JAMBU A Lightweight Authenticated Encryption Mode

Hongjun Wu Tao Huang

Nanyang Technological University

DIAC 2016, Nagoya

26 Sep 2016

JAMBU

Comparison between AEGIS, MORUS, JAMBU, ACORN

No tweak to the JAMBU mode for the third round

Update in JAMBU v2.1 document

- Add authentication security proof for nonce reused in JAMBU
- Add hardware performance of JAMBU

Outline

- Design Motivation
- The JAMBU Authenticated Encryption Mode
- JAMBU Features
- AES-JAMBU and SIMON-JAMBU
- Security of JAMBU
- Performance of JAMBU
- Conclusion

Design Motivation

- To design a lightweight AE mode
 - Use simple operations
 - Only XOR is used
 - Introduce small extra state size.
 - For 2*n*-bit block size, the extra state sizes are

	ССМ	GCM	OCB3	EAX	CPFB	COLM	SILC	CLOC	JAMBU
State Size	4n	6n	6n	8n	6n	8n	4n	4n	3n
Increments	2n	4n	4n	6n	4n	6n	2n	2n	n
									smallest

The JAMBU Mode: – Initialization

Block cipher: 2n bits block size IV: n bits

The JAMBU Mode: – Process Associated Data

Data block size: n bits Pad the associated data with: 10^*

The JAMBU Mode: – Process Plaintext

The JAMBU Mode: – Finalization

Parameter sets

Order	Name	Key size (bits)	IV size (bits)	State size (bits)	Tag size (bits)	Use cases	
Primary	SIMON-JAMBU96/96	96	48	144	48	Lightweight/Defense in depth	
Secondary	SIMON-JAMBU64/96	96	32	96	32	Lightweight/Defense in depth	
Tertiary	SIMON-JAMBU128/128	128	64	192	64	Lightweight/Defense in depth	
Quaternary	AES-JAMBU	128	64	192	64	Defense in depth/Lightweight	

JAMBU Features

- Use the existing block ciphers directly
- Lightweight mode
 - Only *n*-bit extra state is introduced (for 2*n*-bit block size)
 - Only simple XORs are introduced at each step
- Reasonably strong when IV is misused
- Use only block cipher encryption in both encryption and decryption

Security of JAMBU

- Encryption
 - When IV is unique
 - similar to the CFB mode
 - When IV is reused and the first *i* plaintext blocks are the same
 - it is obvious that the security of the (i + 1)-th plaintext block is insecure when nonce is reused.
 - the (i + 2)-th block is also insecure according to the analysis by *Thomas Peyrin, Siang Meng Sim, Lei Wang, and Guoyan Zhang* (FSE 2015)
 - the blocks after (i + 2)-th plaintext blocks are secure

Security of JAMBU

- Authentication
 - *n*-bit tag
 - Provide *n*-bit security when message size is no more than $2^{n/2}$ bits and nonce is misused
 - Note that the nonce reuse security for spongeWrap with 2n-bit permutation, nbit message block size, the authentication security is n/2-bit when nonce is misused.
 - We show in our security proof that for adversary making at most *q* queries with at most *l* blocks of message in each query

$$Adv_{JAMBU}^{auth} \leq \frac{3q^2l^2}{2^{2n}} + \frac{2q^2l}{2^{2n}} + \frac{5q^2}{2^{2n+1}} + \frac{q(l+2)}{2^{2n+1}}$$

Performance of JAMBU

- Software
 - Around half of the speed of underlying block cipher
 - JAMBU is not designed for high-speed applications

	64B	128B	256B	512B	1024B	4096B
SIMON-JAMBU96/96	83.24	62.78	57.21	54.79	53.21	51.94
SIMON-JAMBU64/96	124.72	95.67	84.93	79.67	76.93	75.08
SIMON-JAMBU128/128	76.11	58.26	49.55	45.61	43.06	41.45
AES-JAMBU	24.41	17.08	13.41	11.57	10.65	9.98

Table. Software performance of JAMBU (Intel Core i7-4770 Haswell)

Performance

• Hardware

- JAMBU mode requires the least amount of extra state comparing to other AE modes
- FPGA results of SIMON-JAMBU96/96 on Xilinx Virtex-7 (CAESAR hardware API)

Frequency	434 MHz		
Area in Slices	375 Slices		
Area in LUTs	1254 LUTs		
Throughput	385 Mbits/s		
Throughput/slice	1.028 Mbits/Slice		
Throughput/LUT	0.307 Mbits/LUT		

Conclusion

- Main features of JAMBU
 - Strong authentication security when nonce is misused
 - CFB-type encryption security when nonce is misused
 - Probably the most compact authenticated encryption mode
- No tweak to the JAMBU mode in the third round
- Update
 - Authentication security proof in the nonce-reuse cases
 - FPGA performance of JAMBU

Thanks for your attention!