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Abstract. Let Ω be a compact Hausdorff space. The space C(Ω) of con-
tinuous functions on Ω carries a number of structures. It is a Banach
space (under the sup-norm), a vector lattice and a ring (under pointwise
operations). The classical theorems of Banach-Stone, Kaplansky and
Gelfand-Kolmogorov show that each of these structures on C(Ω) char-
acterizes the space Ω up to homeomorphism. Within the last thirty years
or so, a rich literature has been built up concerning mappings between
function spaces that preserve the disjointness structure (biseparating
maps or ⊥-isomorphisms). These efforts have shown that in many cases,
operators on function spaces that preserve various kinds of structures
are ⊥-isomorphisms. This lends a certain unity to various “preserver” re-
sults and highlights the utility of the concept of ⊥-isomorphisms. In this
paper, we will describe a general theory of ⊥-isomorphisms and survey
a number of applications, including applications to order (lattice) iso-
morphisms, ring and multiplicative isomorphisms, isometries and non-
vanishing preservers.
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1. Introduction

There is a long and fruitful tradition of studying a mathematical object by
means of looking at the space of mappings from it into a simple object of the
same sort. For example, the dual group is a fundamental object in abstract
harmonic analysis; likewise, the dual space of a locally convex topological
vector space is part and parcel of the theory of such spaces. If Ω is a compact
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Hausdorff space, the space C(Ω) of continuous real valued functions on Ω is
a natural “dual space” of Ω. (We will generally take the scalar field to be
R, although most of what will be discussed in the paper applies equally well
to complex scalars.) Moreover, C(Ω) carries with it a wealth of structures.
It is a Banach space under the norm ∥f∥ = supω∈Ω |f(ω)|, a ring (with
unit) under pointwise addition and multiplication and a vector lattice under
pointwise order. Each of these aspects of C(Ω) has been shown to determine
the space Ω up to homeomorphism. These are the famous classical theorems of
Banach-Stone [10, 41], Gelfand-Kolmogorov [25] and Kaplansky [29]. The aim
of this paper is to give a survey of some developments that arise out of these
classical results, which we will refer to as theorems of Banach-Stone type.
Particularly, since the 1990s, mappings that preserve “disjointness structures”
– biseparating maps in the linear case, ⊥-isomorphisms more generally – have
been studied by many researchers. An important point that we would like to
make is to promote the use of ⊥-isomorphisms as a unifying concept in the
study of Banach-Stone type theorems. A recent example of such a point of
view is given in the paper [16]. For a general survey of Banach-Stone theorems
up to around the year 2000, see [23].

Let us briefly summarize the contents of the paper. In §2, we recall the
statements of the three classical theorems mentioned above. The definition of
a biseparating map is given and it is shown that if T : C(Ω) → C(Σ) is either
an isometry, an algebra (ring) isomorphism or a vector lattice isomorphism,
then it is biseparating. A detailed proof is given of the fact that a biseparating
map T : C(Ω) → C(Σ) induces a homeomorphism φ : Σ → Ω, with respect
to which T can be represented as a weighted composition operator. (See The-
orem 2.6.) Consequently, the three classical theorems can be unified under
Theorem 2.6. §3 develops the theory of ⊥-isomorphisms. Minimal assump-
tions are made on the sets of functions and the mappings involved. Even so, it
is found that a ⊥-isomorphism induces an isomorphism between the Boolean
algebras of regular open sets between the underlying domain spaces (Theorem
3.3). Under further conditions, it is shown that the Boolean isomorphism gives
rise to a homemorphism between the domain spaces. These can be viewed as
“weak” Banach-Stone theorems. In §3.3, “strong” Banach-Stone theorems are
given, that is, results where a ⊥-isomorphism has a functional representation.
Strong Banach-Stone theorems are seen to apply to a large class of function
spaces. Finally, §4 contains applications of the results in §3 to a variety of
settings. It is shown that in many cases lattice isomorphisms (Kaplansky’s
Theorem), ring isomorphisms (Gelfand-Kolmogorov Theorem), multiplicative
isomorphisms (Milgram’s Theorem), isometries (Banach-Stone Theorem) and
nonvanishing preservers are ⊥-isomophisms. Consequently, many results are
consequences of, and can be extended by, characterization of ⊥-isomorphisms.
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2. Three Classical Theorems

Let Ω be a topological space. Denote by C(Ω) the vector space of all (real-
valued) continuous functions on Ω. The space C(Ω) carries with it many
structures. Indeed, it is an algebra under pointwise addition and multipli-
cation. It is also a vector lattice under pointwise supremum and infimum.
Finally, if Ω is compact Hausdorff, the space C(Ω) is a Banach space with
the norm ∥f∥ = sup{|f(ω)| : ω ∈ Ω}. In the first half of the twentieth cen-
tury, three remarkable theorems appeared that characterize the space Ω in
terms of each of these structures of C(Ω).

Theorem 2.1 (Banach-Stone). Let Ω,Σ be compact Hausdorff spaces and let
T : C(Ω) → C(Σ) be a linear isometry. There are a homeomorphism φ : Σ →
Ω and a function h ∈ C(Σ) so that |h(σ)| = 1 for all σ ∈ Σ and that

Tf(σ) = h(σ)f(φ(σ)) for all f ∈ C(Ω) and all σ ∈ Σ.

Theorem 2.1 was proved by Banach [10] for the case of compact metric
spaces. The theorem was extended to compact Hausdorff spaces by Stone
[41].

Theorem 2.2 (Gelfand-Kolmogorov). [25] Let Ω,Σ be compact Hausdorff spa-
ces and let T : C(Ω) → C(Σ) be an algebra isomorphism. There is a homeo-
morphism φ : Σ → Ω such that

Tf(σ) = f(φ(σ)) for all f ∈ C(Ω) and all σ ∈ Σ.

Theorem 2.3 (Kaplansky). [29] Let Ω,Σ be compact Hausdorff spaces and let
T : C(Ω) → C(Σ) be a vector lattice isomorphism. There are a homeomor-
phism φ : Σ → Ω and a function h ∈ C(Σ) so that h(σ) > 0 for all σ ∈ Σ
and that

Tf(σ) = h(σ)f(φ(σ)) for all f ∈ C(Ω) and all σ ∈ Σ.

Theorem 2.3 is a special case of Kaplansky’s result. For a discussion of
the result in its full generality, see §4.1. In the intervening three quarters of
a century, a large number of extensions and generalizations of these results
have been obtained. A particularly fruitful concept that unifies the three
classical theorems is that of disjointness preserving operators. Let Ω,Σ be
topological spaces. Two functions f, g ∈ C(Ω), respectively, C(Σ), are said to
be disjoint if the pointwise product fg = 0. In terms of the lattice structure,
f and g are disjoint if and only if |f | ∧ |g| = 0. Suppose that A(Ω) and
A(Σ) are vector subspaces of C(Ω) and C(Σ) respectively. A linear operator
T : A(Ω) → A(Σ) is disjointness preserving if Tf, Tg are disjoint whenever
f, g are disjoint functions in A(Ω). A biseparating operator is a linear bijection
T : A(Ω) → A(Σ) so that both T and T−1 are disjointness preserving. It is
evident that if A(Ω) and A(Σ) are algebras under pointwise operations, then
every algebraic isomorphism T : A(Ω) → A(Σ) is biseparating. A similar
statement holds for lattice isomorphisms. Now we proceed to see that for
compact Hausdorff spaces Ω and Σ, any linear isometry from C(Ω) onto
C(Σ) is biseparating. To do this, we make use of extreme points in the dual
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ball of C(Ω) and C(Σ). Let C be a convex set in a vector space V . A point
x ∈ C is an extreme point of C if x = 1

2 (y + z), y, z ∈ C, implies that
x = y = z. Denote the set of extreme points of C by extC. It is easy to see
that if V,W are vector spaces, T : V → W is a vector space isomorphism
and x is an extreme point of C ⊆ V , then Tx is an extreme point of T (C).
The next result is due to Arens and Kelley, who used it in their proof of the
Banach-Stone Theorem.

Proposition 2.4. [8] Let Ω be a compact Hausdorff space and let BC(Ω)∗ be
the closed ball of the dual space C(Ω)∗. Then

extBC(Ω)∗ = {±δω : ω ∈ Ω},

where δω is the evaluation functional on C(Ω) given by δω(f) = f(ω).

Proposition 2.5. Let Ω and Σ be compact Hausdorff spaces. Every (onto)
linear isometry T : C(Ω) → C(Σ) is biseparating.

Proof. Let f, g be disjoint functions in C(Ω) and let σ ∈ Σ. By Propo-
sition 2.4, δσ ∈ extBC(Σ)∗ . Since T ∗ is a vector space isomorphism and
T ∗(BC(Σ)∗) = BC(Ω)∗ , T

∗δσ ∈ extBC(Ω)∗ . By Proposition 2.4, there exists
ω ∈ Ω and ε = ±1 so that T ∗δσ = εδω. Thus

Tf(σ) · Tg(σ) = (T ∗δσ)(f) · (T ∗δσ)(g) = ε2δω(f) · δω(g) = f(ω) · g(ω) = 0.

This proves that Tf and Tg are disjoint. Hence T is disjointness preserving.
The same applies to T−1 by symmetry. □

The classical theorems of Banach-Stone, Gelfand-Kolmogorov and Ka-
plansky can now be unified and extended by the next result.

Theorem 2.6. [28] Let Ω and Σ be compact Hausdorff spaces and let T :
C(Ω) → C(Σ) be a linear biseparating map. There are a homeomorphism
φ : Σ → Ω and a function h ∈ C(Σ) so that h(σ) ̸= 0 for all σ ∈ Σ and that

Tf(σ) = h(σ)f(φ(σ)) for all f ∈ C(Ω) and all σ ∈ Σ.

In fact, Jarosz gave a description of general disjointness preserving linear
maps T : C(Ω) → C(Σ). As a result, he showed that every disjointness
preserving linear bijection T : C(Ω) → C(Σ) is biseparating and has the
representation above. We will give a detailed proof of Theorem 2.6 that seems
to us to be most amenable to generalization. For the remainder of the section,
let Ω,Σ and T be as in Theorem 2.6. For any function f ∈ C(Ω), the support
of f , supp f , is the closure of the set {ω : f(ω) ̸= 0}. Similarly for functions
in C(Σ).

Proposition 2.7. [5, Lemma 4] If f, g ∈ C(Ω) and supp f ⊆ supp g, then
suppTf ⊆ suppTg.

Proof. Otherwise, there are f, g ∈ C(Ω) with supp f ⊆ supp g, yet suppTf ̸⊆
suppTg. Hence there exists σ0 /∈ suppTg so that Tf(σ0) ̸= 0. Choose
h ∈ C(Σ) so that h(σ0) ̸= 0 and that h is disjoint from Tg. Since T−1 is
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disjointness preserving, T−1h and g are disjoint. Thus T−1h and f are dis-
joint. Therefore, h and Tf are disjoint, which contradicts the fact that h and
Tf are both nonzero at σ0. □

For any σ ∈ Σ, set

Fσ = {supp f : f ∈ C(Ω), (Tf)(σ) ̸= 0}.

Lemma 2.8. Fσ has the finite intersection property.

Proof. Let f1, . . . , fm be functions in C(Ω) so that Tfi(σ) ̸= 0, 1 ≤ i ≤ m.
There exists a nonzero g ∈ C(Σ) so that supp g ⊆ suppTfi, 1 ≤ i ≤ m.
Apply Proposition 2.7 to T−1 to see that suppT−1g ⊆ supp fi, 1 ≤ i ≤ m.
Since T is a bijection and g ̸= 0, T−1g ̸= 0. Thus suppT−1g is a nonempty
set contained in

⋂m
i=1 supp fi. □

Lemma 2.9. For any σ ∈ Σ,
⋂
Fσ contains exactly one point in Ω.

Proof. Obviously, Fσ consists of closed sets in the compact Hausdorff space
Ω. It follows from Lemma 2.8 that

⋂
Fσ is nonempty. Suppose, if possible,

that ω1, ω2 are two distinct points in
⋂
Fσ. Choose a pair of disjoint functions

h1, h2 ∈ C(Ω) so that hi = 1 on a neighborhood of ωi, i = 1, 2. Let f ∈ C(Ω)
be chosen so that Tf(σ) ̸= 0. By definition, ωi ∈ supp f , i = 1, 2. Since h1f
and h2f are disjoint and T is disjointness preserving, T (h1f) and T (h2f)
are disjoint. Without loss of generality, we may assume that T (h1f)(σ) = 0.
Then T ((1 − h1)f)(σ) = Tf(σ) ̸= 0. Since ω1 ∈ Fσ, this would imply that
ω1 ∈ supp(1−h1)f , which is clearly false by choice of h1. This completes the
proof of the lemma. □

Define φ : Σ → Ω by setting {φ(σ)} =
⋂
Fσ. By symmetry, we may

define
Fω = {suppTf : f ∈ C(Ω), f(ω) ̸= 0}

for any ω ∈ Ω. Then there is a well-defined function ψ : Ω → Σ so that
{ψ(ω)} =

⋂
Fω for all ω ∈ Ω.

Lemma 2.10. φ : Σ → Ω is a homeomorphism with inverse ψ.

Proof. We will show that ψ(φ(σ)) = σ for all σ ∈ Σ and that φ is continuous.
The lemma then follows by symmetry.

Suppose that σ ∈ Σ and ω = φ(σ). Assume, if possible, that σ′ =
ψ(ω) ̸= σ. Let f ∈ C(Ω) be such that Tf(σ) ̸= 0 and that σ′ /∈ suppTf .
There exists h ∈ C(Σ) disjoint from Tf so that h = 1 on a neighborhood of
σ′. Choose g ∈ C(Ω) so that g(ω) ̸= 0. Since h · Tg and Tf are disjoint, so
are T−1(h ·Tg) and f . As Tf(σ) ̸= 0, ω ∈ supp f . Hence T−1(h ·Tg)(ω) = 0.
Therefore,

0 ̸= g(ω) = T−1(h · Tg)(ω) + T−1((1− h) · Tg)(ω) = T−1((1− h) · Tg)(ω).
It follows that σ′ ∈ supp(1−h)·Tg, contrary to the choice of h. This completes
the proof that ψ(φ(σ)) = σ.

If φ is not continuous, then making use of compactness of Ω, there
is a net (σα)α in Σ converging to some σ0 so that (φ(σα))α converges to
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ω′ ̸= ω0 := φ(σ0). Let f ∈ C(Ω) be such that Tf(σ0) ̸= 0. There exists α0

so that Tf(σα) ̸= 0 for all α ⪰ α0. By definition of φ, φ(σα) ∈ supp f for all
α ⪰ α0. Thus ω

′ ∈ supp f . But this shows that ω′ ∈
⋂
Fσ0 and hence ω′ = ω,

contrary to the assumption. □

Proof of Theorem 2.6. We will show that if f(φ(σ)) = 0, then Tf(σ) = 0.
Once this is shown, define h = T1. For any f ∈ C(Ω) and any σ ∈ Σ,
f − f(φ(σ))1 vanishes at φ(σ). Hence

0 = T [f − f(φ(σ))1](σ) = Tf(σ)− f(φ(σ))h(σ).

Thus Tf(σ) = h(σ)f(φ(σ)), as claimed. Furthermore, since T is a surjection,
h(σ) ̸= 0 for any σ ∈ Σ.

Suppose that, contrary to the claim above, there are f ∈ C(Ω) and σ ∈
Σ so that f(φ(σ)) = 0 yet Tf(σ) ̸= 0. By definition of φ, ω := φ(σ) ∈ supp f .

Thus ω ∈ |f |−1(0, r) for any r > 0. Define

Un = |f |−1(
1

(3n+ 5)2
,

1

(3n+ 1)2
), n ∈ N.

Then ω ∈
⋃

n Un =
⋃

n U2n−1 ∪
⋃

n U2n. Without loss of generality, assume

that ω ∈
⋃

n U2n−1. Set

Vn = |f |−1(
1

(6n+ 3)2
,

1

(6n− 3)2
), n ∈ N.

Then (Vn) is a sequence of disjoint open sets so that U2n−1 ⊆ Vn for all n.
For each n, choose a function hn ∈ C(Ω) so that 0 ≤ hn ≤ 1, hn = 1 on
U2n−1 and hn = 0 outside Vn. The sequence of functions (nhnf)n is pairwise
disjoint and ∥nhnf∥ ≤ n

(6n−3)2 → 0. Hence the sum g :=
∑
nhnf converges

in C(Ω). For each n, g − nf = 0 on the set U2n−1. By definition of φ, this
implies that T (g − nf)(σ′) = 0 for all σ′ ∈ φ−1(U2n−1). Choose a net (ωα)
in

⋃
n U2n−1 that converges to ω. Let nα ∈ N be such that ωα ∈ U2nα−1. Set

σα = φ−1(ωα). Since f(ω) = 0, ω /∈ Un for any n. Thus limα nα = ∞. Note
that (σα) converges to σ. Therefore,

Tf(σ) = lim
α
Tf(σα) = lim

α

1

nα
Tg(σα) = 0,

contrary to the choices of f and σ. □

3. Isomorphism of disjointness structure

Results in §2 may serve to convince the reader that biseparating maps are
worthy of study in their own right. Indeed, plenty of results concerning bisep-
arating maps have been obtained in the past thirty years or so. Most of these
are in the context of linear or at least additive maps. Since surjective additive
maps between vector spaces are linear maps over the field of rational num-
bers, the results remain mainly “linear” in character. Very recently, several
papers [16, 18, 19] appeared that took the study of isomorphisms of disjoint-
ness structure, or ⊥-isomorphisms, to very general settings. It is shown that
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even for function spaces with minimal structure, analysis of ⊥-isomorphisms
can still bear fruitful results. The aim of this section is to describe this general
approach to ⊥-isomorphisms. Earlier results on biseparating maps, in spaces
of (vector-valued) continuous functions, uniformly continuous functions, Lip-
schitz functions and differentiable functions, will be seen as consequences.
Applications to theorems of Banach-Stone type will be considered in the
next section.

3.1. ⊥-isomorphisms

Let Ω, X be Hausdorff topological spaces and let A(Ω, X) be a subset of
C(Ω, X), the set of continuous functions f : Ω → X. For f, g ∈ A(Ω, X), let

[f ̸= g] = {ω ∈ Ω : f(ω) ̸= g(ω)}, suppg f = [f ̸= g] and σg(f) = int suppg f.

Following [16], we define the following relations for f, g, h ∈ A(Ω, X).

1. f ⊥h g: [f ̸= h] ∩ [g ̸= h] = ∅.
2. f ⊆h g: σh(f) ⊆ σh(g).

The definitions of ⊥h and ⊆h may appear asymmetrical as one uses sets
of the form [f ̸= h] while the other uses σh(f). However, it is easy to see
that f ⊥h g if and only if σh(f) ∩ σh(g) = ∅. Similarly, let A(Σ, Y ) be a
subset of C(Σ, Y ), where Σ, Y are Hausdorff topological spaces. Assume that
T : A(Ω, X) → A(Σ, Y ) is a bijection. Given h ∈ A(Ω, X), say that T is a
⊥h- isomorphism if

f ⊥h g ⇐⇒ Tf ⊥Th Tg for all f, g ∈ A(Ω, X).

⊆h-isomorphism is defined similarly. Clearly, a biseparating map in the sense
of §2 is precisely a ⊥0 isomorphism, provided T0 = 0. ⊥h-isomorphism is a
generalization of biseparating map to the nonlinear context. The set A(Ω, X)
is said to be h-weakly regular for some h ∈ A(Ω, X) if

Σh = {σh(f) : f ∈ A(Ω, X)} is a basis for the topology on X.

Weak regularity is a basic assumption to ensure that there are sufficient
functions in A(Ω, X) and A(Σ, Y ) to yield a nontrivial theory. The following
simple yet important result is noted and used in [16]. Its ancestry can be
traced back to at least [5, Lemma 4].

Proposition 3.1. Let T : A(Ω, X) → A(Σ, Y ) be a bijection, where A(Ω, X)
and A(Σ, Y ) are h- and Th-weakly regular respectively. Then T is a ⊥h-
isomorphism if and only if it is a ⊆h-isomorphism.

A set U in Ω is a regular open set if U = intU . All sets of the form σh(f)
are regular open sets. Denote the collection of all regular open sets in Ω by
RO(Ω). RO(Ω) is a Boolean algebra with 0 = ∅, 1 = Ω, lattice operations
U ∧ V = U ∩ V , U ∨ V = intU ∪ V and negation ¬U = int(Ω\U). See [41].
If Ω is a regular topological space, then RO(Ω) is a basis for the topology on
Ω.
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Let T : A(Ω, X) → A(Σ, Y ) be a ⊆h-isomorphism, where A(Ω, X)
and A(Σ, Y ) are h- and Th-weakly regular respectively. Define a map θh :
RO(Ω) → RO(Σ) by

θh(U) = int
⋃

{σTh(Tf) : f ∈ A(Ω, X), σh(f) ⊆ U}. (3.1)

It can be shown that θh is a Boolean isomorphism from RO(Ω) onto RO(Σ).
In fact, its inverse is θTh : RO(Σ) → RO(Ω). Furthermore, if f ∈ A(Ω, X)
and U ∈ RO(Ω), then f = h on U if and only if Tf = Th on θh(U). In fact,
we obtain a fundamental characterization of ⊥h-isomorphisms.

Theorem 3.2. Let T : A(Ω, X) → A(Σ, Y ) be a bijection, where A(Ω, X)
and A(Σ, Y ) are h- and Th-weakly regular respectively. Then T is a ⊥h-
isomorphism if and only if there is a Boolean isomorphism θh : RO(Ω) →
RO(Σ) so that for any f ∈ A(Ω, X) and U ∈ RO(X), f = h on U if and
only if Tf = Th on θh(U).

In Theorem 3.2, we say that θh is associated with (T, h). In general, if T
is a ⊥h isomorphism for different h’s, the associated Boolean isomorphisms θh
may well depend on h. Some way of “linking” different functions in A(Ω, X)
and A(Σ, Y ) is needed in order to “uniformize” the θh’s.

Call a set A(Ω, X) ⊆ C(Ω, X) weakly regular if A(Ω, X) is h-weakly
regular for all h ∈ A(Ω, X). Suppose that T : A(Ω, X) → A(Σ, Y ) is a bijec-
tion between weakly regular sets of functions that is a ⊥-isomorphism, i.e.,
T is a ⊥h-isomorphism for all h ∈ A(Ω, X). Consider the following “linking”
condition.

(L) If h1, h2 ∈ A(Ω, X), U ∈ RO(Ω) and ω /∈ U , then there exist f ∈
A(Ω, X) and V ∈ RO(Ω) containing ω so that

f =

{
h1 on U

h2 on V .

A set of functions A(Ω, X) is nowhere trivial if for any ω ∈ Ω, there are
h1, h2 ∈ A(Ω, X) so that h1(ω) ̸= h2(ω). If Ω is a regular topological space
and A(Ω, X) is nowhere trivial and satisfies condition (L), then A(Ω, X) is
weakly regular.

Theorem 3.3. Let Ω,Σ be regular topological spaces. Assume that A(Ω, X)
and A(Σ, Y ) are nowhere trivial and satisfy condition (L). A bijection T :
A(Ω, X) → A(Σ, Y ) is a ⊥-isomorphism if and only if there is Boolean
isomorphism θ : RO(Ω) → RO(Σ) so that for all f, g ∈ A(Ω, X) and all
U ∈ RO(Ω), f = g on U if and only if Tf = Tg on θ(U).

In order to prove Theorem 3.3, we first require a lemma.

Lemma 3.4. Assume that h1, h2 ∈ A(Ω, X), U ∈ RO(Ω) so that h1 = h2 on
U . Then θh1

(U) = θh2
(U).
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Proof. Assume that θh2
(U) ̸⊆ θh1

(U). Since T is a bijection and A(Σ, Y ) is
weakly regular, there exists f ∈ A(Ω, X) such that

∅ ≠ σTh2(Tf) ⊆ θh2(U)\θh1(U).

By (3.1) and the fact that T is a ⊆-isomorphism, θh2
(σh2

(f)) = σTh2
(Tf).

Then ∅ ≠ σh2
(f) = θ−1

h2
(σTh2

(Tf)) ⊆ U . Hence σh2
(f) is a nonempty set

disjoint from ¬U . By condition (L), there exist g ∈ A(Ω, X) and a nonempty
set V ∈ RO(Ω), V ⊆ σh2(f), so that

g =

{
h1 on ¬U,
f on V .

Now

1. θf (V ) ⊆ θf (σh2(f)) = θf (σf (h2)) = σTf (Th2) = σTh2(Tf).
2. Tg = Th1 on θh1(¬U) = ¬θh1(U) = int[θh1(U)c] ⊇ σTh2(Tf).
3. Tg = Tf on θf (V ).
4. Th1 = Th2 on θh2

(U) ⊇ σTh2
(Tf).

Here, we have applied Theorem 3.2 for items 2-4. It follows that Tf =
Th2 on θf (V ). However, θf (V ) is a nonempty open subset of σTh2(Tf) =

int [Tf ̸= Th2]. So we have reached a contradiction. Therefore, θh2(U) ⊆
θh1

(U). Since θh1
(U) is a regular open set, θh2

(U) ⊆ θh1
(U). The lemma

follows by symmetry. □

Proof of Theorem 3.3. Taking into account Theorem 3.2, it suffices to show
that θh1

= θh2
for any h1, h2 ∈ A(Ω, X). Suppose that there exists U ∈

RO(Ω) so that θh2(U) ̸⊆ θh1(U), so that in fact θh2(U) ̸⊆ θh1(U). By
condition (L) for A(Σ, Y ), there exists g ∈ A(Σ, Y ) and a nonempty set

V ∈ RO(Σ), V ⊆ θh2
(U)\θh1

(U), so that

g =

{
Th1 on θh1

(U),

Th2 on V .

Apply Lemma 3.4 on A(Σ, Y ). We find that

θg(θh1(U)) = θTh1(θh1(U)) = U and θg(V ) = θTh2(V ) = θ−1
h2

(V ).

Since θh1
(U) ∩ V = ∅ and θg is a Boolean isomorphism,

U ∩ θ−1
h2

(V ) = θg(θh1
(V )) ∩ θg(V ) = ∅.

However, θ−1
h2

(V ) is a nonempty subset of θ−1
h2

(θh2
(U)) = U . The contradic-

tion shows that θh2(U) ⊆ θh1(U). The reverse inclusion follows by symme-
try. □

In Theorem 3.3, say that θ is associated with T . We list a few examples
of sets of functions satisfying condition (L). Another example is given in
Lemma 4.2 below.
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Example. (a) Let Ω be a completely regular Hausdorff space and let X be
a convex set in a Hausdorff topological vector space. The space C(Ω, X)
consists of all continuous functions from Ω into X.

(b) Let Ω be a metric space and let X be a convex set in a normed space.
Denote by U(Ω, X), U∗(Ω, X), Lip(Ω, X), Lip∗(Ω, X), respectively, the
set of uniformly continuous functions, the set of bounded uniformly con-
tinuous functions, the set of Lipschitz functions and the set of bounded
Lipschitz functions from Ω to X.

(c) Let Ω be an open set in a Banach space Z and let X be a Banach
space. For p ∈ N ∪ {∞}, denote by Cp(Ω,X ) the space of all p-times
continuously (Fréchet) differentiable X -valued functions on Ω. To ensure
that there are “sufficiently many” functions in Cp(Ω,X ), we assume that
there exists a bump function in Cp(Z), i.e., a function ξ ∈ Cp(Z) that
has nonempty bounded support in Z.
To see that all of the spaces A(Ω, X) above satisfy condition (L), first

observe that if ω0 ∈ Ω, U ∈ RO(Ω) and ω0 /∈ U , then there exist ξ : Ω → [0, 1],
V ∈ RO(X) containing ω0 so that ξ = 0 on V and ξ = 1 on U . Moreover,
for the situation in (b), we can choose ξ to be Lipschitz, and for case (c),
we can choose ξ ∈ Cp(Ω). Given h1, h2 ∈ A(Ω, X), it is easy to verify that
f(ω) = ξ(ω)h1(ω) + (1 − ξ(ω))h2(ω) defines a function in A(Ω, X) that is
equal to h1 on U and h2 on V .

Remark 3.5. Condition (L) is a condition on A(Ω, X), respectively, A(Σ, Y ),
that guarantees that the Boolean isomorphisms θh are independent of h. Al-
ternatively, we may impose conditions on T to warrant the same outcome. For
example, if X,Y are Hausdorff topological groups, then C(Ω, X) is a topolog-
ical group under pointwise group operations. Suppose that A(Ω, X), A(Σ, Y )
are subgroups of C(Ω, X), C(Σ, Y ) respectively and T : A(Ω, X) → A(Σ, Y )
is a group isomorphism as well as a ⊥h isomorphism for some h ∈ A(Ω, X).
Then routine verification shows that T is a ⊥-isomorphism and for any
k ∈ A(Ω, X), θh(U) = θk(U) for all U ∈ RO(X). In particular, the situation
occurs if X and Y are Hausdorff topological vector spaces, A(Ω, X), A(Σ, Y )
are respective subspaces of C(Ω, X), C(Σ, Y ), and T : A(Ω, X) → A(Σ, Y ) is
an additive ⊥0-isomorphism.

3.2. Homeomorphism associated with a ⊥-isomorphism

Theorem 3.3 allows us to associate a Boolean isomorphism with a⊥-isomorph-
ism. Unfortunately, in general, a Boolean isomorphism θ : RO(Ω) → RO(Σ)
need not induce a homeomorphism φ : Ω → Σ.

Example. [16] Let Ω be a topological space and let Σ be a dense open set in
Ω. Then the map θΣ : RO(Ω) → RO(Σ) given by θΣ(U) = U ∩Σ is a Boolean
isomorphism. In particular, let S1 be the unit circle in the complex plane.
The sets (0, 1) and S1\{1} are homeomorphic and open and dense in [0, 1]
and S1 respectively. Hence we have a chain of Boolean isomorphisms

RO([0, 1]) ↔ RO((0, 1)) ↔ RO(S1\{1}) ↔ RO(S1).

But of course [0, 1] and S1 are not homeomorphic.
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The next result characterizes the Boolean isomorphisms that induce
homeomorphisms. If ω ∈ Ω, where Ω is a topological space, let Nω be the
family of open neighborhoods of ω.

Proposition 3.6. Let Ω,Σ be Hausdorff topological spaces and let θ : RO(Ω) →
RO(Σ) be a Boolean isomorphism. Assume that

1. For any ω ∈ Ω, there exists σ ∈ Σ such that for any V ∈ Nσ, there
exists U ∈ RO(Ω) containing ω such that θ(U) ⊆ V .

2. For any σ ∈ Σ, there exists ω ∈ Ω such that for any U ∈ Nω, there
exists V ∈ RO(Σ) containing σ such that θ−1(V ) ⊆ U .

Then there exists a homeomorphism ψ : Ω → Σ such that ψ(U) = θ(U) for
any U ∈ RO(X). Conversely, if Ω,Σ are regular topological spaces and there
is a homeomorphism ψ such that ψ(U) = θ(U) for any U ∈ RO(X), then
conditions 1 and 2 hold.

Given conditions 1 and 2, define ψ(ω) = σ when ω and σ are related by
condition 1. Similarly, define φ(σ) = ω when σ and ω are related by condition
2. One can check that ψ : Ω → Σ and φ : Σ → Ω are continuous functions
that are mutual inverses. Proposition 3.6 can be applied to obtain general
versions of Theorem 2.6. A homeomorphism ψ : Ω → Σ is associated with
T if for any U ∈ RO(Ω) and any f, g ∈ A(Ω, X), f = g on U if and only if
Tf = Tg on ψ(U).

Theorem 3.7. Suppose that A(Ω, X), A(Σ, Y ) are nowhere trivial subsets of
C(Ω, X) and C(Σ, Y ) respectively that satisfy condition (L), where X,Y are
Hausdorff spaces and Ω,Σ are compact Hausdorff. If T : A(Ω, X) → A(Σ, Y )
is a ⊥-isomorphism, then there is a homeomorphism ψ : Ω → Σ associated
with T .

Proof. By Theorem 3.3, there is a Boolean isomorphism θ : RO(Ω) → RO(Σ)
associated with T . Let us verify condition 1 in Proposition 3.6. Condition 2
follows by symmetry. Fix ω ∈ Ω. By assumption, there are functions h1, h2 ∈
A(Ω, X) so that h1(ω) ̸= h2(ω). The family {θ(U) : ω ∈ U ∈ RO(Ω)} has the
finite intersection property and hence has nonempty intersection. Suppose
that there are two distinct points σ1, σ2 ∈

⋂
{θ(U) : ω ∈ U ∈ RO(Ω)}.

By condition (L), there are V1, V2 ∈ RO(Σ) and f ∈ A(Σ, Y ) so that σi ∈
Vi and f = Thi on Vi, i = 1, 2. Thus T−1f = hi on θ−1(Vi). However,
if ω ∈ U ∈ RO(Ω), then θ(U) ∩ Vi ̸= ∅ and hence U ∩ θ−1(Vi) ̸= ∅. It

follows that ω ∈ θ−1(V1)∩ θ−1(V2). By continuity of T−1f , this would mean
that h1(ω) = T−1f(ω) = h2(ω), which is a contradiction. Therefore, the

intersection
⋂
{θ(U) : ω ∈ U ∈ RO(Ω)} contains a unique point σ.

If condition 1 of Proposition 3.6 fails, there exists V ∈ Nσ such that
θ(U)∩V c ̸= ∅ for all U ∈ RO(Ω)∩Nω. Using compactness again, there exists

σ′ such that σ′ ∈ θ(U)∩V c for all U ∈ RO(Ω)∩Nω. Clearly, σ
′ ̸= σ and both

belong to the intersection of the family {θ(U) : ω ∈ U ∈ RO(Ω)}, contrary
to the previous paragraph. □
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Theorem 3.7 extends to the case of complete metric domains, provided
the sets of functions satisfy an additional linking condition. Let Ω be a com-
plete metric space, X be a Hausdorff topological space and let A(Ω, X) be a
subset of C(Ω, X). A sequence (ωn) in Ω is separated if infm ̸=n d(ωm, ωn) > 0.

(Ls) Let h1, h2 ∈ A(Ω, X) and let (ωn) be a separated sequence in Ω. Then
there exists f ∈ A(Ω, X) and U1, U2 ∈ RO(Ω) so that each Ui contains
infinitely many ωn and that f = hi on Ui, i = 1, 2.

Theorem 3.8. Suppose that A(Ω, X), A(Σ, Y ) are nowhere trivial subsets of
C(Ω, X) and C(Σ, Y ) respectively that satisfy conditions (L) and (Ls), where
X,Y are Hausdorff spaces and Ω,Σ are complete metric spaces. If T : A(Ω, X) →
A(Σ, Y ) is a ⊥-isomorphism, then there is a homeomorphism ψ : Ω → Σ as-
sociated with T .

Sketch of proof. By Theorem 3.3, there is a Boolean isomorphism θ : RO(Ω) →
RO(Σ) associated with T . A bit of reflection shows that in order to verify
condition 1 of Proposition 3.6, it is suffices to prove that if ω ∈ Un ∈ RO(Ω),
diamUn → 0 and σn ∈ θ(Un) for all n, then (σn) converges in Σ. Fix functions
h1, h2 ∈ A(Ω, X) so that h1(ω) ̸= h2(ω). If (σn) fails to be convergent, then
either the sequence has no accumulation point, or at least two accumulation
points. In either case, from condition (L) or (Ls), there are f ∈ A(Σ, Y ) and
V1, V2 ∈ RO(Σ) so that Vi contain infinitely many σn and f = Thi on Vi,

i = 1, 2. As in the proof of Theorem 3.7, ω ∈ θ−1(Vi), i = 1, 2 and T−1f = hi
on θ−1(Vi), which leads to a contradiction. □

3.3. Representation

In many cases, it is possible to improve Theorems 3.7 and 3.8 by giving a
functional representation of the ⊥-isomorphism T .

Proposition 3.9. Let Ω,Σ, X, Y be Hausdorff spaces. Suppose that T : A(Ω, X) →
A(Σ, Y ) is a bijection, where A(Ω, X), A(Σ, Y ) are subsets of C(Ω, X) and
C(Σ, Y ) respectively. Assume that there is a homeomorphism ψ : Ω → Σ that
is associated with T . If f, g ∈ A(Ω, X), ω0 ∈ Ω and there exists h ∈ A(Ω, X)

so that ω0 ∈ int [h = f ] ∩ int [h = g], then Tf(ψ(ω0)) = Tg(ψ(ω0)).

Proof. Let U = int[h = f ] and V = int[h = g]. By assumption, Th = Tf
on ψ(U) and Th = Tf on ψ(V ). Since ψ is a homeomorphism and ω0 ∈
U ∩ V , ψ(ω0) ∈ ψ(U)∩ψ(V ). By continuity of Tf, Tg and Th, Tf(ψ(ω0)) =
Th(ψ(ω0)) = Tg(ψ(ω0)). □

From the example following Theorem 3.3, the spaces listed there all
satisfy condition (L).

Theorem 3.10. Let Ω,Σ be a first countable compact Hausdorff topological
space and let X,Y be a convex sets in a Hausdorff topological vector spaces,
with X,Y containing more than one point. If T : C(Ω, X) → C(Σ, Y ) is a
⊥-isomorphism, then there are a homeomorphism ψ : Ω → Σ and a function
Φ : Ω×X → Y so that

Tf(ψ(ω)) = Φ(ω, f(ω)) for all f ∈ C(Ω, X) and all ω ∈ Ω.
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Sketch of proof. As mentioned above, C(Ω, X) and C(Ω, Y ) both satisfy con-
dition (L). Hence there is a homeomorphism ψ : Ω → Σ associated with T by
Theorem 3.7. For any x ∈ X, let gx ∈ C(Ω, X) be the constant function with
value x. Define Φ : Ω ×X → Y by Φ(ω, x) = (Tgx)(ψ(ω)). Let ω0 ∈ Ω and
f ∈ C(Ω, X). Set x = f(ω0). Using the first countability of Ω, one can easily

construct h ∈ C(Ω, X) so that ω0 ∈ int [h = f ]∩ int [h = gx]. By Proposition
3.9,

Tf(ψ(ω0)) = (Tgx)(ψ(ω0)) = Φ(ω0, x) = Φ(ω0, f(ω0)).

This completes the proof of the theorem. □

It is not hard to see that in this case Φ is a continuous function on
Ω×X. In [19], it is shown that if X is a Banach space, then the spaces in the
example (taking X = X where appropriate) satisfy condition (Ls). Hence we
obtain the next result similarly.

Theorem 3.11. Let A(Ω,X ) be one of the spaces U(Ω,X ), U∗(Ω,X ),Lip(Ω,X )
or Lip∗(Ω,X ), where Ω is a complete metric space and X is a Banach space.
Similarly for A(Σ,Y). If T : A(Ω,X ) → A(Σ,Y) is a ⊥-isomorphism, then
there are a homeomorphism ψ : Ω → Σ and a function Φ : Ω × X → Y so
that

Tf(ψ(ω)) = Φ(ω, f(ω)) for all f ∈ A(Ω,X ) and all ω ∈ Ω.

In some instances, additional information concerning the functions ψ
and Φ are known. For example, if T : U(Ω,X ) → U(Σ,Y), then it can be
shown that ψ is a uniform homeomorphism and Φ can be characterized. For
details on this and for ⊥-isomorphisms T : Lip(Ω,X ) → Lip(Σ,Y), refer to
[19].

Consider the space Cp(Ω,X ), where p ∈ N, Ω is an open set in a Banach
space Z on which there is a Cp-bump function. It can be shown that if f, g ∈
Cp(Ω,X ) satisfy Dkf(ω0) = Dkg(ω0), 0 ≤ k ≤ p, for some ω0 ∈ Ω, then

there exists h ∈ Cp(Ω,X ) so that ω0 ∈ int [h = f ]∩ int [h = g]. Therefore, we
obtain the following counterpart of the preceding theorems for these spaces.
For k ∈ N, let Sk(Z,X ) be the space of all bounded symmetric k-linear
operators from Z to X .

Theorem 3.12. Let p, q ∈ N, Ω,Σ be open sets in a Banach spaces on which
there are Cp, respectively, Cq-bump functions. Suppose that T : Cp(Ω,X ) →
Cq(Σ,Y) is a ⊥-isomorphism. Denote by Z the Banach space containing Ω.
Then there exist a homeomorphism ψ : Ω → Σ and a function Φ : Ω × X ×
S1(Z,X )× · · · × Sp(Z,X ) → Y so that

Tf(ψ(ω)) = Φ(ω, f(ω), Df(ω), · · · , Dpf(ω)), f ∈ Cp(Ω,X ), ω ∈ Ω.

4. Applications

We present several applications of the results in §3.
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4.1. Order isomorphism

In this subsection, let Ω,Σ be regular topological spaces and let X,Y be to-
tally ordered sets endowed with the order topology, unless otherwise stated.
Given subsets A(Ω, X), A(Σ, Y ) of C(Ω, X) and C(Σ, Y ) respectively, an or-
der isomorphism is a bijection T : A(Ω, X) → A(Σ, Y ) that preserves the
pointwise order: for all f, g ∈ A(Ω, X),

f(ω) ≤ g(ω) for all ω ∈ Ω ⇐⇒ Tf(σ) ≤ Tg(σ) for all σ ∈ Σ.

If A(Ω, X) and A(Σ, Y ) are lattices (in the pointwise order), then an order
isomorphism is a lattice isomorphism. Following [29], we say that A(Ω, X) is
X-normal if for any disjoint closed sets F1, F2 in Ω and any x1, x2 ∈ X, there
exists f ∈ A(Ω, X) so that f = xi on Fi, i = 1, 2. The following statement is
Kaplansky’s Theorem in its full generality.

Theorem 4.1. (Kaplansky [29]) Let Ω,Σ be compact Hausdorff spaces and let
X,Y be totally ordered sets with the order topology. If C(Ω, X) and C(Σ, Y )
are X- and Y -normal respectively and there exists a lattice isomorphism T :
C(Ω, X) → C(Σ, Y ), then Ω and Σ are homeomorphic.

We will see that Kaplansky’s Theorem as well as similar results on
other function spaces can be derived from considerations in §3. A function
f ∈ C(Ω, X) is bounded if there are x1, x2 ∈ X so that x1 ≤ f(ω) ≤ x2 for
all ω ∈ Ω. Clearly, if Ω is compact Hausdorff, or if X has both largest and
smallest elements, then all functions in C(Ω, X) are bounded.

Lemma 4.2. Let Ω be a regular topological space and let X be a totally ordered
set with the order topology. Suppose that A(Ω, X) is a X-normal sublattice of
C(Ω, X) that consists of bounded functions. Then A(X,E) satisfies condition
(L).

Proof. Let h1, h2 ∈ A(Ω, X), U ∈ RO(Ω) and ω /∈ U . Since Ω is regular, there
exists V ∈ RO(Ω) containing ω so that V ∩ U = ∅. There are x1, x2 ∈ X
so that x1 ≤ h1(ω), h2(ω) ≤ x2 for all ω ∈ Ω. By X-normality, there are
k1, k2 ∈ A(Ω, X) so that

k1 =

{
x2 on V

x1 on U
and k2 =

{
x1 on V

x2 on U
.

Set k = (k2 ∨h1)∧ (k1 ∨h2). Then k ∈ A(Ω, X). It is easy to see that k = h1
on V and k = h2 on U . This completes the verification of condition (L). □

Proposition 4.3. Let Ω,Σ be regular topological spaces and let X,Y be totally
ordered sets with the order topology. Suppose that A(Ω, X) is a sublattice of
C(Ω, X) that satisfies condition (L). Similarly for A(Σ, Y ). If T : A(Ω, X) →
A(Σ, Y ) is a lattice isomorphism, then T is a ⊥-isomorphism.

Proof. Let f, g, h ∈ A(Ω, X) and suppose that f ⊥h g and that f, g ≥ h.
Then f ∧ g = h and hence Tf ∧ Tg = Th; whence Tf ⊥Th Tg. Similarly,
Tf ⊥Th Tg if f ⊥h g and f, g ≤ h.
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Claim. If f, g, h ∈ A(Ω, X), f ⊥h g and f ≥ h ≥ g, then Tf ⊥Th Tg.
Otherwise, there exists σ ∈ Σ so that Tf(σ) > Th(σ) > Tg(σ). Let

U = σTg(Th). By condition (L), there exists k ∈ A(Σ, Y ) so that k(σ) =
Tf(σ) and k = Th = Tg on intU c. Replace k by (k ∨ Th) ∧ Tf if necessary
to assume additionally that Th ≤ k ≤ Tf .

If σg(T
−1k) ̸⊆ σg(h), there exist a nonempty W ∈ RO(Ω) and l ∈

A(Ω, X) so thatW ⊆ σg(T
−1k), l = g on σg(h) and l = T−1k onW . Replace

l by l ∨ g if necessary so that l ≥ g. (Note that g ≤ h ≤ T−1k ≤ f .) Then
l, h ≥ g and l ⊥g h. Hence T l ⊥Tg Th. Since k = Tg on intU c, σTg(k) ⊆ U .
Thus

σTg(T l) ∩ σTg(k) ⊆ σTg(T l) ∩ U = σTg(T l) ∩ σTg(Th) = ∅.
So T l ⊥Tg k. Since l, T

−1k ≥ g as well, l ⊥g T
−1k. But l = T−1k on W .

Hence T−1k = g on W , which is absurd since W is a nonempty subset of
σg(T

−1k). This shows that σg(T
−1k) ⊆ σg(h) and thus σg(T

−1k) ⊆ σg(h).
By assumption, σh(f)∩σg(h) = σh(f)∩σh(g) = ∅. Therefore, σg(T−1k)∩

σh(f) = ∅. If ω ∈ σg(T
−1k), then ω /∈ σh(f) and hence f(ω) = h(ω). So

T−1k(ω) = h(ω) since f ≥ T−1k ≥ h. On the other hand, if ω /∈ σg(T
−1k),

then g(ω) = T−1k(ω) and hence T−1k(ω) = h(ω) since T−1k ≥ h ≥ g.
Combining the two cases, we see that T−1k = h and hence k = Th. This is
impossible since they differ at σ. This completes the proof of the claim.

Finally, let f, g, h ∈ A(Ω, X) with f ⊥h g. Then f ⋄ h ⊥h g ⋄ h, where
each ⋄ stands for one of the symbols (not necessarily the same) ∨ or ∧. By
the first paragraph and the Claim, T (f ⋄ h) ⊥Th T (g ⋄ h). Since

[Tf ̸= Th] = [(Tf ∨ Th) ̸= Th] ∪ [(Tf ∧ Th) ̸= Th]

= [T (f ∨ h) ̸= Th] ∪ [T (f ∧ h) ̸= Th] and

[Tg ̸= Th] = [T (g ∨ h) ̸= Th] ∪ [T (g ∧ h) ̸= Th],

we see that [Tf ̸= Th] ∩ [Tg ̸= Th] = ∅, i.e., Tf ⊥Th Tg. By symmetry,
Tf ⊥Th Tg implies f ⊥h g. This completes the proof of the proposition. □

The next result generalizes Kaplansky’s Theorem and follows immedi-
ately from Theorem 3.7, Lemma 4.2 and Proposition 4.3.

Theorem 4.4. (See also [16].) Let Ω,Σ be compact Hausdorff spaces and let
X, Y be totally ordered sets with the order topology. If A(Ω, X) is a X-
normal sublattice of C(Ω, X), A(Σ, Y ) is a Y -normal sublattice of C(Σ, Y )
and there is a lattice isomorphism T : A(Ω, X) → A(Σ, Y ), then Ω and Σ are
homeomorphic.

Proposition 4.3 and Theorem 3.11 also yield the following.

Theorem 4.5. Let A(Ω) be one of the spaces of real valued functions U(Ω),
U∗(Ω), Lip(Ω) or Lip∗(Ω), where Ω is a complete metric space. Similarly
for A(Σ). If T : A(Ω) → A(Σ) is a lattice isomorphism, then there are a
homeomorphism ψ : Ω → Σ and a function Φ : Ω× R → R so that

Tf(ψ(ω)) = Φ(ω, f(ω)) for all f ∈ A(Ω) and all ω ∈ Ω.
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Linear and nonlinear lattice and order isomorphisms have been well
studied in a variety of function spaces. Garrido and Jaramillo [21] showed
that the unital vector lattices U(Ω) and U∗(Ω) determine Ω up to uniform
homeomorphism. In [22], the same authors showed that as a unital vector
lattice, Lip(Ω) determines Ω up to Lipschitz homeomorphism. For Lipschitz
spaces defined on Banach spaces, F. and J. Cabello Sánchez showed that
Lip(R) and Lip∗(R) are isomorphic as vector lattices. However, if X is a
Banach space of dimension > 1 and Y is a Banach space, then Lip∗(X ) is
not isomorphic as a vector lattice to Lip(Y) [15].

As a lattice alone (i.e., disregarding linearity), Shirota [39] proved that
if U∗(Ω) and U∗(Σ) are lattice isomorphic, with Ω,Σ complete metric spaces,
then Ω is uniformly homeomorphic to Σ. In the same paper, the claim was
also made for lattice isomorphisms T : U(Ω) → U(Σ); but the proof contains
a gap. The gap was repaired by F. Cabello Sánchez [12] and F. and J. Cabello
Sánchez [14]. The same authors also showed that if T : Cp(Ω) → Cp(Σ) is
an order isomorphism, where p ∈ N ∪ {∞} and Ω,Σ are manifolds modeled
on Banach spaces that support Cp-bump functions, then Ω and Σ are home-
omorphic [13]. A unified treatment of order isomorphisms between functions
spaces can be found in [34].

4.2. Realcompact spaces

One can also consider the situation for Theorem 4.4 away from the confines
of compact Hausdorff spaces. A completely regular Hausdorff space Ω has
a “largest” compactification, the Stone-Čech compactification βΩ, character-
ized by the fact that every continuous function f from Ω into a compact

Hausdorff space X has a unique continuous extension f̂ : βΩ → X. A good
source of information concerning the Stone-Čech compactification is [42]. For
the purpose of extending the Gelfand-Kolmogorov Theorem, Hewitt [27] in-
troduced the class of realcompact spaces. Let R∞ be the one point compact-
ification of R. The (Hewitt) realcompactification υΩ consists of all ω0 ∈ βΩ
such that for any continuous real-valued function f on Ω, its continuous ex-

tension f̂ : βΩ → R∞ satisfies f̂(ω0) ∈ R. Ω is realcompact if Ω = υΩ. It
is known that a space is realcompact if and only if it is homeomorphic to a
closed subspace of RΓ for some index set Γ; see, e.g., [23]. Hewitt showed that
for realcompact spaces, C(Ω) as a ring determines Ω uniquely up to home-
omorphism. The result was generalized by Araujo, Beckenstein and Narici
[5], and subsequently by Araujo to vector valued functions [1, 2]. If X and
Y are vector spaces, denote the set of all linear bijections from X onto Y by
I(X ,Y).

Theorem 4.6. [2] Let Ω and Σ be realcompact spaces and let X and Y be
normed spaces. If T : C(Ω,X ) → C(Σ,Y) is a linear biseparating map (i.e.,
linear ⊥-isomorphism), then there are a homeomorphism φ : Σ → Ω and a
function J : Σ → I(X ,Y) so that

Tf(σ) = (Jσ)f(φ(σ)) for all f ∈ C(Ω,X ) and all σ ∈ Σ.
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Without the assumption of linearity in Theorem 4.6, it is still possible
to conclude that Ω and Σ are homeomorphic. But the representation of T
may not hold.

Theorem 4.7. [19] Let Ω,Σ be realcompact spaces and X ,Y be Hausdorff
topological vector spaces. If T : C(Ω,X ) → C(Σ,Y) is a ⊥-isomorphism,
then Ω and Σ are homeomorphic.

In particular, using the arguments of Lemma 4.2 and Proposition 4.3,
the result can be applied to lattice isomophisms. We emphasize that the
lattice isomorphism below need not be linear.

Theorem 4.8. [34] Let Ω and Σ be realcompact spaces. If there is a lattice
isomorphism T : C(Ω) → C(Σ), then Ω and Σ are homeomorphic.

4.3. Ring isomorphism and multiplicative isomorphism

Let Ω be a Hausdorff topological space. The space C(Ω) of all real valued
continuous functions on Ω is a (unital) ring under pointwise operations. The
subring C∗(Ω) consists of the bounded functions. Clearly, the (pointwise)
order on these rings is determined by the ring structure since f ≥ 0 if and
only if f is a square in the ring. It follows immediately that results from §4.1
give rise to corresponding results concerning ring isomorphisms. In particular,
we cite Hewitt’s generalization of the theorem of Gelfand-Kolmogorov as a
consequence of Theorem 4.8.

Theorem 4.9. [27] Let Ω and Σ be realcompact spaces. Suppose that C(Ω) and
C(Σ) are isomorphic as rings, then Ω and Σ are homeomorphic.

If Ω is a complete metric space, then Lip∗(Ω) is a ring under pointwise
operations. Ring isomorphisms between such rings were described in [22]. Let
Ω,Σ be metric spaces. A function ψ : Ω → Σ is Lipschitz in the small if there
exist r,K > 0 so that d(ψ(ω1), ψ(ω2)) ≤ Kd(ω1, ω2) whenever ω1, ω2 ∈ Ω
and d(ω1, ω2) < r. ψ is a LS-homeomorphism if it is a homeomorphism so
that both ψ and ψ−1 are Lipschitz in the small.

Theorem 4.10. (Garrido and Jaramillo) Let Ω,Σ be complete metric spaces.
The following are equivalent.

1. Lip∗(Ω) and Lip∗(Σ) are isomorphic as unital rings.
2. Lip∗(Ω) and Lip∗(Σ) are isomorphic as unital vector lattices.
3. Ω and Σ are LS-homeomorphic.

Garrido, Jaramillo and Prieto showed that the ring of smooth func-
tions C∞(M) determines the manifold M up to smooth diffeomorphism. For
notions and notation regarding global analysis on infinite dimensional mani-
folds, refer to [30].

Theorem 4.11. (Garrido, Jaramillo and Prieto [24]) Let M and N be para-
compact Banach manifolds modeled on C∞-smooth Banach spaces. The rings
C∞(M) and C∞(N) are isomorphic if and only if M and N are C∞-diffeo-
morphic.
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Instead of ring isomorphisms, one can disregard linearity and consider
maps that preserve multiplication alone.

Proposition 4.12. Let Ω,Σ be Hausdorff spaces and let A(Ω), A(Σ) be unital
subrings of C(Ω) and C(Σ) respectively. Assume that either

1. Ω and Σ are compact and A(Ω), A(Σ) satisfy condition (L); or
2. Ω and Σ are complete metric spaces and A(Ω), A(Σ) satisfy conditions

(L) and (Ls).

If T : A(Ω) → A(Σ) is a multiplicative isomorphism, i.e., T is a bijection so
that T (fg) = Tf · Tg for all f, g ∈ A(Ω), then there is a homeomorphism
ψ : Ω → Σ that is associated with T in the sense defined before Theorem 3.7.
In particular, T is a ⊥-isomorphism.

Proof. By assumption, the constant functions belong to A(Ω) and A(Σ). Let
Let 0, 2 denote the constant functions with values 0, 2 respectively. Then

2 · T0 = T (T−12 · 0) = T0.

Hence T0 = 0. For any f, g ∈ C(Ω),

f ⊥0 g ⇐⇒ fg = 0 ⇐⇒ Tf · Tg = T0 = 0 ⇐⇒ Tf ⊥T0 Tg.

Hence T is a ⊥0-isomorphism. Note that Ω is a regular topological space and
that A(Ω) is nowhere trivial and satisfies condition (L). Hence A(Ω) is weakly
regular. Similarly for A(Σ). By Theorem 3.2, there is a Boolean isomorphism
θ0 : RO(Ω) → RO(Σ) associated with (T, 0). The same argument from the
proof of Theorem 3.7 or Theorem 3.8 shows that Proposition 3.6 applies to
θ0. Thus there is a homeomorphism ψ : Ω → Σ so that for any f ∈ C(Ω) and
any U ∈ RO(Ω), f = 0 on U if and only if Tf = 0 on ψ(U).

In fact, ψ is associated with T . Let U ∈ RO(Ω) and let f, g ∈ A(Ω)
be such that f = g on U . For σ ∈ ψ(U), it follows from condition (L) that
there exists h ∈ C(Σ) so that h(σ) = 1 and h = 0 on intψ(U)c = ψ(intU c).
Hence T−1h = T−10 = 0 on intU c. Thus T−1h · f = T−1h · g. Therefore,
h · Tf = h · Tg. In particular, Tf(σ) = Tg(σ). This proves that Tf = Tg on
ψ(U) if f = g on U . The reverse implication follows by symmetry.

Let θ : RO(Ω) → RO(Σ) be the Boolean isomorphism given by θ(U) =
ψ(U). Then θ is associated with T . Hence T is a ⊥-isomorphism by Theorem
3.3. □

Proposition 4.12 and Theorem 3.11 give.

Theorem 4.13. Let Ω,Σ be complete metric spaces and let A(Ω) be one of
the spaces U∗(Ω) or Lip∗(Ω). Similarly for A(Σ). Let T : A(Ω) → A(Σ) be
a multiplicative isomorphism. Then there are a homeomorphism ψ : Ω → Σ
and a function Φ : Ω× R → R so that

Tf(ψ(ω)) = Φ(ω, f(ω)) for all f ∈ A(Ω) and all ω ∈ Ω.

Milgram [37] characterized all multiplicative isomorphisms T : C(Ω) →
C(Σ). A combination of Proposition 4.12 and Theorems 3.7, 3.10 gives a
partial result in this regard. See [16] for a proof of Milgram’s Theorem via
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⊥-isomorphisms. When p ∈ N and Ω is a Cp-manifold, Mrčun and Šemrl [38]
showed that all multiplicative automorphisms T on Cp(Ω) are of the form
Tf = f ◦ ψ for some Cp diffeomorphisms ψ. The result was extended to the
case p = ∞ by Artstein-Avidan, Faifman and Milman [9]. See [31] for a survey
on the multiplication operator and other operator functional equations.

4.4. Isometry

The study of isometries is probably the most well developed part among
theorems of Banach-Stone type. Here we restrict ourselves to a much abridged
survey. Further information can be found in the two-volume monograph [20].

Behrends [11] introduced the use of centralizers into Banach-Stone con-
siderations. Let X be a Banach space and denote the set of extreme points
of the ball in X ∗ by extX ∗. A bounded linear operator S : X → X is a
multiplier if every x∗ ∈ extX ∗ is an eigenvector of S∗, i.e., S∗x∗ = aS(x

∗)x∗

for some scalar aS(x
∗). If R,S are multipliers, say that R is an adjoint of

S if aR(x∗) = aS(x∗) for all x∗ ∈ X ∗. The centralizer Z(X ) of X consists
of all multipliers S for which an adjoint exists. Note that for real Banach
spaces, the centralizer is the same as the set of all multipliers. Multiples of
the identity operator are always present in the centralizer. Say that X has
trivial centralizer if there are no other operators in Z(X ). Many classes of
Banach spaces have trivial centralizers; refer to [11, 20].

Theorem 4.14. (Behrends) Let X and Y be Banach spaces which have triv-
ial centralizers. Suppose further that Ω and Σ are locally compact Hausdorff
spaces and that there exists a surjective linear isometry T : C0(Ω,X ) →
C0(Σ,Y). Then there is a homeomorphism φ : Σ → Ω and a continuous
function V from Σ into the space of isometries from X onto Y (given the
strong operator topology) such that

Tf(σ) = V (σ)f(φ(σ)) for all f ∈ C0(Ω,X ) and all σ ∈ Σ.

Araujo [4] extended this result by way of finding a connection to ⊥-
isomorphisms (biseparating maps).

Theorem 4.15. (Araujo) Let X and Y be Banach spaces which have trivial
centralizers. Assume one of the following situations.

1. Ω,Σ are realcompact spaces and X , Y are infinite dimensional. A(Ω,X ) =
C∗(Ω,X ), the space of bounded X -valued continuous functions on Ω,
with the sup-norm. A(Σ,Y) = C∗(Σ,Y).

2. Ω,Σ are complete metric spaces, A(Ω,X ) = U∗(Ω,X ), the space of
bounded X -valued uniformly continuous functions on Ω. A(Σ,Y) =
U∗(Σ,Y).

If T : A(Ω,X ) → A(Σ,Y) is a surjective linear isometry, then it is a ⊥-
isomorphism. Consequently, there is a homeomorphism φ : Σ → Ω and a
continuous function V from Σ into the space of isometries from X onto Y
(given the strong operator topology) such that

Tf(σ) = V (σ)f(φ(σ)) for all f ∈ C0(Ω,X ) and all σ ∈ Σ.
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In case (2), φ is a uniform homeomorphism.

Let Ω be a complete metric space and let X be a Banach space. The
space of X -valued Lipschitz functions on Ω, Lip(Ω,X ) is a Banach space
under the norm

∥f∥ = max{∥f∥∞, L(f)},
where

∥f∥∞ = sup
ω∈Ω

∥f(ω)∥ and L(f) = sup
ω1 ̸=ω2

∥f(ω1)− f(ω2)∥
d(ω1, ω2)

.

Araujo and Dubarbie [6] gave a complete description of isometries between
vector-valued spaces of Lipschitz functions. We state a special case of their
result here. Define an equivalence relation on Ω by x ∼ y if there are x =
x1, . . . , xn = y in Ω so that d(xi, xi+1) < 2, 1 ≤ i < n. The equivalence
classes are called the 2-components of Ω.

Theorem 4.16. Let Ω,Σ be complete metric spaces and let X ,Y be Banach
spaces. Assume that T : Lip(Ω,X ) → Lip(Σ,Y) is a surjective linear isometry
so that for all σ ∈ Σ, there is a constant function f ∈ Lip(Ω,X ) so that
Tf(σ) ̸= 0. Then there is a homeomorphism φ : Σ → Ω and a continuous
function V from Σ into the space of isometries from X onto Y (given the
strong operator topology) such that

Tf(σ) = V (σ)f(φ(σ)) for all f ∈ Lip(Ω,X ) and all σ ∈ Σ.

Moreover, V is constant on each 2-component of Σ and dY(φ(ω1), φ(ω2)) =
dX (ω1, ω2) if either of these quantities is < 2.

It is worth mentioning that in the course of the proof of Theorem 4.16,
it is first shown that T is a ⊥-isomorphism (biseparating). Characterization
of linear isometries on certain spaces of scalar-valued Lipschitz functions was
obtained earlier by Weaver [43].

4.5. Nonvanishing preservers

In this part, assume that Ω,Σ are regular topological spaces and X,Y are
Hausdorff spaces. LetA(Ω, X) andA(Σ, Y ) be subsets of C(Ω, X) and C(Σ, Y )
respectively. Given n ∈ N and h ∈ A(Ω, X), a bijection T : A(Ω, X) →
A(Σ, Y ) is a ∩n

h-isomorphism if for any f1, . . . , fn ∈ A(Ω, X),

n⋂
i=1

[fi = h] = ∅ ⇐⇒
n⋂

i=1

[Tfi = Th] = ∅.

T is a ∩n-isomorphism if it is a ∩n
h-isomorphism for all h ∈ A(Ω, X). It

is clear that every ∩n
h-isomorphism is a ∩m

h -isomorphism if n > m. Hence
every ∩n-isomorphism is a ∩m-isomorphism if n > m. ∩n-isomorphisms were
introduced by Hernández and Ródenas [26]. Further results were given in
[17, 33].



Banach-Stone Theorems 21

Proposition 4.17. Let Ω,Σ be regular topological spaces. Suppose that A(Ω, X)
and A(Σ, Y ) satisfy condition (L) and that there exists k ∈ A(Ω, X) so that
[k = h] = ∅. If T : A(Ω, X) → A(Σ, Y ) is a ∩2

h-isomorphism, then it is a
⊥h-isomorphism.

Proof. First of all, since T is a ∩2
h-isomorphism, it is a ∩1

h-isomorphism. Thus
[k = h] = ∅ implies [Tk = Th] = ∅. Suppose that there are f, g ∈ A(X,E) so
that f ⊥h g but Tf ̸⊥Th Tg. There exists σ0 ∈ Σ where Tf(σ0), T g(σ0) ̸=
Th(σ0). Since Σ is a regular toopological space, there exists V ∈ RO(Σ)
containing σ0 so that V ⊆ [Tf ̸= Th] ∩ [Tg ̸= Th]. Then σ0 /∈ intV c and
intV c ∈ RO(Σ). As A(Σ, Y ) satisfies condition (L), there exist l ∈ A(Σ, Y )
and W ∈ RO(Y ) so that σ0 ∈W , l = Tk on intV c and l = Th on W . Now

[Tf ̸= Th] ∪ [l ̸= Th] ⊇ V ∪ intV c = Σ.

Thus [Tf = Th]∩ [l = Th] = ∅ and hence [f = h]∩ [T−1l = h] = ∅. Similarly,
[g = h] ∩ [T−1l = h] = ∅. But since f ⊥h g, [f = h] ∪ [g = h] = Ω. Therefore,
[T−1l = h] = ∅, whence [l = Th] = ∅, contradicting the fact that l = Th on
W ̸= ∅. This completes the proof of the proposition. □

The next two results follow easily from Proposition 4.17, Theorem 3.7
and Theorem 3.11.

Theorem 4.18. Let Ω,Σ be compact Hausdorff spaces and let X ,Y be normed
spaces. If T : C(Ω,X ) → C(Σ,Y) is a ∩2-isomorphism, then there is a
homeomorphism ψ : Ω → Σ associated with T .

Theorem 4.19. Let Ω,Σ be complete metric spaces and let X ,Y be normed
spaces. Suppose that A(Ω,X ) is one of the spaces U(Ω,X ), U∗(Ω,X ), Lip(Ω,X ),
Lip∗(Ω,X ). Similarly for A(Σ,Y). If T : A(Ω,X ) → A(Σ,Y) is a ∩2-isomor-
phism, then there are a homeomorphism ψ : Ω → Σ and a function Φ :
Ω×X → Y so that

Tf(ψ(ω)) = Φ(ω, f(ω)) for all f ∈ A(Ω,X ) and all ω ∈ Ω.

In general, a ∩1-isomorphism need not be a ∩2-isomorphism, as the
following example shows.

Example. Let I = [0, 1]. Define T : C(I, I) → C(I, I) by

Tf =

{
1− f if range f = [0, 1]

f otherwise.

Then T is a ∩1-isomorphism but not a ∩2-isomorphism, nor is T is a ⊥-
isomorphism.

Indeed, it is easy to check that if f, g ∈ C(I, I), then [f = g] ̸= ∅ if and
only if [Tf = Tg] = ∅. However, let f be the constant function with value 1

4

and let g ∈ C(I, I) be such that g( 14 ) ̸=
1
4 = g( 34 ) and range g ̸= [0, 1]. Let h

be the identity function h(t) = t for all t ∈ I. Then [f = h]∩ [g = h] = ∅ but

3

4
∈ [f = 1− h] ∩ [g = 1− h] = [Tf = Th] ∩ [Tg = Th].
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Hence T is not a ∩2-isomorphism.
To see that T is not a ⊥-isomorphism, consider the same h but take

f = h ∨ 1
2 , g = h ∧ 1

2 . It is clear that f ⊥h g but that Tf ̸⊥Th Tg.

However, Li and Wong [35, 36] obtained a number of results regarding
linear ∩1-isomorphisms. The theorem below gives some special cases of their
results.

Theorem 4.20. (Li and Wong) Let Ω,Σ be Hausdorff completely regular topo-
logical spaces and let X ,Y be normed spaces. Assume that A(Ω,X ) is the space
C(Ω,X ), or, where Ω is complete metric, U(Ω,X ) or Lip(Ω,X ). Similarly for
A(Σ,Y). If T : A(Ω,X ) → A(Σ,Y) is a linear ∩1-isomorphism, then it is a
⊥-isomorphism.

We close with a positive result concerning nonlinear ∩1-isomorphisms.
Let Ω,Σ be Hausdorff spaces. We call a bijection T : C(Ω) → C(Σ) an anti-
order isomorphism if f ≥ g ⇐⇒ Tg ≥ Tf for all f, g ∈ C(Ω). Evidently, T is
an anti-isomorphism if and only if the operator −T is an order isomorphism,
where (−T )f := −Tf .

Theorem 4.21. Let Ω,Σ be connected compact Hausdorff spaces. If T : C(Ω) →
C(Σ) is a ∩1-isomorphism, then T is an order isomorphism or an anti-order
isomorphism. In particular, T is a ⊥-isomorphism and hence Ω and Σ are
homeomorphic.

Proof. Since Ω is connected, given any two functions h, k ∈ C(Ω) with [h =
k] = ∅, either h > k (i.e., h(ω) > k(ω) for all ω) or k > h. Similarly for C(Σ).
We break the proof of the theorem into a series of steps.

Claim 1. If f, g ∈ C(Ω) and f ≤ g, then either Tf ≤ Tg or Tg ≤ Tf .
Otherwise, there are σ1, σ2 ∈ Σ such that Tf(σ1) > Tg(σ1) and Tg(σ2) >

Tf(σ2). Let ki ∈ C(Σ) be functions such that k2 > Tf > k1 and ki(σi) =
Tg(σi), i = 1, 2. For i = 1, 2, [T−1ki = f ] = ∅ and [T−1ki = g] ̸= ∅. By
the statement before Claim 1, T−1ki > f . Thus there exists h ∈ C(Ω) so
that h > f and [h = T−1ki] ̸= ∅, i = 1, 2. But then [Th = Tf ] = ∅ and
[Th = ki] ̸= ∅, i = 1, 2; hence Tf ̸< Th and Th ̸< Tf , contrary to the
statement before Claim 1.

Claim 2. If f, g, h ∈ C(Ω) and f ≤ g, h, then either Tf ≤ Tg, Th or Tg, Th ≤
Tf .

If either of g, h equals f , then Claim 2 follows from Claim 1. Otherwise,
we may choose ω1, ω2 ∈ Ω so that g(ω1) > f(ω1) and h(ω2) > f(ω2). Let
k ∈ C(Ω) be such that k > f and k(ω1) = g(ω1), k(ω2) = h(ω2). By the first
statement of the proof, either Tk > Tf or Tk < Tf . Assume the former. By
Claim 1, either Tg ≥ Tf or Tg ≤ Tf . Since [Tg = Tk] ̸= ∅, we must have
Tg ≥ Tf . Similarly Th ≥ Tf . If Tk < Tf , then we can show analogously
that Tg, Th ≤ Tf .

The following variant of Claim 2 can be established in the same way: if
g, h ≤ f , then either Tg, Th ≤ Tf or Tf ≤ Tg, Th.
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Claim 3. Let f ∈ C(Ω). Then either

g ≤ f ≤ h =⇒ Tg ≤ Tf ≤ Th or

g ≤ f ≤ h =⇒ Th ≤ Tf ≤ Tg

In the first case, we say that T is order preserving with respect to f and in
the second case, T is anti-order preserving with respect to f .

Otherwise, there are g, h ̸= f , g ≤ f ≤ h so that either Tg, Th ≥ Tf or
Tg, Th ≤ Tf . Apply Claim 2 or its variant to T−1 to see that either g, h ≥ f
or g, h ≤ f , contrary to the choices of g and h.

We now show that either T is an order isomorphism or an anti-order
isomorphism. Otherwise, taking symmetry into account, by Claim 3, we may
assume that there are h1, h2 so that T is order preserving with respect to
h1 and anti-order preserving with respect to h2. Since T is a bijection, h1 ̸=
h2. Now h1 ∧ h2 ≤ h1, h2. Thus Th2 ≤ T (h1 ∧ h2) ≤ Th1. On the other
hand, by Claim 2, either T (h1 ∧ h2) ≤ Th1, Th2 or T (h1 ∧ h2) ≥ Th1, Th2.
Assume the former case; the proof is similar in the latter case. We have
Th2 ≤ T (h1 ∧ h2) ≤ Th2. Hence h1 ∧ h2 = h2, i.e., h2 ≤ h1. But since T
is order preserving with respect to h1 and anti-order preserving with respect
to h2, Th2 ≤ Th1 and Th1 ≤ h2. Thus h1 = h2, contrary to their choices.
This concludes the proof that T is either an order isomorphism or anti-order
isomorphism. Applying Proposition 4.3 to either T or −T , we see that T is
a ⊥-isomorphism. By Theorem 4.4, Ω and Σ are homeomorphic. □
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[26] S. Hernández, A.M. Ródenas, Automatic continuity and representation of group
homomorphisms defined between groups of continuous functions, Topology and
its Applications 154 (2007), 2089 – 2098.

[27] E. Hewitt, Rings of real-valued continuous functions, I, Trans. Amer. Math.
Soc. 64(1948), 54–99.

[28] K. Jarosz, Automatic continuity of separating linear isomorphisms, Canad.
Math. Bull. 33 (1990), 139–144.

[29] I. Kaplansky, Lattices of continuous functions, Bull. Amer. Math. Soc. 53
(1947), 617–623.

[30] A. Kriegl, P.W. Michor,, The Convenient Setting of Global Analysis, AMS
Mathematical Surveys and Monographs 53 (1997).



Banach-Stone Theorems 25

[31] H. König, V. Milman, Operator functional equations in analysis, Asymptotic
Geometric Analysis, M. Ludwig et al (eds), Fields Institute Communications 68
(2013), 189 – 209.

[32] D.H. Leung, Biseparating maps on generalized Lipschitz spaces, Studia Math.
196 (2010), 23–40.

[33] D.H. Leung and W.-K. Tang, Banach–Stone Theorems for maps preserving
common zeros, Positivity 14 (2010), 17 – 42.

[34] D.H. Leung andW.-K. Tang, Nonlinear order isomorphisms on function spaces,
Dissertationes Math. 517 (2016).

[35] L. Li, N.-C. Wong, Kaplansky theorem for completely regular spaces, Proc.
Amer. Math. Soc. 142 (2014), 1381–1389.

[36] L. Li, N.-C. Wong, Banach-Stone theorems for vector valued functions on com-
pletely regular spaces, J. Math. Anal. Appl. 395 (2012), 265 – 274.

[37] A.N. Milgram, Multiplicative semigroups of continuous functions, Duke Math.
J. 16 (1940) 377–383.
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