ ∈ RO(X1)

so that x ∈ U ′ and that f1 = h1 on U and f1 = k1 on U ′.
(3) For any V ∈ RO(X2), y /∈ V , there exist (g1, g2) ∈ R and V ′ ∈ RO(X2)

so that y ∈ V ′ and that g2 = h2 on V and g2 = k2 on V ′.

Proposition 2.7. Suppose that R is a (h1, h2)-weakly regular ⊥h1,h2-isomorph-
ism. If (k1, k2) � (h1, h2), then θk1,k2(U) = θh1,h2(U) for any U ∈ RO(X1).

Proof. First we show that θk1,k2(U) ⊆ θh1,h2(U) for any U ∈ RO(X1).
Set W := θk1,k2(U)\θh1,h2(U) and let y ∈ W . By assumption, there exist
(g1, g2) ∈ R and V ′ ∈ RO(X2) so that y ∈ V ′, g2 = h2 on θh1,h2(U) and
g2 = k2 on V ′. We may assume that V ′ ⊆ θk1,k2(U). Now g1 = h1 on U
and g1 = k1 on θ

−1
k1,k2

(V ′) ⊆ U . Thus h1 = g1 = k1 on θ
−1
k1,k2

(V ′) and hence
h2 = k2 on V ′. In particular, h2(y) = k2(y). This proves that h2 = k2 on
W . By Lemma 2.5, θ−1

h1,h2
(W ) = θ−1

k1,k2
(W ). For any (l1, l2) ∈ R such that

σh1(l1) ⊆ θ−1
k1,k2

(W ) = θ−1
h1,h2

(W ), it follows from Lemma 2.3 that

σh2(l2) = θh1,h2(σh1(l1)) ⊆W.
By definition of θh1,h2 , we can conclude that θh1,h2(θ

−1
k1,k2

(W )) ⊆W . As a re-
sult, θ−1

k1,k2
(W ) ⊆ θ−1

h1,h2
(W ). By choice ofW , we also have θ−1

k1,k2
(W ) ⊆ U . So

θ−1
k1,k2

(W ) ⊆ θ−1
h1,h2

(W )∩U . But θh1,h2(θ−1
h1,h2

(W )∩U) = W ∩ θh1,h2(U) = ∅.
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Thus ∅ = θ−1
h1,h2

(W ) ∩ U ⊇ θ−1
k1,k2

(W ). Since θ−1
k1,k2

is a Boolean isomor-
phism, this means that W = ∅. As θk1,k2(U) is a regular open set, this
shows that θk1,k2(U) ⊆ θh1,h2(U) for any U ∈ RO(X1). Similarly, θ−1

k1,k2
(V ) ⊆

θ−1
h1,h2

(V ) for any V ∈ RO(X2). Given U ∈ RO(X1), set V = θh1,h2(U). Then
θ−1
k1,k2

(θh1,h2(U)) ⊆ U , i.e., θh1,h2(U) ⊆ θk1,k2(U). �

3. Homeomorphism induced by a Boolean isomorphism
In the previous section, we have seen that, under some general assumptions,
a ⊥h1,h2-isomorphism induces a Boolean isomorphism between RO(X1) and
RO(X2). A question that has been much investigated under the broad heading
of “Banach-Stone Theorem” is when does a ⊥h1,h2-isomorphism induce a
homeomorphism between X1 and X2. In view of §2, this leads to the question
of when a Boolean isomorphism between RO(X1) and RO(X2) induces a
homeomorphism between X1 and X2. The next result gives an answer to
this question. For terminology and facts concerning filterbases, refer to [12].
A Boolean isomorphism θ : RO(X1) → RO(X2) is called a strong Boolean
isomorphism if for any U1, U2 ∈ RO(X1), U1 ∩ U2 6= ∅ if and only if θ(U1) ∩
θ(U2) 6= ∅. Denote the cardinality of a set A by |A|.

Theorem 3.1. Let X1, X2 be Tychonoff spaces and let θ : RO(X1)→ RO(X2)
be a Boolean isomorphism. Assume that

(1) θ is a strong Boolean isomorphism.
(2) If F is a convergent filterbase in RO(X1), then

⋂
U∈F θ(U) 6= ∅.

(3) If F is a convergent filterbase in RO(X2), then
⋂
V ∈F θ

−1(V ) 6= ∅.
Then there is a homeomorphism ϕ : X1 → X2 so that ϕ(U) = θ(U) for

all U ∈ RO(X1). Conversely, if such a homeomorphism exists, then condi-
tions (1), (2) and (3) hold.

Proof. It is clear that if ϕ : X1 → X2 is a homeomorphism so that ϕ(U) =
θ(U) for all U ∈ RO(X1), then (1), (2) and (3) hold. Conversely, assume
that (1), (2) and (3) hold. Denote by Nx the family of all U ∈ RO(X1)

such that x ∈ U . Similarly for Ny, y ∈ X2. Claim. |
⋂
U∈Nx θ(U)| = 1 =

|
⋂
V ∈Ny θ

−1(V )|. We only show the second part of the equality. By (3),⋂
V ∈Ny θ

−1(V ) 6= ∅. Suppose that there are distinct x1, x2 ∈
⋂
V ∈Ny θ

−1(V ).

Then there areW1,W2 ∈ RO(X1) such that xi ∈Wi, i = 1, 2, andW1∩W2 =

∅. Let i ∈ {1, 2}. For all V ∈ Ny, xi ∈ θ−1(V ). ThusWi∩θ−1(V ) 6= ∅. Hence,
V ∩θ(Wi) 6= ∅ for all V ∈ Ny. It follows that y ∈ θ(W1)∩θ(W2). This contra-
dicts (1). Hence |

⋂
V ∈Ny θ

−1(V )| = 1. This completes the proof of the claim.
According to the claim, there are functions ϕ : X1 → X2 and ψ : X2 → X1 so

that {ϕ(x)} =
⋂
U∈Nx θ(U) and that {ψ(y)} =

⋂
V ∈Ny θ

−1(V ). Observe that

ϕ(U) ⊆ θ(U) for any U ∈ RO(X1). If ϕ is not continuous at x0 ∈ X1, then
there exists V0 ∈ RO(X2), y0 := ϕ(x0) ∈ V0, and ϕ(U) 6⊆ V0 for all U ∈ Nx0 .
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In particular, θ(U) 6⊆ V0. Thus θ(U)∧ (¬V0) 6= ∅, whence U ∧ (¬θ−1(V0)) 6= ∅
for all U ∈ Nx0 . Therefore F := {U ∧ (¬θ−1(V0)) : U ∈ Nx0} is a filterbase
in RO(X1), which clearly converges to x0. By (3),

⋂
U∈Nx0

θ(U) ∧ (¬V0) 6= ∅.
Let y1 be a point in the intersection. Then y1 ∈

⋂
U∈Nx0

θ(U) and y1 /∈ V0; in

particular, y1 6= y0. Therefore,
⋂
U∈Nx0

θ(U) contains at least two points, con-
trary to the claim. This completes the proof of continuity for ϕ. By symmetry,
ψ is also continuous. Let x ∈ X1. If U ∈ Nx and V ∈ Nϕ(x), then ϕ(x) ∈ θ(U)

and hence θ(U)∩V 6= ∅. Thus, U ∩θ−1(V ) 6= ∅. Hence x ∈
⋂
V ∈Nϕ(x) θ

−1(V ).

On the other hand, by definition of ψ, ψ(ϕ(x)) ∈
⋂
V ∈Nϕ(x) θ

−1(V ). It follows
by the claim that ψ(ϕ(x)) = x. By symmetry, ϕ and ψ are mutual inverses,
Hence ϕ is a homeomorphism from X1 onto X2. Finally, let U ∈ RO(X1).
Since ϕ(U) ⊆ θ(U) and θ(U) ∈ RO(X2), ϕ(U) ⊆ θ(U). Suppose that y ∈
θ(U)\ϕ(U). For any V ∈ Ny, V ∩θ(U) 6= ∅ and hence θ−1(V )∩U 6= ∅. Choose
x ∈ θ−1(V ) ∩ U . Then ϕ(x) ∈ θ(θ−1(V ) ∩ U) ⊆ V . Thus ϕ(x) ∈ ϕ(U) ∩ V .
This proves that ϕ(U) ∩ V 6= ∅ for all V ∈ Ny. Hence y ∈ ϕ(U), contrary to
its choice. Therefore, θ(U) ⊆ ϕ(U) and hence θ(U) ⊆ ϕ(U) on account of the
fact that ϕ(U) ∈ RO(X2). This shows that ϕ(U) = θ(U) for all U ∈ RO(X1),
as required. �

A homeomorphism ϕ : X1 → X2 satisfying the conclusion of Theorem
3.1 is said to be associated with θ.

Corollary 3.2. Let X1, X2 be Tychonoff spaces and let θ : RO(X1)→ RO(X2)
be a Boolean isomorphism. Assume that for any x ∈ X1, y ∈ X2, there are
U ∈ Nx and V ∈ Ny so that θ(U) and θ−1(V ) are compact in X1 and X2

respectively. Then there is a homeomorphism ϕ : X1 → X2 associated with θ
if and only if θ is a strong Boolean isomorphism.

Proof. It suffi ces to show the “if”statement. By Theorem 3.1 and symmetry,
it is enough to show that

⋂
U∈F θ(U) 6= ∅ for any filterbase F ⊆ RO(X1)

that converges to some x ∈ X1. Let such a F be given. By assumption, there
exists U0 ∈ Nx so that θ(U0) is compact. Then {θ(U ∩ U0) : U ∈ F} is a
family of closed subsets of θ(U0) that has the finite intersection property.
Thus

⋂
U∈F θ(U) ⊇

⋂
U∈F θ(U ∩ U0) 6= ∅, as required. �

The next corollary is immediate.

Corollary 3.3. Let X1, X2 be compact Hausdorff spaces and let θ : RO(X1)→
RO(X2) be a Boolean isomorphism. Then there is a homeomorphism ϕ :
X1 → X2 associated with θ if and only if θ is a strong Boolean isomorphism.

4. Homeomorphism induced by a ⊥-isomorphism
We are now ready to use the results from the previous sections to obtain
Banach-Stone type theorems for ⊥-isomorphisms. As before, let X1, X2 be
Tychonoff spaces and E1, E2 be Hausdorff topological spaces. Assume that
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R ⊆ C(X1, E1)×C(X2, E2) and (h1, h2) ∈ R. We are interested in obtaining a
homeomorphism ϕ : X1 → X2 so that for any (f1, f2) ∈ R and U ∈ RO(X1),
f1 = h1 on U if and only if f2 = h2 on ϕ(U). Such a homeomorphism ϕ is
said to be associated with (R, h1, h2). The first application is a known result
from [10, Theorem 1.17].

Lemma 4.1. Suppose that R is (h1, h2)-weakly regular and that for any (f1, f2),
(g1, g2) ∈ R, [f1 6= h1]∩ [g1 6= h1] = ∅ if and only if [f2 6= h2]∩ [g2 6= h2] = ∅.
Then R is a ⊥h1,h2-isomorphism.

Proof. By Proposition 2.1, it suffi ces to show that R is a ⊆h1,h2 -isomorphism.
Suppose that (f1, f2), (g1, g2) ∈ R with σh1(f1) ⊆ σh1(g1). If y /∈ [g2 6= h2],
then there exists (k1, k2) ∈ R so that y ∈ σh2(k2) and that σh2(k2) ∩
[g2 6= h2] = ∅. Hence we have

[k2 6= h2] ∩ [g2 6= h2] = ∅ =⇒ [k1 6= h1] ∩ [g1 6= h1] = ∅,
=⇒ [k1 6= h1] ∩ [f1 6= h1] = ∅ =⇒ [k2 6= h2] ∩ [f2 6= h2] = ∅.

In particular, y /∈ [f2 6= h2]. This shows that [f2 6= h2] ⊆ [g2 6= h2] and
hence σh2(f2) ⊆ σh2(g2). By symmetry, we also have the reverse implica-
tion σh2(f2) ⊆ σh2(g2) =⇒ σh1(f1) ⊆ σh1(g1). �

Theorem 4.2. (Cordeiro) Let X1, X2 be compact Hausdorff spaces. Suppose
that R is (h1, h2)-weakly regular and that for any (f1, f2), (g1, g2) ∈ R, [f1 6= h1]∩
[g1 6= h1] = ∅ if and only if [f2 6= h2]∩ [g2 6= h2] = ∅. Then there is a homeo-
morphism ϕ associated with (R, h1, h2).

Proof. By Lemma 4.1 and Theorem 2.4, there is a Boolean isomorphism
θ : RO(X1) → RO(X2) associated with (R, h1, h2). We claim that θ is a
strong Boolean isomorphism. Indeed, suppose that U1, U2 ∈ RO(X1) and
that U1 ∩ U2 = ∅. There are (fk1 , f

k
2 ), (gk1 , g

k
2 ) in R, 1 ≤ k ≤ n, so that

U1 ⊆
⋃n
k=1 σh1(f

k
1 ), U2 ⊆

⋃n
k=1 σh1(g

k
1 ) and that [f j1 6= h1] ∩ [gk1 6= h1] = ∅

for any j, k. By assumption [f j2 6= h2] ∩ [gk2 6= h2] = ∅. Now
∨n
k=1 σh1(f

k
1 ) =

int
⋃n
k=1 σh1(f

k
1 ) ⊇ U1. Hence

θ(U1) ⊆ θ(
n∨
k=1

σh1(f
k
1 )) =

n∨
k=1

σh2(f
k
2 ) ⊆

n⋃
i=1

[f2 6= h2].

Hence θ(U1) ⊆
⋃n
k=1 [fk2 6= h2]. Similarly, θ(U2) ⊆

⋃n
k=1 [gk2 6= h2]. Thus

θ(U1) ∩ θ(U2) = ∅. Allowing for symmetry, this completes the proof of the
claim that θ is a strong Boolean isomorphism. By Corollary 3.3, there is a
homeomorphism ϕ : X1 → X2 associated with θ. Hence ϕ is associated with
(R, h1, h2), as required. �

Recall that for any y ∈ X2, Ny consists of all V ∈ RO(X2) such that
y ∈ V . Similarly for Nx if x ∈ X1.
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Theorem 4.3. Let X1, X2 be compact Hausdorff spaces and let E1, E2 be Haus-
dorff spaces. Suppose that R is a (h1, h2)-weakly regular ⊥h1,h2-isomorphism.
Assume that for any x ∈ X1, y ∈ X2, there are (k1, k2), (l1, l2) ∈ R so that
(k1, k2), (l1, l2) � (h1, h2) and that k1(x) 6= h1(x), l2(y) 6= h2(y). Then there
exists a homeomorphism ϕ : X1 → X2 associated with (R, h1, h2).

Proof. We aim to apply Theorem 4.2. Let (f1, f2), (g1, g2) ∈ R be such
that [f1 6= h1] ∩ [g1 6= h1] = ∅. Assume, if possible, that there exists y ∈
[f2 6= h2] ∩ [g2 6= h2]. Use Proposition 2.2 to find a Boolean isomorphism
θ = θh1,h2 : RO(X1)→ RO(X2) associated with (R, h1, h2). For any V ∈ Ny,
V ∩ σh2(f2) 6= ∅ and hence θ−1(V ) ∩ σh1(f1) 6= ∅. By compactness of X1,
there exists x ∈ [f1 6= h1]∩

⋂
{θ−1(V ) : V ∈ Ny}. By assumption, there exists

(l1, l2) ∈ R, (l1, l2) � (h1, h2) so that l2(y) 6= h2(y). Since x /∈ σh1(g1), there
exist (p1, p2) ∈ R and U ′ ∈ Nx so that p1 = h1 on σh1(g1) and p1 = l1 on
U ′. Since θh1,h2 = θl1,l2 by Proposition 2.7, p2 = h2 on σh2(g2) and p2 = l2
on θ(U ′). By continuity of p2, p2 = h2 on σh2(g2) = [g2 6= h2] 3 y. On the
other hand, if V ∈ Ny, then x ∈ θ−1(V ) and hence U ′ ∩ θ−1(V ) 6= ∅; so
θ(U ′) ∩ V 6= ∅. Hence y ∈ θ(U ′). Thus we also have p2(y) = l2(y). This is
impossible since l2(y) 6= h2(y). We have shown that [f1 6= h1]∩ [g1 6= h1] = ∅
implies [f2 6= h2] ∩ [g2 6= h2] = ∅. The reverse implication follows by symme-
try. The theorem now follows from Theorem 4.2. �

Given a Tychonoff space X, denote its Stone-Čech compactification by
βX. If X,E are Tychonoff spaces, then every f ∈ C(X,E) extends uniquely
to a fβ ∈ C(βX, βE).

Definition 4.4. Assume that R is a (h1, h2)-weakly regular ⊥h1,h2-isomorph-
ism. Let us say that (k1, k2)� (h1, h2) if
(1) R is a (k1, k2)-weakly regular ⊥k1,k2-isomorphism.
(2) for any U1, U2 in RO(X1) so that U1

βX1 ∩ U2
βX1

= ∅, there exists
(f1, f2) ∈ R so that f1 = h1 on U1 and f1 = k1 on U2.

(3) for any V1, V2 in RO(X2) so that V1
βX2 ∩ V2

βX2
= ∅, there exists

(g1, g2) ∈ R so that g2 = h2 on V1 and g2 = k2 on V2.

Theorem 4.5. Let X1, X2, E1, E2 be Tychonoff spaces and let R be a (h1, h2)-
weakly regular ⊥h1,h2-isomorphism. Assume that for any x ∈ βX1, y ∈ βX2,
there are (k1, k2), (l1, l2) ∈ R so that (k1, k2), (l1, l2) � (h1, h2) and that
kβ1 (x) 6= hβ1 (x), lβ2 (y) 6= hβ2 (y). Then there exists a homeomorphism ϕβ :
βX1 → βX2 so that for any (f1, f2) ∈ R and any U ∈ RO(βX1), f1 = h1 on
U ∩X1 if and only if f2 = h2 on ϕβ(U) ∩X2.

Proof. Every fi ∈ C(Xi, Ei) extends uniquely to a f
β
i ∈ C(βXi, βEi). Define

a relation Rβ ⊆ C(βX1, βE1)× C(βX2, βE2) by

Rβ = {(fβ1 , f
β
2 ) : (f1, f2) ∈ R}.

We claim thatRβ is a (hβ1 , h
β
2 )-weakly regular⊥hβ1 ,hβ2 -isomorphism. Let (fβ1 , f

β
2 ),

(gβ1 , g
β
2 ) ∈ Rβ be such that fβ1 ⊥hβ1 g

β
1 . Then f1 ⊥h1 g1 and thus f2 ⊥h2 g2.
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If O = [fβ2 6= hβ2 ] ∩ [gβ2 6= hβ2 ] 6= ∅, then [f2 6= h2] ∩ [g2 6= h2] = O ∩X2 6= ∅,
a contradiction. Hence fβ2 ⊥hβ2 gβ2 . Similarly, f

β
1 ⊥hβ1 gβ1 if fβ2 ⊥hβ2 gβ2 .

This shows that Rβ is a ⊥hβ1 ,hβ2 -isomorphism. To see that R
β is (hβ1 , h

β
2 )-

weakly regular, let U ∈ RO(βXi). Then U ∩ Xi is nonempty and open in
Xi. There exists (f1, f2) ∈ R so that ∅ 6= σhi(fi) ⊆ U ∩ Xi. Therefore,
U c ∩Xi ⊆ [fi = hi] ⊆ [fβi = hβi ]. Since U is regular open,

U c = intβXi(U
c)
βXi

= (intβXi(U
c)) ∩Xi

βXi ⊆ U c ∩Xi
βXi ⊆ [fβi = hβi ].

Therefore,

∅ 6= σhi(fi) ⊆ σhβi (fβi ) = intβXi [fβi 6= hβi ]
βXi
⊆ intβXi U

βXi
= U.

So Rβ is (hβ1 , h
β
2 )-weakly regular. Let (k1, k2) be given by the assumption. We

claim that (kβ1 , k
β
2 ) � (hβ1 , h

β
2 ). It suffi ces to check conditions (2) and (3) in the

definition of "�". Let U1 ∈ RO(βX1), x /∈ U1
βX1

. There exists U2 ∈ RO(βX1)

such that x ∈ U2, U1
βX1 ∩ U2

βX1
= ∅. Set Vi = intUi ∩X1 ∈ RO(X1),

i = 1, 2. Then V1
βX1 ∩ V2

βX1
= ∅. By assumption, (k1, k2)� (h1, h2). Thus

there exists (f1, f2) ∈ R so that f1 = h1 on V1 and f1 = k1 on V2. Hence

fβ1 = hβ1 on V1
βX1 ⊇ U1. Similarly, f

β
1 = kβ1 on U2 3 x. This verifies condition

(2) in the definition of (kβ1 , k
β
2 ) � (hβ1 , h

β
2 ). Condition (3) can be shown in the

same way. This shows that (kβ1 , k
β
2 ) � (hβ1 , h

β
2 ). Similarly, (lβ1 , l

β
2 ) � (hβ1 , h

β
2 ).

Apply Theorem 4.3 to Rβ to obtain a homeomorphism ϕβ : βX1 → βX2

associated with (Rβ , hβ1 , h
β
2 ). The conclusion of the theorem follows easily. �

Remark. In the notation of Theorem 4.5, suppose that V is an open set in
βX1. Let U = intβX1 V

βX1 . Then U ∈ RO(βX1) and V ⊆ U ⊆ V
βX1 . If

(f1, f2) ∈ R, then
f1 = h1 on V ∩X1 ⇐⇒ f1 = h1 on U ∩X1

⇐⇒ f2 = h2 on ϕβ(U) ∩X2 ⇐⇒ f2 = h2 on ϕβ(V ) ∩X2.

Corollary 4.6. Let X1, X2, E1, E2 be Tychonoff spaces so that X1, X2 are first
countable. Suppose that R is a (h1, h2)-weakly regular ⊥h1,h2-isomorphism.
Assume that for any x ∈ βX1, y ∈ βX2, there are (k1, k2), (l1, l2) ∈ R so
that (k1, k2), (l1, l2)� (h1, h2) and that kβ1 (x) 6= hβ1 (x), lβ2 (y) 6= hβ2 (y). Then
there exist a homeomorphism ϕ : X1 → X2 associated with (R, h1, h2).

Proof. Obtain a homeomorphism ϕβ : βX1 → βX2 by Theorem 4.5. We claim
that if x ∈ X1, then βX1 has a countable basis at x. Indeed, let (Un) be a
countable basis at x in X1. For each n, choose an open set Vn in βX1 so that
Un = Vn ∩X1. Suppose that W is an open neighborhood of x in βX1. There
exists n such that Un ⊆W ∩X1. If Vn\W

βX1 6= ∅, then (Vn\W
βX1

)∩X1 6= ∅.
Hence Un\W

βX1 6= ∅, contradicting the choice of n. This shows that for any
open neighborhood W of x in βX1, there exists n so that x ∈ Vn ⊆ W

βX1 .
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Since βX1 is a regular topological space, we conclude that (Vn) is a basis at
x in βX1. As ϕβ is a homeomorphism, βX2 has a countable basis at ϕβ(x).
However, by [16, Corollary 9.6], no point in βX2\X2 can be a Gδ-point. Thus
ϕβ(x) ∈ X2. Hence ϕβ(X1) ⊆ X2. By symmetry, ϕβ maps X1 onto X2. Let
ϕ = ϕβ |X1

. Then ϕ is a homeomorphism associated with (R, h1, h2). (See the
Remark before the corollary.) �

Recall that πi is the projection from C(X1, E1) × C(X2, E2) onto the
ith factor, i = 1, 2.

Corollary 4.7. Let X1, X2 be Tychonoff spaces and let E1, E2 be infinite con-
vex sets in Hausdorff topological vector spaces. Suppose that R ⊆ C(X1, E1)×
C(X2, E2) so that πi(R) = C(Xi, Ei). Assume that there are (k1, k2), (k′1, k

′
2),

(l1, l2), (l′1, l
′
2) ∈ R so that R is a ⊥k1,k2-, ⊥k′1,k′2-, ⊥l1,l2- and ⊥l′1,l′2-isomorphism;

k1, k
′
1 are distinct constant functions, as are l2, l

′
2. Then βX1 and βX2 are

homeomorphic. If, in addition, either both X1, X2 are compact or both are
first countable, then X1, X2 are homeomorphic.

Proof. Every Hausdorff topological vector space is Tychonoff; see, e.g., [27,
p16, 1.4]. Thus, E1, E2 are Tychonoff spaces. Since πi(R) = C(Xi, Ei), it is
clear the R is (f1, f2)-weakly regular for any (f1, f2) ∈ R. We will attempt to
apply Theorem 4.5 with (h1, h2) = (k1, k2). Let x0 ∈ βX1. Then (k′β1 (x0) 6=
kβ1 (x0). We claim that (k′1, k

′
2) � (k1, k2). By assumption, condition (1) in

Definition 4.4 holds for (k′1, k
′
2). Assume that U1, U2 ∈ RO(X1) with U1

βX1 ∩
U2

βX2
= ∅. There exists a continuous function g : X1 → [0, 1] so that g(x) = 0

on U1 and g(x) = 1 on U2. Define

f1 : X1 → E1 by f1(x) = (1− g(x))k1(x) + g(x)k′1(x).

Then f1 ∈ π1(R), f1 = k1 on U1 and f1 = k′1 on U2. This completes the
proof of condition (2) in Definition 4.4. Condition (3) is verified similarly.
Analogously, for any y0 ∈ βX2, either

β
1 (y0) 6= kβ2 (y0) or (′β1 (y0) 6= kβ2 (y0).

Moreover, both (l1, l2) and (l′1, l
′
2) � (k1, k2). By Theorem 4.5, βX1 and

βX2 are homeomorphic. In particular X1, X2 are homeomorphic if both are
compact. If both X1, X2 are first countable, then they are homeomorphic by
Corollary 4.6. �

5. Application: Order isomorphisms

In this part, we give applications of the results in the preceding sections
to order isomorphisms. Order isomorphisms between spaces of real valued
functions have been studied in e.g., [7, 8, 9, 23]. A classical result of Kaplansky
[21] dealt with order isomorphisms between spaces of functions taking values
in totally ordered spaces with the order topology. We generalize this result to
functions taking values in topological lattices. A lattice is a partially ordered
set E so that the least upper bound u∨ v and the greatest lower bound u∧ v
exist for any u, v ∈ E. A topological lattice is a lattice with a topology so
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that the lattice operations (u, v) 7→ u ∧ v, u ∨ v are continuous on E × E.
If X is a Tychonoff space and E is a topological lattice, then C(X,E) is a
lattice under the pointwise order. A subset A(X,E) of C(X,E) is said to be
E-normal if for any disjoint closed subsets K1,K2 of X and any e1, e2 ∈ E,
there exists f ∈ A(X,E) so that f(x) = ei if x ∈ Ki. A function f : X → E
is order bounded if there are e1, e2 ∈ E so that e1 ≤ f(x) ≤ e2 for all x ∈ X.

Lemma 5.1. Assume that A(X,E) is a E-normal sublattice of C(X,E) that
consists of order bounded functions. Let h, k ∈ A(X,E) and let H,K be
disjoint closed sets in X. Then there exists g ∈ A(X,E) so that g = h on H,
g = k on K.

Proof. Let h, k and H,K be as in the statement of the lemma. There are
e1, e2 ∈ E so that e1 ≤ h, k ≤ e2 on X. By E-normality, there are f1, f2 ∈
A(X,E) so that

f1 =

{
e2 on H

e1 on K
and f2 =

{
e1 on H

e2 on K
.

Set g = (f2 ∨ h)∧ (f1 ∨ k). Then g ∈ A(X,E). It is easy to see that g = h on
H and g = k on K. �

For the rest of the section, let Xi be a Tychonoff space and Ei be a
non-singleton Hausdorff topological lattice, i = 1, 2. Assume that A(Xi, Ei)
is a Ei-normal sublattice of C(Xi, Ei) consisting of order bounded functions
and let R : A(X1, Ei) → A(X2, E2) be an order isomorphism; that is, R is
a bijection so that f1 ≤ g1 ⇐⇒ Rf1 ≤ Rg1 for any f1, g1 ∈ A(X1, E1).
In this case, R preserves the lattice operations: if f1, g1 ∈ A(X1, E1), then
R(f1 ∧ g1) = Rf1 ∧Rg1. Of course we may view R as the relation

{(f1, Rf1) : f1 ∈ A(X1, E1)} ⊆ C(X1, E1)× C(X2, E2).

If πi is the projection from C(X1, E1)×C(X2, E2) onto the i-th component,
then πi(R) = A(Xi, Ei).

Proposition 5.2. R is a ⊥h1,Rh1-isomorphism for any h1 ∈ A(X1, E1).

Proof. Let h1 ∈ A(X1, E1). Consider h1, g1 ∈ A(X1, E1) so that f1 ⊥h1 g1.
If f1, g1 ≥ h1, then f1 ∧ g1 = h1 and hence Rf1 ∧ Rg1 = Rh1; whence
Rf1 ⊥Rh1 Rg1. Similarly, Rf1 ⊥Rh1 Rg1 if f1 ⊥h1 g1 and f1, g1 ≤ h1. Claim.

If f1, g1 ∈ A(X1, E1), f1 ⊥h1 g1 and f1 ≥ h1 ≥ g1, then Rf1 ⊥Rh1 Rg1.
Otherwise, there exists y ∈ X2 so that Rf1(y) > Rh1(y) > Rg1(y). (Here
u, v ∈ E2, u > v means u ≥ v and u 6= v.) Let U = σRg1(Rh1) ∈ RO(X2).
By Lemma 5.1, there exists k2 ∈ A(X2, E2) so that k2(y) = Rf1(y) and
k2 = Rg1 = Rh1 on U c. Replace k2 by (k2∨Rh1)∧Rf1 if necessary to assume
additionally that Rh1 ≤ k2 ≤ Rf1. Let k1 = R−1k2. Since g1 ≤ h1 ≤ k1, we
have σg1(h1) ⊆ σg1(k1). We will show that σg1(k1) ⊆ σg1(h1). Suppose that
it does not hold. There exists a nonempty open set W contained in σg1(k1)

so that W ∩σg1(h1) = ∅. By Lemma 5.1 again, there exists l1 ∈ A(X1, E1) so
that l1 = g1 on σg1(h1) and l1 = k1 on W . Replace l1 by l1 ∨ g1 if necessary
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to assume that l1 ≥ g1. (Note that g1 ≤ h1 ≤ k1 ≤ f1.) Then l1, h1 ≥ g1 and
l1 ⊥g1 h1. Hence Rl1 ⊥Rg1 Rh1 by the paragraph before the claim. Thus

σRg1(Rl1) ∩ σRg1(k2) ⊆ σRg1(Rl1) ∩ U = σRg1(Rl1) ∩ σRg1(Rh1) = ∅.
Hence Rl1 ⊥Rg1 k2. Since l1, k1 ≥ g1 as well, l1 ⊥g1 k1. But l1 = k1 on W .
Hence k1 = g1 on W ⊆ σg1(k1). So we must have W = ∅, contrary to its
choice. Thus σg1(k1) ⊆ σg1(h1) and hence σg1(k1) ⊆ σg1(h1). By assumption,
σh1(f1) ∩ σg1(h1) = σh1(f1) ∩ σh1(g1) = ∅. Therefore, σg1(k1) ∩ σh1(f1) = ∅.
If x ∈ σg1(k1), then x /∈ σh1(f1) and hence f1(x) = h1(x). So k1(x) = h1(x)
since f1 ≥ k1 ≥ h1. On the other hand, if x /∈ σg1(k1), then g1(x) = k1(x)
and hence k1(x) = h1(x) since k1 ≥ h1 ≥ g1. Combining the two cases yields
k1 = h1 and hence k2 = Rh1, which is impossible since they differ at y. This
completes the proof of the claim. Finally, for any f1, g1 ∈ A(X1, E1) with
f1 ⊥h1 g1, it follows from the first paragraph and the claim that

Rf1�Rh1 ⊥Rh1 Rg1♦Rh1, (5.1)

where each of the symbols � and ♦ is chosen from the set {∨,∧}. Observe
that

[Rf1 6= Rh1] = [(Rf1 ∨Rh1) 6= Rh1] ∪ [(Rf1 ∧Rh1) 6= Rh1], and

[Rg1 6= Rh1] = [(Rg1 ∨Rh1) 6= Rh1] ∪ [(Rg1 ∧Rh1) 6= Rh1].

Therefore, it follows from (5.1) that [Rf1 6= Rh1] ∩ [Rg1 6= Rh1] = ∅, i.e.,
Rf1 ⊥Rh1 Rg1. By symmetry, Rf1 ⊥Rh1 Rg1 implies f1 ⊥h1 g1. This com-
pletes the proof of the proposition. �

Proposition 5.3. R is (h1, h2)-weakly regular for any (h1, h2) ∈ R.

Proof. Let (h1, h2) ∈ R and let x ∈ X1. Since |E1| > 1, there exists e ∈ E1

so that e 6= h1(x). As A(X1, E1) is E1-normal, there exists f1 ∈ π1(R) so
that f1(x) = e. Let U be an open neighborhood of x in X1. Choose an open
neighborhood V of x so that V ⊆ U . By Lemma 5.1, there exists g1 ∈ π1(E)
so that g1(x) = f1(x) and g1 = h1 on V c. Then x ∈ σh1(g1) ⊆ V ⊆ U . This
proves that A(X1, E1) is h1-weakly regular. Similarly A(X2, E2) is h2-weakly
regular. �

The following theorem generalizes the classical theorem of Kaplansky
[21] and also [10, Theorem 3.9].

Theorem 5.4. Let X1, X2 be Tychonoff spaces and let E1, E2 be Tychonoff
topological lattices. Suppose that A(Xi, Ei) is a Ei-normal sublattice of C(Xi, Ei)
consisting of order bounded functions, i = 1, 2, and that R : A(X1, E1) →
A(X2, E2) is an order isomorphism. Then there is a homeomorphism ϕβ :
βX1 → βX2 such that for any f1, h1 ∈ A(X1, E1) and U in RO(βX1),
f1 = h1 on U ∩X1 if and only if Rf1 = Rh1 on ϕβ(U) ∩X2.

Proof. Let h1 ∈ A(X1, E1). By Propositions 5.2 and 5.3, R is a (h1, Rh1)-
weakly regular ⊥h1,Rh1-isomorphism. Let x ∈ βX1. We wish to obtain k1 ∈
A(X1, E1) so that (k1, Rk1) � (h1, Rh1) and kβ1 (x) 6= hβ1 (x). Once this is
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shown, a similar statement for any y ∈ βX2 can be proved in the same way.
The theorem then follows from Theorem 4.5. Now we proceed to prove the
assertion in the previous paragraph. Choose an open neighborhood U of x
in βX1 and let e ∈ E1\{hβ1 (x)}. Since A(X1, E1) is E1-normal, there exists
k1 ∈ A(X1, E1) so that k1 = e on U ∩X1. (The second set in the definition
of E1-normality can be taken to be ∅.) In particular, kβ1 (x) = e 6= hβ1 (x).
To complete the proof, it suffi ces to show that (k1, Rk1) � (h1, Rh1). By
Proposition 5.3, R is (k1, Rk1)-weakly regular. Let U1, U2 in RO(X1) be such

that U1
βX1 ∩ U2

βX1
= ∅. Then U1 and U2 are disjoint closed sets in X1.

By Lemma 5.1, there exists g1 ∈ A(X1, E1) so that g1 = h1 on U1 ⊇ U1

and g1 = k1 on U2 ⊇ U2. This completes the verification of condition (2) in
Definition 4.4. Condition (3) in the definition can be shown similarly. This
completes the proof that (k1, Rk1)� (h1, Rh1), as required. �

In Theorem 5.4, if in addition both X1, X2 are compact or both are first
countable, then they are homeomorphic. Indeed, the claim is obvious if both
X1, X2 are compact; if both are first countable, the conclusion follows as in
Corollary 4.6.

6. Application: Nonvanishing preservers
For i = 1, 2, let Xi be a Tychonoff space and let Ei be a Hausdorff space.
As above, let R ⊆ C(X1, E1)×C(X2, E2) and (h1, h2) ∈ R. Set A(Xi, Ei) =
πi(R), where πi is the projection from C(X1, E1) × C(X2, E2) onto the i-
th component. Say that R is a ∩nh1,h2-isomorphism if for any (fk1 , f

k
2 ) ∈ R,

k = 1, . . . , n,
n⋂
k=1

[fk1 = h1] 6= ∅ ⇐⇒
n⋂
k=1

[fk2 = h2] 6= ∅.

A non-vanishing preserver is a relation R that is a ∩nh1,h2-isomorphism for
all n ∈ N. Characterizations of non-vanishing preservers in various scenarios
have been given in [10, 11, 17, 22, 25, 26]. It is clear that if n > m, then a
∩nh1,h2-isomorphism is a ∩

m
h1,h2

-isomorphism. In this section, we prove several
general theorems concerning (nonlinear) ∩2

h1,h2
-isomorphisms, generalizing,

in particular, recent results from [25]. Say that A(Xi, Ei) is hi-fine if for any
nonempty U ∈ RO(Xi), there exists k ∈ A(Xi, Ei) so that ∅ 6= [k = hi] ⊆ U .

Proposition 6.1. Assume that A(Xi, Ei) is hi-fine, i = 1, 2. If R is a ∩2
h1,h2

-
isomorphism, then it is a ⊥h1,h2-isomorphism.

Proof. Suppose that there are (f1, f2), (g1, g2) ∈ R so that f1 ⊥h1 g1, but
f2 6⊥h2 g2. Pick V ∈ RO(X2) so that ∅ 6= V ⊆ [f2 6= h2] ∩ [g2 6= h2]. Since
A(X2, E2) is h2-fine, there exists (k1, k2) ∈ R so that ∅ 6= [k2 = h2] ⊆ V .
Now [f2 = h2] ∩ [k2 = h2] = ∅; hence [f1 = h1] ∩ [k1 = h1] = ∅. Similarly,
[g1 = h1] ∩ [k1 = h1] = ∅. However, f1 ⊥h1 g1 implies that [f1 = h1] ∪ [g1 =
h1] = X1. Thus [k1 = h1] = ∅. This implies that [k2 = h2] = ∅, contrary to
choice of k2. Therefore, f2 ⊥h2 g2. The proposition follows by symmetry. �
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Following [25], we say that A(Xi, Ei) is hi-strongly regular if given
∅ 6= U ∈ RO(Xi) and x ∈ U , there are (f1, f2), (g1, g2) ∈ R so that x ∈ [fi 6=
hi] ⊆ U , gi = hi on a neighborhood of x and that [fi = hi] ∩ [gi = hi] = ∅.
Note that it follows from the conditions in the definition that ∅ 6= [gi =
hi] ⊆ U . In particular, hi-strong regularity implies hi-weak regularity and
hi-fineness. Therefore, the next result follows immediately from Proposition
6.1 and Theorem 2.4.

Corollary 6.2. Assume that A(Xi, Ei) is hi-strongly regular, i = 1, 2. If R is
a ∩2

h1,h2
-isomorphism, then there is a Boolean isomorphism θ : RO(X1) →

RO(X2) associated with (R, h1, h2).

Recall that for any x ∈ X1, Nx = {U ∈ RO(X1) : x ∈ U}. If y ∈ X2,
Ny is defined similarly.

Proposition 6.3. Assume that A(Xi, Ei) is hi-strongly regular, i = 1, 2. Let R
be a ∩2

h1,h2
-isomorphism, with associated Boolean isomorphism θ : RO(X1)→

RO(X2). Suppose that for any filterbase F ⊆ RO(X2) that converges in X2,⋂
V ∈F θ

−1(V ) 6= ∅. Then θ(U1) ∩ θ(U2) = ∅ for any U1, U2 ∈ RO(X1) such
that U1 ∩ U2 = ∅.

Proof. Let U1, U2 ∈ RO(X1) such that U1 ∩ U2 = ∅. If there exists y ∈
θ(U1) ∩ θ(U2), then for all W ∈ Ny, W ∩ θ(U1) 6= ∅ 6= W ∩ θ(U2). Hence
θ−1(W ) ∩ U1 6= ∅ 6= θ−1(W ) ∩ U2. Let F = {W ∩ θ(U1) : W ∈ Ny}. Then
F is a filterbase in RO(X2) that is convergent to y. By assumption, C1 :=⋂
W∈Nyθ

−1(W ) ∩ U1 6= ∅. Similarly, C2 :=
⋂
W∈Nyθ

−1(W ) ∩ U2 6= ∅. Pick
points u1 and u2 from C1 and C2 respectively. Since u1 6= u2, there are
O1, O2 ∈ RO(X1) so that u1 ∈ O1, u2 ∈ O2 and O1 ∩ O2 = ∅. By hi-strong
regularity, there are (f1, f2), (g1, g2) ∈ R and an open neighborhood O of u1

so that

u1 ∈ [f1 6= h1] ⊆ O1, g1 = h1 on O and [f1 = h1] ∩ [g1 ∩ h1] = ∅,
where O is some regular neighborhood of u1. For any W ∈ Ny, u1 ∈ θ−1(W ).

So O ∩ θ−1(W ) 6= ∅. Hence, θ(O) ∩ W 6= ∅. Thus y ∈ θ(O). Similarly,
y ∈ θ(O2). Since g1 = h1 on O, g2 = h2 on θ(O). In particular, g2(y) = h2(y).
On the other hand, σh1(f1) ⊆ O1 and thus σh1(f1)∩O2 = ∅ ; whence f1 = h1

on O2. It follows that f2 = h2 on θ(O2) and hence f2(y) = h2(y). Therefore,
y ∈ [f2 = h2] ∩ [g2 = h2]. This contradicts the fact that R is a ∩2

h1,h2
-

isomorphism and that [f1 = h1] ∩ [g1 ∩ h1] = ∅. �

Lemma 6.4. Let R be a ∩2
h1,h2

-isomorphism so that A(Xi, Ei) is hi-strongly
regular, i = 1, 2. Assume that R has an associated homeomorphism ϕ : X1 →
X2. For any x ∈ X1 and (f1, f2) ∈ R, f1(x) = h1(x) ⇐⇒ f2(ϕ(x)) =
h2(ϕ(x)).

Proof. Suppose that (f1, f2) ∈ R, f1(x) = h1(x) and that f2(ϕ(x)) 6= h2(ϕ(x)).
Let U ∈ RO(X2) be such that ϕ(x) ∈ U ⊆ [f2 6= h2]. Since A(X2, E2) is h2-
strongly regular, there exist (g1, g2) ∈ R and V ∈ RO(X2) so that ϕ(x) ∈ V ,
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g2 = h2 on V and that [g2 = h2] ⊆ U . Then g1 = h1 on ϕ−1(V ) 3 x. However,
[f2 = h2] ∩ [g2 = h2] = ∅ and thus [f1 = h1] ∩ [g1 = h1] = ∅. This is impos-
sible since the latter set contains x. This proves that f1(x) = h1(x) implies
f2(ϕ(x)) 6= h2(ϕ(x)). The reverse implication follows by symmetry. �

The next result generalizes [25, Theorem 2.2].

Theorem 6.5. Assume that for i = 1, 2, Xi is compact Hausdorff and A(Xi, Ei)
is hi-strongly regular. Then R is a ∩2

h1,h2
-isomorphism if and only if there

exists a homeomorphism ϕ : X1 → X2 so that for any (f1, f2) ∈ R and any
x ∈ X1, f1(x) = h1(x) ⇐⇒ f2(ϕ(x)) = h2(ϕ(x)).

Proof. Obviously, if such a ϕ exists, then R is a ∩2
h1,h2

-isomorphism. Con-
versely, assume that R is a ∩2

h1,h2
-isomorphism. By Corollary 6.2, there is a

Boolean isomorphism θ : RO(X1) → RO(X2) associated with (R, h1, h2).
Let F ⊆ RO(X2) be a convergent filterbase. Then F has the finite in-
tersection property and hence

⋂
V ∈F θ

−1(V ) 6= ∅. By the same argument⋂
V ∈F θ(V ) 6= ∅ if F ⊆ RO(X1) is a convergent filterbase. By Proposition

6.3, θ is a strong Boolean isomorphism. It now follows from Corollary 3.2 that
there is a homeomorphism ϕ : X1 → X2 associated with θ and hence with
(R, h1, h2). The final conclusion of the theorem follows from Lemma 6.4. �

In the absence of compactness of Xi, we make a stronger assumption on
A(Xi, Ei). Say that A(Xi, Ei) identifies points in Xi precisely (with respect
to hi) if for any x ∈ Xi, there exists fi ∈ A(Xi, Ei) so that [fi = hi] = {x}.
See [25].

Lemma 6.6. Suppose that R is a ∩2
h1,h2

-isomorphism, A(X1, E1) is h1-strongly

regular and identifies points in X1 precisely. Then
⋂
U∈Nx θ(U) 6= ∅ for any

x ∈ X1.

Proof. Let x ∈ X1. There exists f1 ∈ A(X1, E1) so that [f1 = h1] = {x}.
Suppose that

⋂
U∈Nx θ(U) = ∅. Let y ∈ X2. There exists U ∈ Nx so that

y /∈ θ(U). Choose V ∈ Ny so that V ∩ θ(U) = ∅. As A(X1, E1) is h1-strongly
regular, there exists (g1, g2) ∈ R so that x ∈ [g1 6= h1] ⊆ U . Since g1 = h1 on
¬U , g2 = h2 on ¬θ(U). Thus g2(y) = h2(y). However, [f1 = h1]∩ [g1 = h1] =
∅. Hence [f2 = h2] ∩ [g2 = h2] = ∅. It follows that f2(y) 6= h2(y). As y ∈ X2

is arbitrary, [f2 = h2] = ∅, from which we see that [f1 = h1] = ∅, which is
absurd. �
Theorem 6.7. Assume that for i = 1, 2, Xi, Ei are Tychonoff spaces, A(Xi, Ei)
is hi-strongly regular and identifies points in Xi precisely. Then R is a ∩2

h1,h2
-

isomorphism if and only if there exists a homeomorphism ϕ : X1 → X2 so
that for any (f1, f2) ∈ R and any x ∈ X1, f1(x) = h1(x) ⇐⇒ f2(ϕ(x)) =
h2(ϕ(x)).

Proof. The “if”part is clear. Conversely, assume that R is a ∩2
h1,h2

-isomorph-
ism. By Corollary 6.2, there is a Boolean isomorphism θ : RO(X1)→ RO(X2)
associated with (R, h1, h2). Let x ∈ RO(X1). By Lemma 6.6, there exists
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y1 ∈
⋂
U∈Nx θ(U). Claim.

⋂
U∈Nx θ(U)

βX ⊆ X2. If the claim fails, there is

also a y2 ∈
⋂
U∈Nx θ(U)

βX2\X2. Obviously y1 and y2 are distinct points in
βX2. Choose open sets V1, V2 in βX2 so that y1 ∈ V1, y2 ∈ V2 and that
V1
βX2 ∩ V2

βX2
= ∅. Let W1 = intV1 ∩X2, with interior and closure taken in

X2. Then y1 ∈ W1 ∈ RO(X2). Since A(X2, E2) is h2-strongly regular, there
are (f1, f2), (g1, g2) ∈ R and W ′ ∈ RO(X2) so that y1 ∈ [f2 6= h2] ⊆ W1,
g2 = h2 on W ′, y1 ∈ W ′ and that [f2 = h2] ∩ [g2 = h2] = ∅. If U ∈ Nx, then
y1 ∈ θ(U). Hence W ′ ∩ θ(U) 6= ∅, which implies that θ−1(W ′) ∩ U 6= ∅. This
shows that x ∈ θ−1(W ′). Moreover, g2 = h2 on W ′ implies that g1 = h1 on
θ−1(W ′). Thus g1(x) = h1(x). On the other hand, setW2 = intV2 ∩X2. Then
f2 = h2 on W2 ∈ RO(X2) and hence f1 = h1 on θ−1(W2). For any U ∈ Nx,
y2 ∈ θ(U)

βX2
and thus V2∩θ(U) 6= ∅, which implies thatW2∩θ(U) 6= ∅. Hence

θ−1(W2)∩U 6= ∅. This proves that x ∈ θ−1(W2). Since f2 = h2 onW2, f1 = h1

on θ−1(W2). In particular, f1(x) = h1(x). It follows from the preceding that
x ∈ [f1 = h1] ∩ [g1 = h1], which implies that [f2 = h2] ∩ [g2 = h2] 6= ∅,
contradicting the choices of f2 and g2. This completes the proof of the claim.
Now let F be a filterbase in RO(X1) that converges to x. Since the collection

of closed sets {θ(V )
βX2

: V ∈ F} has finite intersection property in the
compact space βX2,

∅ 6=
⋂
V ∈F

θ(V )
βX2 ⊆

⋂
U∈Nx

θ(U)
βX2 ⊆ X2.

Hence
⋂
V ∈F θ(V ) 6= ∅. We have verified condition (2) in Theorem 3.1. Con-

dition (3) in the same theorem follows by symmetry. Condition (1) in the
theorem follows from Proposition 6.3. By Theorem 3.1, there is a homeomor-
phism ϕ associated with θ and thus with (R, h1, h2), as required. The final
conclusion follows from Lemma 6.4. �
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