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Extension of functions with small oscillation

by

Denny H. Leung and Wee-Kee Tang (Singapore)

Abstract. A classical theorem of Kuratowski says that every Baire one function on a
Gδ subspace of a Polish (= separable completely metrizable) space X can be extended to
a Baire one function on X. Kechris and Louveau introduced a finer gradation of Baire one
functions into small Baire classes. A Baire one function f is assigned into a class in this
hierarchy depending on its oscillation index β(f). We prove a refinement of Kuratowski’s
theorem: if Y is a subspace of a metric space X and f is a real-valued function on Y such
that βY (f) < ωα, α < ω1, then f has an extension F to X so that βX(F ) ≤ ωα. We also
show that if f is a continuous real-valued function on Y, then f has an extension F to X

so that βX(F ) ≤ 3. An example is constructed to show that this result is optimal.

Let X be a topological space. A real-valued function on X belongs to
Baire class one if it is the pointwise limit of a sequence of continuous func-
tions. If X is a Polish (= separable completely metrizable) space, then a
classical theorem of Kuratowski [7] states that every Baire one function on
a Gδ subspace of X can be extended to a Baire one function on X. In [6],
Kechris and Louveau introduced a finer gradation of Baire one functions
into small Baire classes using the oscillation index β, whose definition we
now recall.

Let X be a topological space and let C denote the collection of all
closed subsets of X. A derivation on C is a map D : C → C such that
D(P ) ⊆ P for all P ∈ C. The oscillation index β is associated with a fam-
ily of derivations. Let ε > 0 and a function f : X → R be given. For any
P ∈ C, let D0(f, ε, P ) = P and D1(f, ε, P ) be the set of all x ∈ P such
that for any neighborhood U of x, there exist x1, x2 ∈ P ∩ U such that
|f(x1) − f(x2)| ≥ ε. The derivation D1(f, ε, ·) may be iterated in the usual
manner. For all α < ω1, let

Dα+1(f, ε, P ) = D1(f, ε,Dα(f, ε, P )).
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If α is a countable limit ordinal, set

Dα(f, ε, P ) =
⋂

γ<α

Dγ(f, ε, P ).

If Dα(f, ε, P ) 6= ∅ for all α < ω1, let βX(f, ε) = ω1. Otherwise, let βX(f, ε) be
the smallest countable ordinal α such that Dα(f, ε, P ) = ∅. The oscillation

index of f is βX(f) = supε>0 βX(f, ε).

The main result of §1 is that if Y is a subspace of a metric space X
and f : Y → R satisfies βY (f) < ωα for some α < ω1, then f can be
extended to a function F on X with βX(F ) ≤ ωα. It follows readily from
the Baire characterization theorem [2, 10.15] that a real-valued function on a
Polish space is Baire one if and only if its oscillation index is countable (see,
e.g., [6]). Also, a theorem of Aleksandrov says that a Gδ subspace of a Polish
space is Polish [2, 10.18]. Hence our result refines Kuratowski’s theorem in
terms of the oscillation index. Let us mention that if X is a metric space,
then every real-valued function with countable oscillation index on a closed
subspace of X may be extended to X with preservation of the index [8,
Theorem 3.6]. (Note that the proof of [8, Theorem 3.6] does not require the
compactness of the ambient space.) More recent results on the extension of
Baire one functions on general topological spaces are found in [5].

It is well known that if a function is continuous on a closed subspace of
a metric space, then there exists a continuous extension to the whole space.
§2 is devoted to the study of extensions of continuous functions from an
arbitrary subspace of a metric space. It is shown that if f is a continuous
function on a subspace Y of a metric space X, then f has an extension
F to X with βX(F ) ≤ 3. An example is given to show that the result is
optimal. The criteria for continuous extension from dense subspaces were
studied by several authors (see, e.g., [1], [4]).

1. Functions of small oscillation. Given a real-valued function de-
fined on a set S, let ‖f‖S = sups∈S |f(s)|. Since we do not assume that
the function f is bounded, ‖f‖S may take the value +∞. For any topo-
logical space X, the support supp f of a function f : X → R is the closed
set {x ∈ X : f(x) 6= 0}. A family {ϕα : α ∈ A} of nonnegative, continuous
real-valued functions on X is called a partition of unity on X if

(1) the supports of the ϕα’s form a locally finite closed covering of X,
(2)

∑
α∈A ϕα(x) = 1 for all x ∈ X.

If {Uβ : β ∈ B} is an open covering of X, we say that a partition of unity
{ϕβ : β ∈ B} on X is subordinate to {Uβ : β ∈ B} if the support of each ϕβ

lies in the corresponding Uβ . It is well known that if X is paracompact (in
particular, if X is a metric space [3, Theorem IX.5.3]), then for each open
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covering {Uβ : β ∈ B} of X there is a partition of unity on X subordinate
to {Uβ : β ∈ B} (see, for example, [3, Theorem VIII.4.2]).

Proposition 1. Let X be a metric space and Y be a subspace of X.
Suppose that f : Y → R is a function such that βY (f, ε) ≤ α for some ε > 0,

α < ω1. Then there exists a function f̃ : X → R such that βX(f̃) ≤ α + 1,

‖f̃‖X ≤ ‖f‖Y and ‖f − f̃‖Y ≤ ε.

In the following, denote Dβ(f, ε, Y ) by Y β for all β < ω1. Proposition 1
is proved by working on each of the pieces Y β

r Y β+1, β < α, and gluing
together the results.

Lemma 2. For all 0 ≤ β < α, there exist an open set Zβ in X such that

Y β
r Y β+1 ⊆ Zβ ⊆ (Y β+1)c, and a continuous function fβ : Zβ → R such

that ‖f − fβ‖Y βrY β+1 ≤ ε and ‖fβ‖Zβ
≤ ‖f‖Y .

Proof. If 0 ≤ β < α and y ∈ Y β
r Y β+1, there exists a set Uy that is

an open neighborhood of y in X so that Uy is disjoint from Y β+1 and that
f(Uy ∩ Y β) ⊆ (f(y) − ε, f(y) + ε). Let

Zβ =
⋃

y∈Y βrY β+1

Uy.

Each Zβ is open in X. Clearly, Y β
r Y β+1 ⊆ Zβ ⊆ (Y β+1)c. There exists

a partition of unity (ϕy)y∈Y βrY β+1 on Zβ subordinate to the open covering

U = {Uy : y ∈ Y β
r Y β+1}. Define fβ : Zβ → R by

fβ(z) =
∑

y∈Y βrY β+1

f(y)ϕy(z).

Then fβ is well defined, continuous and ‖fβ‖Zβ
≤ ‖f‖Y . If x ∈ Y β

r Y β+1,

set Vx = {y ∈ Y β
r Y β+1 : ϕy(x) 6= 0}. Then

∑
y∈Vx

ϕy(x) = 1. If y ∈ Vx,
then x ∈ Uy; thus |f(x) − f(y)| < ε. Hence

|f(x) − fβ(x)| =
∣∣∣

∑

y∈Vx

(f(x) − f(y))ϕy(x)
∣∣∣ ≤

∑

y∈Vx

|f(x) − f(y)|ϕy(x) ≤ ε.

Therefore, ‖f − fβ‖Y βrY β+1 ≤ ε, as required.

Proof of Proposition 1. Define a function f̃ : X → R by

f̃(x) =

{
fβ(x) if x ∈ Zβ r

⋃
γ<β Zγ , β < α,

0 if x /∈
⋃

γ<α Zγ .

Clearly, ‖f̃‖X = supβ<α ‖fβ‖Zβ
≤ ‖f‖Y . If x ∈ Y, then x ∈ Y β

r Y β+1

for some β < α. In particular, x ∈ Zβ r
⋃

γ<β Zγ . Hence |f(x) − f̃(x)| =
|f(x) − fβ(x)| ≤ ‖f − fβ‖Y βrY β+1 ≤ ε according to Lemma 2. Since this is

true for all x ∈ Y, we have ‖f − f̃‖Y ≤ ε.
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It remains to show that βX(f̃) ≤ α + 1. To this end, we claim that

Dβ(f̃ , δ, X) ∩ Zγ = ∅ for all δ > 0, γ < β ≤ α. We prove the claim by
induction. Let δ > 0. Since f0 is continuous on the open set Z0, we have
D1(f̃ , δ, X) ∩ Z0 = ∅. Suppose that the claim holds for all ordinals less

than β. By the inductive hypothesis, Dξ(f̃ , δ, X)∩
⋃

γ<ξ Zγ = ∅ for all ξ < β.
Therefore,

Dξ(f̃ , δ, X) ∩
[
Zξ r

⋃

γ<ξ

Zγ

]
= Dξ(f̃ , δ, X) ∩ Zξ.

Now f̃ = fξ is continuous on this set, which is open in Dξ(f̃ , δ, X). Therefore

Dξ+1(f̃ , δ, X)∩Zξ = ∅. Also, since Dβ(f̃ , δ, X) ⊆ Dγ+1(f̃ , δ, X) for all γ < β,

Dβ(f̃ , δ, X) ∩ Zγ = ∅

for all γ < β. This proves the claim. It follows from the claim that

Dα(f̃ , δ, X) ⊆
( ⋃

γ<α

Zγ

)c

for any δ > 0. Since f̃ = 0 on the latter set, Dα+1(f̃ , δ, X) = ∅.

In order to iterate Proposition 1 to obtain an extension of f, we need
the following result.

Proposition 3. Let Y be a subspace of a metric space X. If βY (f) < ωξ

and βY (g) < ωξ, then βY (f + g) < ωξ.

Proposition 3 is proved by the method used in [6, Lemma 5]. This requires
a slight modification in the derivation D associated with the index β.

Given a real-valued function f : Y → R, ε > 0, and a closed subset
P of Y, define G(f, ε, P ) to be the set of all y ∈ P such that for every
neighborhood U of y, there exists y′ ∈ P ∩ U such that |f(y) − f(y′)| ≥ ε.
Let G0(f, ε, P ) = P and

G1(f, ε, P ) = G(f, ε, P ),

where the closure is taken in Y. This defines a derivation G on the closed
subsets of Y which may be iterated in the usual manner. If α < ω1, let

Gα+1(f, ε, P ) = G1(f, ε,Gα(f, ε, P )).

If α < ω1 is a limit ordinal, let

Gα(f, ε, P ) =
⋂

α′<α

Gα′

(f, ε, P ).

Clearly, the derivation G is closely related to D. The precise relationship
between D and G is given in part (c) of the next lemma.

Lemma 4. If f and g are real-valued functions on Y , ε > 0, and P, Q
are closed subsets of Y, then
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(a) G1(f + g, ε, P ) ⊆ G1(f, ε/2, P ) ∪ G1(g, ε/2, P ),
(b) G1(f, ε, P ∪ Q) ⊆ G1(f, ε, P ) ∪ G1(f, ε, Q),
(c) D1(f, 2ε, P ) ⊆ G1(f, ε, P ) ⊆ D1(f, ε, P ).

We leave the simple proofs to the reader. Note that it follows from
part (c) that for all α < ω1,

(d) Dα(f, 2ε, P ) ⊆ Gα(f, ε, P ) ⊆ Dα(f, ε, P ).

Proof of Proposition 3. Parts (a) and (b) of Lemma 4 correspond to
(∗) and (∗∗) in [6, Lemma 5] respectively. From the proof of that result we
obtain, for all n ∈ N and ζ < ω1,

(1) Gωζ ·2n(f + g, ε, Y ) ⊆ Gωζ ·n(f, ε/2, Y ) ∪ Gωζ ·n(g, ε/2, Y ).

Since βY (f) < ωξ and βY (g) < ωξ, there exist ζ < ξ and n ∈ N such that
βY (f) < ωζ · n and βY (g) < ωζ · n. By (d), for any ε > 0,

Gωζ ·n(f, ε/2, Y ) = Gωζ ·n(g, ε/2, Y ) = ∅.

By (d) and (1),

Dωζ ·2n(f + g, 2ε, Y ) = ∅.

Since this is true for all ε > 0, we have

βY (f + g) ≤ ωζ · 2n < ωξ.

Theorem 5. Let X be a metric space and let Y be an arbitrary subspace

of X. If f : Y → R satisfies βY (f) < ωα for some α < ω1, then there exists

F : X → R with βX(F ) ≤ ωα and F|Y = f.

Proof. Applying Proposition 1 to f : Y → R with ε = 1/2, we obtain
g1 : X → R with ‖f−g1‖Y ≤ 1/2 and βX(g1) < ωα. By Proposition 3 we see
that βY (f −g1) < ωα. Now apply Proposition 1 to (f −g1)|Y with ε = 1/22.

We obtain g2 : X → R, with ‖g2‖X ≤ ‖f−g1‖Y ≤ 1/2, ‖f−g1−g2‖Y ≤ 1/22,
and βX(g2) < ωα. Continuing in this way, we obtain a sequence (gn) of
real-valued functions on X such that for all n ∈ N,

(i) ‖gn+1‖X ≤ ‖f −
∑n

i=1 gi‖Y ≤ 1/2n,
(ii) βX(gn) < ωα.

Let F =
∑∞

n=1 gn. Note that the series converges uniformly on X and g|Y =f
by (i). Finally, suppose that ε > 0. Choose N such that

∑∞
n=N+1 ‖gn‖X

< ε/4. Then

Dωα

(F, ε, X) ⊆ Dωα
( N∑

n=1

gn, ε/2, X
)

= ∅,

since βX(
∑N

n=1 gn) < ωα by Proposition 3. Thus βX(F ) ≤ ωα.
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Corollary 6 (Kuratowski [7, §31, VI]). Let X be a Polish space and

Y be a Gδ subset of X. Then every real-valued function of Baire class one

on Y can be extended to a function of Baire class one on X.

Remarks. 1. Kuratowski’s theorem holds for functions with arbitrary
Polish ranges. We do not know if our theorem is true in this more general
context.

2. In general, the condition βY (f) < ω1 implies that f is of Baire class
one on Y , but not vice versa. Indeed, if Y is a subspace of a metric space X,
then βY (f) < ω1 if and only if f has an extension f ′ to a Gδ subset Y ′ of X
such that βY ′(f ′) = βY (f). The two conditions coincide if Y is Polish.

3. Theorem 5 may be viewed as follows: For any β < ω1, there exists
σ(β) < ω1 such that if f is a real-valued function defined on a subspace Y
of a metric space X with βY (f) = β, then there exists F : X → R with
βX(F ) ≤ σ(β) and F|Y = f. (In fact, Theorem 5 shows that if β = ωα,

then σ(β) = ωα+1 works.) A natural question is to ask for the optimal
(i.e., minimal) value of σ(β). Theorem 14 and Example 15 together show
that σ(1) = 3 is optimal. We do not know the optimal value of σ(β) for
1 < β < ω1.

2. Extension of continuous functions. In this section, we study the
extension of a continuous function on a subspace of a metric space to the
whole space. To begin with, we consider the extension of a continuous func-
tion from a dense subspace.

Consider a metric space X with a dense subspace Y . Suppose that f :
Y → R is continuous on Y . An obvious way of extending f to X (if f is
locally bounded) is to consider the upper limit (or lower limit) of f, i.e.,

f̃(x) = lim sup
y→x, y∈Y

f(y) = inf
δ>0

sup
d(x,y)<δ

y∈Y

f(y).

The extended function, which is upper semicontinuous (lower semicontin-
uous in the case of lim inf), is not optimal as far as the oscillation index

is concerned. In fact, the lim sup extension f̃ of the continuous function
f in Example 15 below has oscillation index βX(f̃) = ω. The following
is an alternative algorithm that produces an extension with the smallest
possible oscillation index. If A ⊆ dom f, then osc(f, A) is defined to be
sup{|f(x) − f(x′)| : x, x′ ∈ A}. If x belongs to the closure of dom f, then
define

osc(f, x) = lim
δ→0

osc(f, B(x, δ) ∩ dom f).

We first define layers of approximate extensions inductively. Precisely,
for each k ≥ 0, we will choose open sets Sk and Xk such that Y ⊆ Sk ⊆ Xk,
nonnegative integers (nk(s))s∈Sk

and a function Fk : Xk → R. Let S0 = X
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and n0(s) = 0 for all s ∈ S0. Assume that Sk has been chosen and nk(s) is
defined for all s ∈ Sk. Let Uk = {B(s, 2−nk(s)) : s ∈ Sk} and Xk =

⋃
Uk.

Choose a partition of unity (ϕk
s)s∈Sk

on Xk subordinate to Uk. For each
s ∈ Sk, choose yk

s ∈ Y ∩ B(s, 2−nk(s)). Define Fk : Xk → R by Fk(x) =∑
s∈Sk

ϕk
s(x)f(yk

s ). For each x ∈ Xk, let Sk(x) = {s ∈ Sk : x ∈ supp ϕk
s}

and lk(x) = max{nk(s) : s ∈ Sk(x)}+1. Note that Sk(x) is a finite set since
(suppϕk

s)s∈Sk
is locally finite. Let Sk+1 be the set of all x ∈ Xk such that

osc(f, x) < 2−lk(x). If x ∈ Sk+1, choose nk+1(x) ≥ lk(x) so that

(1) osc(f, B(x, 21−nk+1(x)) ∩ Y ) < 2−lk(x),
(2) B(x, 2−nk+1(x)) ⊆ B(s, 2−nk(s)) for all s ∈ Sk(x),
(3) B(x, 21−nk+1(x)) ∩ suppϕk

s = ∅ if s ∈ Sk r Sk(x).

The extension F (defined after Lemma 8) is obtained by pasting the layers
(Fk) one after another. Observe that Xk+1 ⊆ Xk because of condition (2).

Lemma 7. Suppose that s ∈ Sk, t ∈ Sm for some m > k, and that

suppϕk
s ∩ suppϕm

t 6= ∅. Then B(t, 2−nm(t)) ⊆ B(s, 2−nk(s)).

Proof. Let x ∈ suppϕk
s ∩ suppϕm

t . Then x ∈ Xj for all j ≤ m. In

particular, if m > j > k, then there exists sj ∈ Sj such that x ∈ suppϕj
sj .

Thus it suffices to prove the lemma for m = k+1. Assume that x ∈ suppϕk
s∩

suppϕk+1
t . Note that s ∈ Sk(t). For otherwise, B(t, 21−nk+1(t))∩suppϕk

s = ∅
by (3). Since x belongs to this set, we have reached a contradiction. It now
follows from (2) that B(t, 2−nk+1(t)) ⊆ B(s, 2−nk(s)).

Lemma 8. Suppose that x ∈ Xm and m > k ≥ 1. Then there exists

s ∈ Sk(x) such that |Fk(x) − Fm(x)| < 21−lk−1(s). Moreover , if x ∈ Y , then

|Fk(x) − f(x)| < 2−lk−1(s) for some s ∈ Sk(x).

Proof. Denote by S the set of all t ∈ Sm such that ϕm
t (x) > 0 and choose

a point y ∈
⋂

t∈S B(t, 2−nm(t))∩Y . Let s be an element where lk−1(s) attains

its minimum over Sk(x). By Lemma 7, B(t, 2−nm(t)) ⊆ B(s, 2−nk(s)) for all
t ∈ S. Hence |f(y) − f(ym

t )| < 2−lk−1(s) for any t ∈ S. By Lemma 7 again,
y ∈ B(t, 2−nm(t)) ⊆ B(s′, 2−nk(s′)) for all t ∈ S and all s′ ∈ Sk(x). Hence

|f(y) − f(yk
s′)| < 2−lk−1(s

′) ≤ 2−lk−1(s)

for all s′ ∈ Sk(x). Therefore

|Fk(x) − Fm(x)| ≤ |Fk(x) − f(y)| + |f(y) − Fm(x)|

< 2−lk−1(s) + 2−lk−1(s) = 21−lk−1(s).

Moreover, if x ∈ Y , then the above applies for y = x. Hence |Fk(x)−f(x)| <
2−lk−1(s).

Observe that lk(s) ≥ k+1 for all s ∈ Sk, k ≥ 0. It follows from Lemma 8
that (Fk) converges pointwise on

⋂
Xk and that the limit is f on Y . Define
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F : X → R by

F (x) =

{
limk Fk(x) if x ∈

⋂
Xk,

Fk(x) if x ∈ Xk r Xk+1, k ≥ 0.

Then F is an extension of f to X.

Lemma 9. Suppose that x ∈ Xk for some k ≥ 1. There exists an open

neighborhood U of x and s ∈ Sk(x) such that |F (z) − F (x)| < 23−lk−1(s) for

all z ∈ U .

Proof. Let s be an element where lk−1(s) attains its minimum over Sk(x).
Note that Fk is continuous on the open set Xk. Hence there is an open
neighborhood U of x such that

(1) osc(Fk, U) < 2−lk−1(s),
(2) U ⊆ Xk,
(3) U ∩ suppϕk

s = ∅ if s ∈ Sk r Sk(x).

We claim that Sk(z) ⊆ Sk(x) for all z ∈ U . Indeed, if z ∈ U and s ∈
Sk(z) r Sk(x), then z ∈ U ∩ suppϕk

s = ∅, a contradiction. Now if z ∈ U ,
then either z ∈ Xm for all m or z ∈ Xm r Xm+1 for some m ≥ k. In either
case, |Fk(z) − F (z)| ≤ 21−lk−1(s) by Lemma 8. Therefore,

|F (z) − F (x)| ≤ |F (z) − Fk(z)| + |Fk(z) − Fk(x)| + |Fk(x) − F (x)|

< 21−lk−1(s) + 2−lk−1(s) + 21−lk−1(s) < 23−lk−1(s).

The next proposition is an immediate consequence of Lemma 9.

Proposition 10. Every x ∈
⋂

Xk is a point of continuity of F .

Proposition 11. If x ∈ D1(F, 2−m, X) ∩ Xk, k ≥ 1, then there exists

s ∈ Sk(x) such that lk−1(s) ≤ m + 3.

Proof. Since x ∈ Xk, by Lemma 9, there exist an open neighborhood U
of x and s ∈ Sk(x) such that |F (z)−F (x)| < 23−lk−1(s) for all z ∈ U . Hence
|F (z1)− F (z2)| < 24−lk−1(s) for all z1, z2 ∈ U. As x ∈ D1(F, 2−m, X), we see
that −m < 4 − lk−1(s). Thus lk−1(s) ≤ m + 3.

Proposition 12. Suppose that x ∈ Xk ∩ D2(F, 2−m, X), k ≥ 0. Then

nk(s) ≤ m + 2 for all s ∈ Sk such that ϕk
s(x) > 0.

Proof. Choose an open neighborhood U1 of x such that U1 ⊆ {ϕk
s > 0}

for all s ∈ Sk such that ϕk
s(x) > 0. Note that, in particular, U1 ⊆ Xk. Then

choose an open neighborhood U2 of x such that osc(Fk, U2) < 2−m. Let
U = U1 ∩ U2. There exist z1, z2 ∈ U ∩ D1(F, 2−m, X) such that |Fk(z1) −
Fk(z2)| ≥ 2−m. If z1, z2 /∈ Xk+1, then F (zi) = Fk(zi), i = 1, 2. This leads to
a contradiction with the fact that osc(Fk, U2) < 2−m. Thus at least one of
z1, z2 belongs to Xk+1. Denote it by z. By the previous proposition, there
exists t ∈ Sk+1(z) such that lk(t) ≤ m+3. Let s ∈ Sk be such that ϕk

s(x) > 0.
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We claim that s ∈ Sk(t). For otherwise, B(t, 21−nk+1(t))∩ suppϕk
s = ∅. This

is absurd since the intersection contains the point z. It follows from the
claim that lk(t) ≥ nk(s) + 1. Hence nk(s) ≤ m + 2, as required.

Proposition 13. βX(F ) ≤ 3.

Proof. Suppose that x ∈ D3(F, 2−m, X) for some m. Then there ex-
ists k such that x ∈ Xk r Xk+1. Choose a neighborhood U of x such
that U ⊆ B(x, 2−m−2) ∩ Xk and osc(Fk, U) < 2−m. There exist z1, z2 ∈
U ∩ D2(F, 2−m, X) such that |F (z1) − F (z2)| ≥ 2−m. If z1, z2 /∈ Xk+1, then
F (zi) = Fk(zi), i = 1, 2. This contradicts the fact that osc(Fk, U) < 2−m.
Hence there exists z ∈ U ∩ Xk+1 ∩ D2(F, 2−m, X). By Proposition 12,
nk+1(t) ≤ m + 2 for all t ∈ Sk+1 such that ϕk+1

t (z) > 0. Fix such a t.
Note that

d(x, t) ≤ d(x, z) + d(z, t) < 2−m−2 + 2−nk+1(t) ≤ 21−nk+1(t).

Thus

osc(f, x) ≤ osc(f, B(t, 21−nk+1(t)) ∩ Y ) < 2−lk(t).

We claim that Sk(x) ⊆ Sk(t). For otherwise, there exists s ∈ Sk(x) r Sk(t).
Then B(t, 21−nk+1(t)) ∩ suppϕk

s = ∅. This is absurd since the intersection
contains the point x. It follows from the claim that lk(t) ≥ lk(x). Hence
osc(f, x) < 2−lk(x). Then x ∈ Sk+1 ⊆ Xk+1, a contradiction.

Theorem 14. Let X be a metric space and Y be a subspace of X. Every

continuous function f on Y can be extended to a function F on X with

βX(F ) ≤ 3.

Proof. Applying the preceding lemmas and propositions, we obtain an
extension f̃ of f to Y such that βY (f̃) ≤ 3. By [8, Theorem 3.6], there is

a further extension F of f̃ to X such that βX(F ) = βY (f̃) ≤ 3. (Note that
the proof of [8, Theorem 3.6] does not require the compactness of X.)

The following example shows that Theorem 14 is optimal.

Example 15. There is a subspace Y ⊆ {0, 1}ω = X and a continuous

real-valued function f on Y such that βX(F ) ≥ 3 for any extension F of f
to X.

Proof. For any integer n, denote n (mod 2) by n̂. Let

Y = {(εi) ∈ X : εi = 0 for infinitely many i’s}.

We denote elements in X of the form

(1, . . . , 1︸ ︷︷ ︸
n1

, 0, 1, . . . , 1︸ ︷︷ ︸
n2

, 0, . . . , 1, . . . , 1︸ ︷︷ ︸
nk

, 0, . . . )
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by (1n1 , 0, 1n2 , 0, . . . , 1nk , 0, . . . ). Also write (ε1, . . . , εk, ε, ε, . . . ) as (ε1, . . . ,
εk, ε

ω), εi, ε ∈ {0, 1}. Define g : Y → X by

g(1n1, 0, 1n2, 0, . . . , 1nk , 0, . . . ) = (n̂1, n̂2, . . . ), n1, n2, · · · ∈ N ∪ {0},

and let h : X → R be the canonical embedding of X into R, h(ε1, ε2, . . . ) =∑∞
k=1 2εk/3k. Then the function f = h ◦ g : Y → R is continuous. Suppose

that F is an extension of f to X such that βX(F ) ≤ 2. First observe that
for any n1, . . . , nk ∈ N ∪ {0} and all n ∈ N,

|F (1n1, 0, . . . , 1nk , 0, 12n, 0ω)−F (1n1, 0, . . . , 1nk , 0, 12n−1, 0, 1, 0, 1, . . . )|=
1

3k
.

Hence (1n1 , 0, . . . , 1nk , 0, 1ω) ∈ D1(F, 1/3k, X). Let F (1ω) = a. Either |a| ≥
1/2 or |1 − a| ≥ 1/2. We assume the former; the proof for the latter case is
similar. Since (1ω) /∈ D2(F, 1/3, X), there exists a neighborhood U of (1ω)
such that |F (x) − a| < 1/3 if x ∈ U ∩ D1(F, 1/3, X). In particular, there
exists n1 ∈ N such that

|F (12n1, 0, 1ω) − a| =
1

3
− δ for some δ > 0.

Similarly, using the fact that (12n1, 0, 1ω) /∈ D2(F, 1/32, X), we obtain some
n2 ∈ N such that

|F (12n1, 0, 12n2, 0, 1ω) − F (12n1 , 0, 1ω)| <
1

32
.

Continuing, we choose n1, n2, . . . ∈ N such that

|F (12n1, 0, . . . , 12nk+1 , 0, 1ω) − F (12n1, 0, . . . , 12nk , 0, 1ω)| <
1

3k+1
, k ∈ N.

In particular,

|F (12n1, 0, . . . , 12nk , 0, 1ω) − a| ≤
1

3
+

1

32
+ · · · − δ =

1

2
− δ, k ∈ N.

Since |a| ≥ 1/2, we have |F (12n1, 0, . . . , 12nk , 0, 1ω)| ≥ δ for all k ∈ N. But

F (12n1, 0, . . . , 12nk , 0, 12n, 0ω) = f(12n1, 0, . . . , 12nk , 0, 12n, 0ω) = 0

for all n ∈ N. Hence (12n1 , 0, . . . , 12nk , 0, 1ω) ∈ D1(F, δ, X) for all k ∈ N.
However, note that the sequence ((12n1, 0, . . . , 12nk , 0, 1ω))k∈N converges to
the point (12n1, 0, . . . , 12nj , 0, 12nj+1, 0, . . . ) and

|F (12n1, 0, . . . , 12nk , 0, 1ω) − F (12n1, 0, . . . , 12nj , 0, 12nj+1, 0, . . . )|

= |F (12n1, 0, . . . , 12nk , 0, 1ω) − f(12n1, 0, . . . , 12nj , 0, 12nj+1, 0, . . . )|

= |F (12n1, 0, . . . , 12nk , 0, 1ω)| ≥ δ

for all n ∈ N. Therefore, (12n1, 0, . . . , 12nj , 0, 12nj+1, 0, . . . ) ∈ D2(F, δ, X),
contrary to the assumption that βX(F ) ≤ 2.
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Remark. With regard to the question raised in Remark 3 of §1, we
have been able to show that if Y is a subspace of a countable ordinal X (not
necessarily compact), and f : Y → R satisfies βY (f) ≤ 3, then there is an
extension F : X → R of f such that βX(F ) ≤ βY (f) + 1.
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