
FUNCTIONS THAT ARE LIPSCHITZ IN THE SMALL

DENNY H. LEUNG AND WEE-KEE TANG

Abstract. Let X and Y be metric spaces. A function f : X ! Y
is said to be Lipschitz in the small if there are r > 0 and K < 1 so
that d(f(u); f(v)) � Kd(u; v) for any u; v 2 X with d(u; v) � r. We
�nd necessary and su¢ cient conditions on a subset A of X such that
fjA is Lipschitz for every function f that is Lipschitz in the small on X.
We also �nd necessary and su¢ cient conditions on X for LS (X) to be
linearly order isomorphic to Lip(Y ) for some metric space Y:

Let X and Y be metric spaces. We use the same symbol d to denote
the metrics on both spaces. Let f : X ! Y be a function. f is Lipschitz
if there exists K < 1 so that d(f(u); f(v)) � Kd(u; v); f is said to be
Lipschitz in the small (abbreviated LS) if there exist r > 0 and K < 1
so that d(f(u); f(v)) � Kd(u; v) if d(u; v) � r. The space of all functions
from X to Y that are Lipschitz in the small is denoted by LS(X;Y ). We
abbreviate LS(X;R) to LS(X). Clearly every Lipschitz function is LS and
every LS function is locally Lipschitz and uniformly continuous. The no-
tion of Lipschitz in the small functions is due to J. Luukkainen [8] and later
studied by various authors (see e.g., [1],[2],[4]). It has been shown in [8] that
two complete metric spaces X and Y are LS homeomorphic (i.e., there is a
bijection h : X ! Y such that h and h�1 are LS) if and only if the alge-
bras of bounded Lipschitz functions Lipb (X) and Lipb (Y ) are isomorphic.
This Banach-Stone type result has been extended in [4] to LS spaces. More
precisely, X and Y are LS homeomorphic if and only if the correspond-
ing function classes LS(X) and LS(Y ) are isomorphic. An important fact
about LS(X) is its uniform density in the uniformly continuous real-valued
functions de�ned on an arbitrary metric space X, as shown by Garrido and
Jaramillo [4], and then by Beer and Garrido [2] using very di¤erent meth-
ods. This parallels the uniform density of the real-valued locally Lipschitz
functions in the real-valued continuous functions, usually shown using lo-
cally Lipschitz partitions of unity, as discussed for example in a subsequent
paper of Beer and Garrido [3].
Let A be a subset of X. We say that A is a Lipschitz set for a class

F(X;Y ) of function from X to Y if fjA is a Lipschitz function with respect
to the metric d for any function f 2 F(X;Y ): In [2, Theorems 4.2, 4.3]; the
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authors found conditions for a set to be a Lipschitz set for locally Lipschitz
functions and uniformly locally Lipschitz functions.
For any " > 0 and any x; y 2 X, an "-chain from x to y is a �nite

sequence x = x0; x1; : : : ; xn = y in X so that d(xk�1; xk) � " for 1 � k � n.
We say that x �" y if there is an "-chain from x to y. The relation �"
is an equivalence relation, the equivalence classes of which are called "-step
territories of X. The following su¢ cient conditions for a set A to be a
Lipschitz set for LS(X) are also known; see e.g., [2, p. 812 and Theorem
4.5]: (1) the restriction of d to A � A is an almost convex metric, and (2)
A is a Bourbaki bounded subset. Recall that a subset A of X is Bourbaki
bounded if for each " > 0 there is a �nite subset F of X and n 2 N such
that each point of A can be joined to some point of F by an "-chain of
length n and that djA�A is an almost convex metric if whenever a1 6= a2
in A and � satis�es d (a1; a2) < �, then for each � 2 (0; �), there exists
a3 2 A with d (a1; a3) < � and d (a2; a3) < � � �: The result [2, Theorem
4.5] cited above actually characterizes a set A so that fjA is both bounded
and Lipschitz for every f 2 LS(X;Y ). It is also worthwhile to note that the
Lipschitz sets while hereditary need not be stable under �nite unions. The
�rst main result of the present note is a characterization of Lipschitz sets
for LS(X;Y ). If E is an "-step territory of X, de�ne a metric d" on E by

d"(x; y) = inff
nX
k=1

d(xk�1; xk) : (xk)
n
k=0 is an "-chain from x to yg

for all x; y 2 E. As far as we know, the terminology of "-step territories
and use of the metrics d" were �rst made by O�Farrell [9]. It is clear that
d(x; y) � d"(x; y) for all x; y 2 E and that d(x; y) = d"(x; y) if d(x; y) � ".

Theorem 1. Let A be a subset of a metric space X. The following are
equivalent.
(1) The set A is a Lipschitz set for LS(X;Y ) for any metric space Y .
(2) The set A is a Lipschitz set for LS(X).
(3) The set A has the following properties:

(a) For any " > 0, A intersects only �nitely many "-step territories
of X.

(b) For any " > 0 and any "-step territory E of X, there is a �nite
constant KE such that

d"(x; y) � KEd(x; y) for all x; y 2 A \ E:

(c) For any " > 0 and any two distinct "-step territories E1 and E2
of X, there is a �nite constant K such that

d(a1; a2) _ d(b1; b2) � K(d(a1; b1) _ d(a2; b2))

for all a1; a2 2 A \ E1 and all b1; b2 2 A \ E2.

Proof. The implication (1) =) (2) is trivial.
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Assume that condition (2) holds. Suppose that condition (3)(a) fails.
There exist " > 0 and a sequence (xn) in A so that xm 6�" xn if m 6= n. Set
cn = nd(xn; x1) for all n and de�ne f : X ! R by f(x) = cn if x �" xn
for some n and f(x) = 0 otherwise. It is easy to see that f(x) = f(y) if
d(x; y) � ". Hence f 2 LS(X). However, jf(xn) � f(x1)j = nd(xn; x1) for
all n. Thus fj(xn) is not Lipschitz and hence fjA is not Lipschitz, contrary
to condition (2).
Next, assume that condition (2) holds but condition (3)(b) fails. There

exist " > 0, an "-step territory E of X and sequences (xn); (yn) in A\E so
that xn 6= yn and

d"(xn; yn) > nd(xn; yn) for all n:

In particular, d(xn; yn) > " for all n and hence d"(xn; yn) ! 1. Thus at
least one of the sequences (xn) or (yn) is unbounded in the d"-metric. By
taking subsequences and switching xn with yn if necessary, we may assume
that

d"(xn; x1) � maxf2d"(xn�1; x1); d"(yn; x1)g
and d"(xn; yn) � 2d"(xn�1; yn�1)

for all n � 2. Let rn = 1
8d"(xn; yn). Observe that

rn �
1

8
(d"(xn; x1) + d"(yn; x1)) �

1

4
d"(xn; x1):

For n � 2, de�ne fn : E ! R by

fn(x) =

(
rn � d"(xn; x) if d"(xn; x) � rn;
0 otherwise:

Then each fn is Lipschitz with Lipschitz constant 1 with respect to the
metric d". Suppose that 2 � m < n, d"(xm; u) � rm and d"(xn; v) � rn.
Then

d"(u; v) � d"(xn; x1)� d"(xm; x1)� d"(xm; u)� d"(xn; v)
� d"(xn; x1)� d"(xm; x1)� rm � rn

� d"(xn; x1)� d"(xm; x1)�
1

4
d"(xm; x1)�

1

4
d"(xn; x1)

� 1

8
d"(xn; x1) �

rn
2
:

It follows that the functions fn; n � 2; are pairwise disjoint. Thus the
function f =

W
n�2 fn (pointwise supremum) is well de�ned (on E). Let

u; v be two points in E. If d"(u; xm) � rm and d"(v; xn) � rn for some
2 � m < n, then

jf(u)� f(v)j � jfm(u)j+ jfn(v)j � rn + rm � 2rn � 4d"(u; v)
by the above. Otherwise, there exists n � 2 such that f(u) = fn(u) and
f(v) = fn(v). Since fn has Lipschitz constant 1 with respect to d", jf(u)�
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f(v)j � d"(u; v). This proves that f is Lipschitz with respect to d" on E.
Extend f by de�ning it to be 0 on XnE. Then f belongs to LS(X). By
condition (2), fjA is Lipschitz with respect to d. Obviously, f(xn) = rn for
any n � 2. We claim that d"(yn; xm) > rm for any m � n � 2. Once the
claim is established, it follows that

jf(yn)j =
n�1_
k=2

jfk(yn)j �
n�1_
k=2

rk �
rn
2
:

Therefore,

jf(xn)� f(yn)j �
rn
2
=
1

16
d"(xn; yn) >

n

16
d(xn; yn)

for all n � 2, contrary to the Lipschitzness of f with respect to d. To com-
plete the proof, it remains to verify the claim. Ifm = n, then d"(yn; xn) > rn
by de�nition. Suppose that m > n. Then

d"(yn; xm) � d"(xm; x1)� d"(yn; x1)
� d"(xm; x1)� d"(xn; x1)

� 1

2
d"(xm; x1) � 2rm > rm:

Next, we show that (2) =) 3(c). Let E1 and E2 be two distinct "-step
territories of X. Pick e1 2 E1 and e2 2 E2. De�ne f : X ! R by

f(x) =

8><>:
d(e1; x) if x 2 E1;
�d(e2; x) if x 2 E2;
0 otherwise:

It is easy to check that jf(x) � f(y)j � d(x; y) if d(x; y) � ". Hence f 2
LS(X). By condition (2), fjA is Lipschitz. Let C be a �nite constant so that
jf(x)� f(y)j � Cd(x; y) for all x; y 2 A. For any a 2 E1 and any b 2 E2,

jf(a)� f(b)j = d(e1; a) + d(e2; b) � d(e1; a) _ d(e2; b):

Suppose that a1; a2 2 A \ E1 and b1; b2 2 A \ E2. Then

d(a1; a2) _ d(b1; b2) � 2[d(e1; a1) _ d(e1; a2) _ d(e2; b1) _ d(e2; b2)]
� 2(jf(a1)� f(b1)j+ jf(a2)� f(b2)j)
� 2C(d(a1; b1) + d(a2; b2))
� 4C(d(a1; b1) _ d(a2; b2)):

Finally, we will show that (3) =) (1). Let Y be any metric space and let
f 2 LS(X;Y ). Choose " > 0 and C < 1 so that d(f(x); f(y)) � Cd(x; y)
for all x; y 2 X with d(x; y) � ". By condition 3(a), the set A meets
only �nitely many "-step territories of X, say E1; : : : ; En. Note that fjEi is
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Lipschitz with respect to d" with Lipschitz constant C for 1 � i � n. For
each i, choose ei 2 A \ Ei. Set

M = 1 _ 1
"
maxfd(ei; ej) _ d(f(ei); f(ej)) : 1 � i 6= j � ng

and L =
Wn
i=1KEi . Suppose that x; y 2 A \ Ei for some 1 � i � n. Using

the Lipschitz condition of fjEi and condition 3(b), we have

d(f(x); f(y)) � Cd"(x; y) � CKEid(x; y) � CLd(x; y):
Next, consider the case where x 2 A\Ei and y 2 A\Ej with 1 � i 6= j � n.
Observe that d(x; y) > " and hence

d(ei; ej) �
d(ei; ej)

"
� d(x; y) �Md(x; y):

By condition 3(c),

d(x; ei) _ d(y; ej) � K[(d(x; y) _ d(ei; ej)] � KMd(x; y):
Thus, using condition 3(b) as well, we have

d"(x; ei) _ d"(y; ej) � KEid(x; ei) _KEjd(y; ej)
� LKMd(x; y):

Using the Lipschitzness of fjEi and fjEj with respect to d", we have

d(f(x); f(y)) � d(f(x); f(ei)) + d(f(ei); f(ej)) + d(f(ej); f(y))
� C[d"(x; ei) + d"(y; ej)] + "M
� 2CLKMd(x; y) +Md(x; y)
=M(2CLK + 1)d(x; y):

The two cases above show that fjA is a Lipschitz function. �

A metric space X is said to be small-determined if LS(X) = Lip(X) [4].
Clearly, X is small-determined if and only if X is a Lipschitz set for LS(X).
Hence, by taking A = X in Theorem 1, one obtains an intrinsic character-
ization of small-determined metric spaces. An extrinsic characterization of
small-determined metric spaces is given in [4, Theorem 6]. A similar intrinsic
characterization of small-determined metric spaces was given in [5, Theorem
3.1]. Characterization of small-determined metric spaces solves the problem
of comparing LS(X) and Lip(X) as spaces of functions. One may also study
the comparison of LS(X) and Lip(Y ) as vector lattices. This is the second
main result of the paper. Let X and Y be metric spaces and consider the
spaces LS(X) and Lip(Y ). Any function in LS(X) has a unique extension
to a function on the completion bX that is Lipschitz in the small on bX. A
similar statement holds for Lip(Y ). Thus LS(X) is linearly isomorphic to
LS( bX) as a unital vector lattice, and Lip(Y ) is linearly isomorphic to Lip(bY )
as a unital vector lattice. Therefore, when comparing LS(X) and Lip(Y )
as vector lattices, we may as well assume that both X and Y are complete
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metric spaces. From hereon, consider a (not necessarily linear) order iso-
morphism T : LS(X) ! Lip(Y ). That is T is a bijection such that f � g
if and only if Tf � Tg. Since LS(X) and Lip(Y ) are vector lattices, in
the terminology of [7], they are near vector lattices (see [7, Examples A(a)].
Also, LS(X) and Lip(Y ) both satisfy (�) and (~). (For Lip(Y ), see [7, Ex-
amples B(b) and C(c)]. The assertion for LS(X) can be veri�ed similarly.)
Thus, by [7, Theorem 4.5], there exist a homeomorphism ' : X ! Y and a
function � : Y � R ! R such that for each y 2 Y , �(y; �) is an increasing
homeomorphism from R onto itself, and that

(1) Tf(y) = �(y; f('�1(y))) for all f 2 LS(X) and all y 2 Y .

Lemma 2. For any " > 0, X has only �nitely many "-step territories.

Proof. Suppose on the contrary that there exist " > 0 and an in�nite se-
quence (xn) in X so that xm 6�" xn if m 6= n. Represent T as in equation
(1). Let yn = '(xn) for all n. Choose cn 2 R so that �(yn; cn) = nd(yn; y1).
De�ne f : X ! R by

f(x) =

(
cn if x �" xn;
0 otherwise:

Clearly f(u) = f(v) if d(u; v) � ". Hence f 2 LS(X). Thus Tf 2 Lip(Y ).
However,

Tf(yn) = �(yn; f(xn)) = �(yn; cn) = nd(yn; y1) for all n.

In particular,

jTf(yn)� Tf(y1)j = nd(yn; y1) for all n;
contradicting the Lipschitzness of Tf . �

Fix a point y0 2 Y . For any f 2 Lip(Y ), let

L(f) = supfjf(u)� f(v)j
d(u; v)

: u; v 2 Y; u 6= vg:

Note that Lip(Y ) is a Banach space under the norm

kfk = jf(y0)j _ L(f):
Lip(Y ) is important in the general theory of metric spaces, in that for any
metric space (Y; d), y 7�! ŷ : Lip(Y ) ! R de�ned by ŷ (f) = f (y) is an
isometric embedding of Y into the continuous dual of Lip(Y ), leading to an
alternative construction of the completion of (Y; d). This is essentially due
to E. Michael (although he worked with pointed metric spaces) [6].
For any N 2 N, let FN be the set of all real-valued functions f on X such

that jf(x)� f(y)j � Nd(x; y) if d(x; y) � 1
N .

Lemma 3. A real-valued function f on X belongs to LS(X) if and only if
there exists N 2 N such that f 2 FN .
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Proof. Obviously FN � LS(X). Suppose that f 2 LS(X). There exists
" > 0 and a �nite constant K so that jf(x)�f(y)j � Kd(x; y) if d(x; y) � ".
Choose N so that N � maxf1" ;Kg. It is easy to check that f 2 FN . �

Lemma 4. For any N 2 N, T (FN ) is a closed subset of Lip(Y ).

Proof. Let (fn) be a sequence in FN so that (Tfn) converges to some function
g in Lip(Y ). Represent T as in equation (1) above. Take any x 2 X and let
y = '(x). Since (Tfn(y)) converges to g(y), (�(y; fn(x))) converges to g(y).
As �(y; �) is a homeomorphism on R, (fn(x)) converges to a number f(x)
so that �(y; f(x)) = g(y). Suppose that u; v 2 X with d(u; v) � 1

N . Then

jf(u)� f(v)j = lim
n
jfn(u)� fn(v)j � Nd(u; v):

Thus f 2 FN . Since

Tf(y) = �(y; f('�1(y))) = g(y) for all y;

g = Tf 2 T (FN ). �

Theorem 5. Let X be a complete metric space. Then LS(X) is linearly
order isomorphic to Lip(Y ) for some complete metric space Y if and only
if there exists N 2 N so that X has only �nitely many 1

N -step-territories
E1; : : : ; En, and that LS(Ek; d) = Lip(Ek; d 1

N
) for each k.

Proof. Let T : LS(X) ! Lip(Y ) be an order isomorphism. By Lemma 3,
Lip(Y ) = T (LS(X)) = [NT (FN ). By Lemma 4, each T (FN ) is a closed
set in Lip(Y ). By the Baire Category Theorem, there exists N 2 N so
that T (FN ) has nonempty interior in Lip(Y ). By Lemma 2, X has �nitely
many 1

N -step-territories E1; : : : ; En. We wish to show that LS(Ek; d) =
Lip(Ek; d 1

N
) for each k. The inclusion ��� is obvious. Let f 2 LS(Ek; d).

There exist r > 0 and C < 1 such that jf (u)� f (v)j � Cd (u; v) if u; v 2
Ek and d (u; v) � r: Set r0 = min

�
1
N ; r

	
and extend f to a function ef on

X by de�ning ef(x) = 0 for all x =2 Ek. Then
��� ef (u)� ef (v)��� � Cd (u; v)

if d (u; v) � r0: Thus ef 2 LS(X): Denote the closed unit ball in Lip(Y ) by
B. There are g0 2 Lip(Y ) and R > 0 so that g0 + RB � T (FN ). Let
T ef = g 2 Lip(Y ) and choose t > 0 so that t(g�g0) 2 RB. Since T is linear,
we have

T ef = 1

t
[(t� 1)g0 + g0 + t(g � g0)] 2

t� 1
t
g0 +

1

t
(g0 +RB)

� T [ t� 1
t
FN +

1

t
FN ]:
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Hence ef 2 t�1
t FN +

1
tFN . Write

ef = t�1
t h1 +

1
th2 for some h1; h2 2 FN . If

u; v 2 Ek and d(u; v) � 1
N , then

jf(u)� f(v)j � j t� 1
t
jjh1(u)� h1(v)j+

1

t
jh2(u)� h2(v)j

� ( jt� 1jN
t

+
N

t
)d(u; v):

Let x; y 2 Ek and x = x0; x1; :::; xm = y be a 1
N -chain such that 2d 1

N
(x; y) �Pm

i=1 d (xi�1; xi) : Then

jf (x)� f (y)j �
mX
i=1

jf (xi�1)� f (xi)j

� ( jt� 1jN
t

+
N

t
)
mX
i=1

d (xi�1; xi)

� ( jt� 1jN
t

+
N

t
) � 2d 1

N
(x; y) :

This proves that f 2 Lip(Ek; d 1
N
).

Conversely, suppose thatX has �nitely many 1
N -step territories E1; : : : ; En

and that LS(Ek; d) = Lip(Ek; d 1
N
) for each k. For each k, choose ek 2 Ek.

De�ne a metric � on X by

(2) �(u; v) =

(
d 1
N
(u; v) if u; v 2 Ek for some k;

d 1
N
(u; ej) + 1 + d 1

N
(ek; v) if u 2 Ej , v 2 Ek and j 6= k.

Let Y denote the metric space formed by endowing the set X with the
metric �. To complete the proof, it su¢ ces to show that LS(X) = Lip(Y )
as sets. Suppose that f 2 LS(X). De�ne M = maxfjf (ej)� f (ek)j : 1 �
j; k � ng. Since fjEk 2 LS(Ek; d) = Lip(Ek; d 1

N
), there exists Ck so that

jf(u)�f(v)j � Ckd 1
N
(u; v) if u; v 2 Ek. Let C = maxfCk :� 1 � k � ng_M .

Then jf(u)�f(v)j � C�(u; v) if u; v 2 Ek for some k. If u 2 Ej and v 2 Ek,
where j 6= k, then

jf(u)� f(v)j � jf(u)� f(ej)j+ jf(ej)� f(ek)j+ jf(ek)� f(v)j
� Cd 1

N
(u; ej) +M + Cd 1

N
(ek; v)

� C
�
d 1
N
(u; ej) + 1 + d 1

N
(ek; v)

�
= C�(u; v)

The two estimates above show that f 2 Lip(Y ).
Finally, suppose that f 2 Lip(Y ). There exists a �nite constant C so that

jf(u)�f(v)j � C�(u; v) for all u; v 2 Y . Consider u; v 2 X with d(u; v) � 1
N .

Then there exists k such that u; v 2 Ek. Thus jf(u) � f(v)j � C�(u; v) =
Cd 1

N
(u; v) = Cd (u; v). This proves that f 2 LS(X), as desired. �
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From the proof of Theorem 5, we can obtain some other characterizations
of spaces X such that LS (X) is linearly order isomorphic to some Lip (Y ) :
We say that two metrics � and d on a space X are LS equivalent if the
identity map i : (X; d)! (X; �) and its inverse i�1 are both LS functions.

Corollary 6. Let X be a complete metric space. The following are equiva-
lent.
(a) LS(X) is linearly order isomorphic to Lip(Y ) for some complete met-

ric space Y:
(b) There exists a metric � on X, Lipschitz in the small equivalent to d,

such that (X; �) is a small-determined metric space.
(c) (X; d) is Lipschitz in the small homeomorphic to some complete small-

determined metric space Y .

Proof. (a) =) (b). Theorem 5 shows that if (a) holds, then there exists
N 2 N so that X has only �nitely many 1

N -step-territories E1; : : : ; En, and
that LS(Ek; d) = Lip(Ek; d 1

N
) for each k. De�ne a metric � on X as in equa-

tion (2). Note that if either d(u; v) or �(u; v) � 1
N , then d(u; v) = d 1

N
(u; v) =

�(u; v): Therefore � is LS equivalent to d: In particular, LS(X; �) = LS(X; d).
Also it follows from the proof of Theorem 5 that Lip (X; �) = LS (X; d).
Hence (b) holds.
(b) =) (c) is trivial.
(c) =) (a). Suppose that h : X ! Y is an LS homeomorphism onto
a complete small determined space Y . Then the map f 7! f � h�1 is a
linear order isomorphism from LS (X) to LS (Y ) = Lip (Y ) : Therefore, (a)
holds. �

Remarks.
(1) Since d(u; v) = d 1

N
(u; v) if d(u; v) � 1=N , it is easy to see that

LS(Ek; d) = LS(Ek; d 1
N
). Thus the condition LS(Ek; d) = Lip(Ek; d 1

N
)

in Theorem 5 is equivalent to the fact that Ek is a Lipschitz set (with
respect to the metric d 1

N
) for LS(Ek; d 1

N
). This condition is charac-

terized by statement (3) in Theorem 1.
(2) We do not know the corresponding result for Theorem 5 if T is

merely assumed to be a nonlinear order isomorphism. It should be
observed that none of the Lemmas 2 to 4 require the linearity of T .

Acknowledgement. The authors thank two anonymous referees for their
helpful comments.
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