
The Stream Cipher HC-128

Hongjun Wu

Katholieke Universiteit Leuven, ESAT/SCD-COSIC
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

wu.hongjun@esat.kuleuven.be

Statement 1. HC-128 supports 128-bit key and 128-bit initialization vector.
Statement 2. 264 keystream bits can be generated from each key/IV pair.
Statement 3. There is no hidden flaw in HC-128.
Statement 4. The smallest period is expected to be much larger than 2128.
Statement 5. Recovering the secret key is as difficult as exhaustive key search.
Statement 6. Distinguishing attack requires more than 264 keystream bits.
Statement 7. There is no weak key in HC-128.
Statement 8. Encryption speed is 3.05 cycles/byte on Pentium M processor.
Statement 9. The key and IV setup takes about 27,300 clock cycles
Statement 10. HC-128 is not covered by any patent and it is freely available.

Remarks. When more than 264 keystream bits are generated from each key/IV
pair, the effect on the security of the message/key is negligible. Thus there is no
need to implement any mechanism to restrict the keystream length in practice.

1 Introduction

Stream cipher HC-128 is the simplified version of HC-256 [15] for 128-bit security.
HC-128 is a simple, secure, software-efficient cipher and it is freely-available.

HC-128 consists of two secret tables, each one with 512 32-bit elements. At
each step we update one element of a table with non-linear feedback function.
All the elements of the two tables get updated every 1024 steps. At each step,
one 32-bit output is generated from the non-linear output filtering function.

HC-128 is suitable for the modern (and future) superscalar microprocessors.
The dependency between operations in HC-128 is very small: three consecutive
steps can be computed in parallel; at each step, the feedback and output func-
tions can be computed in parallel. The high degree of parallelism allows HC-128
to run efficiently on the modern processor. We implemented HC-128 in C, and
the encryption speed of HC-128 reaches 3.05 cycles/byte on the Intel Pentium
M processor.

HC-128 is very secure. Our analysis shows that recovering the key of HC-
128 is as difficult as exhaustive key search. To distinguish the keystream from
random, we expect that more than 264 keystream bits are required (our current
analysis shows that about 2151 outputs are needed in the distinguishing attack).

This report is organized as follows. We introduce HC-128 in Section 2. The
security analysis of HC-128 is given in Section 3 and Section 4. Section 5 discusses
the implementation and performance of HC-128. Section 6 concludes this report.

2 Cipher Specifications

In this section, we describe the stream cipher HC-128. From a 128-bit key and
a 128-bit initialization vector, it generates keystream with length up to 264 bits.

2.1 Operations, variables and functions

The following operations are used in HC-128:

+ : x + y means x + y mod 232, where 0 ≤ x < 232 and 0 ≤ y < 232

¯ : x ¯ y means x− y mod 512
⊕ : bit-wise exclusive OR
‖ : concatenation
>> : right shift operator. x >> n means x being right shifted n bits.
<< : left shift operator. x << n means x being left shifted n bits.
>>> : right rotation operator. x >>> n means ((x >> n)⊕(x << (32−n))

where 0 ≤ n < 32, 0 ≤ x < 232.
<<< : left rotation operator. x <<< n means ((x << n)⊕ (x >> (32−n))

where 0 ≤ n < 32, 0 ≤ x < 232.

Two tables P and Q are used in HC-128. The key and the initialization vector of
HC-128 are denoted as K and IV . We denote the keystream being generated as s.

P : a table with 512 32-bit elements. Each element is denoted as P [i]
with 0 ≤ i ≤ 511.

Q : a table with 512 32-bit elements. Each element is denoted as Q[i]
with 0 ≤ i ≤ 511.

K : the 128-bit key of HC-128.
IV : the 128-bit initialization vector of HC-128.
s : the keystream being generated from HC-128. The 32-bit output

of the ith step is denoted as si. Then s = s0 ‖ s1 ‖ s2 ‖ · · ·
There are six functions being used in HC-256. f1(x) and f2(x) are the same as
the σ

{256}
0 (x) and σ

{256}
1 (x) being used in the message schedule of SHA-256 [14].

For h1(x), the table Q is used as S-box. For h2(x), the table P is used as S-box.

f1(x) = (x >>> 7)⊕ (x >>> 18)⊕ (x >> 3)
f2(x) = (x >>> 17)⊕ (x >>> 19)⊕ (x >> 10)

g1(x, y, z) = ((x >>> 10)⊕ (z >>> 23)) + (y >>> 8)
g2(x, y, z) = ((x <<< 10)⊕ (z <<< 23)) + (y <<< 8)

h1(x) = Q[x0] + Q[256 + x2]
h2(x) = P [x0] + P [256 + x2]

where x = x3 ‖ x2 ‖ x1 ‖ x0, x is a 32-bit word, x0, x1, x2 and x3 are four bytes.
x3 and x0 denote the most significant byte and the least significant byte of x,
respectively.

2

2.2 Initialization process (key and IV setup)

The initialization process of HC-128 consists of expanding the key and initializa-
tion vector into P and Q (similar to the message setup in SHA-256) and running
the cipher 1024 steps (with the outputs being used to update P and Q).

1. Let K = K0 ‖ K1 ‖ K2 ‖ K3 and IV = IV0 ‖ IV1 ‖ IV2 ‖ IV3, where each
Ki and IVi denotes a 32-bit number. Let Ki+4 = Ki, and IVi+4 = IVi for
0 ≤ i < 4. The key and IV are expanded into an array Wi (0 ≤ i ≤ 1279) as:

Wi =

Ki 0 ≤ i ≤ 7
IVi−8 8 ≤ i ≤ 15
f2(Wi−2) + Wi−7 + f1(Wi−15) + Wi−16 + i 16 ≤ i ≤ 1279

2. Update the tables P and Q with the array W .

P [i] = Wi+256 for 0 ≤ i ≤ 511
Q[i] = Wi+768 for 0 ≤ i ≤ 511

3. Run the cipher 1024 steps and use the outputs to replace the table elements
as follows (“¯” denotes “−” modulo 512).

for i = 0 to 511, do
P [i] = (P [i] + g1(P [i ¯ 3], P [i ¯ 10], P [i ¯ 511]))⊕ h1(P [i ¯ 12]);

for i = 0 to 511, do
Q[i] = (Q[i] + g2(Q[i ¯ 3], Q[i ¯ 10], Q[i ¯ 511]))⊕ h2(Q[i ¯ 12]);

The initialization process completes and the cipher is ready to generate keystream.

3

2.3 The keystream generation algorithm

At each step, one element of a table is updated and one 32-bit output is gener-
ated. Each S-box is used to generate only 512 outputs, then it is updated in the
next 512 steps. The keystream generation algorithm of HC-128 is given below
(“¯” denotes “−” modulo 512, si denotes the output of the i-th step).

i = 0;
repeat until enough keystream bits are generated.
{

j = i mod 512;
if (i mod 1024) < 512
{

P [j] = P [j] + g1(P [j ¯ 3], P [j ¯ 10], P [j ¯ 511]);
si = h1(P [j ¯ 12])⊕ P [j];

}
else
{

Q[j] = Q[j] + g2(Q[j ¯ 3], Q[j ¯ 10], Q[j ¯ 511]);
si = h2(Q[j ¯ 12])⊕Q[j];

}
end-if
i = i + 1;

}
end-repeat

3 Security Analysis of HC-128

The security analysis of HC-128 is similar to that of HC-256. The output and
feedback functions of HC-128 are non-linear, so it is impossible to apply the fast
correlation attacks [12, 9, 13, 5, 11] and algebraic attacks [1, 6–8] to recover the
secret key of HC-128. The large secret S-box of HC-128 is updated during the
keystream generation process, so it is very difficult to develop linear relations
linking the input and output bits of the S-box.

In this section, we will analyze the period of HC-128, the security of the
secret key and the security of the initialization process. The randomness of the
keystream will be analyzed separately in Section 4.

3.1 Period

The 32778-bit state of HC-128 ensures that the period of the keystream is ex-
tremely large. But the exact period of HC-128 is difficult to predict. The average
period of the keystream is estimated to be much more than 2256. The large num-
ber of states also eliminates the threat of the time-memory-data tradeoff attack
on stream ciphers [4] (also [2, 10]).

4

3.2 Security of the secret key

We note that the output function and the feedback function of HC-128 are non-
linear. The non-linear output function leaks small amount of partial information
at each step. The non-linear feedback function ensures that the secret key can
not be recovered from those leaked partial information.

3.3 Security of the initialization process (key/IV setup)

The initialization process of the HC-128 consists of two stages, as given in Sub-
section 2.2. We expand the key and IV into P and Q. At this stage, every bit
of the key/IV affects all the bits of the two tables and any difference in the
related keys/IVs results in uncontrollable differences in P and Q. Note that the
constants in the expansion function at this stage play significant role in reducing
the effect of related keys/IVs. After the expansion, we run the cipher 1024 steps
and using the outputs to update the P and Q. After the initialization process, we
expect that any difference in the keys/IVs would not result in biased keystream.

4 Randomness of the keystream

Our initial analysis shows that the distinguishing attack on HC-128 requires
more than 2128 outputs. The analysis is given below.

We recall that at the ith step, if (i mod 1024) < 512, the table P is updated
as

P [i mod 512] = P [i mod 512] + g1(P [i ¯ 3], P [i ¯ 10], P [i ¯ 511])

We know that si = h1(P [i ¯ 12])⊕ P [i mod 512]. For 10 ≤ (i mod 1024) < 511,
this feedback function can be written alternatively as

si ⊕ h1(zi) = (si−1024 ⊕ h′1(zi−1024)) +
g1(si−3 ⊕ h1(zi−3), si−10 ⊕ h1(zi−10), si−1023 ⊕ h′1(zi−1023)) (1)

where h1(x) and h′1(x) indicate two different functions since they are related to
different S-boxes; zj denotes the P [j ¯ 12] at the j-th step.

We note that there are two ‘+’ operations in the feedback function. We will
first investigate the least significant bits in the feedback function since they are
not affected by the ‘+’ operations. Denote the i-th least significant bit of a as
ai. From (1), we obtain that for 10 ≤ (i mod 1024) < 511,

s0
i ⊕ s0

i−1024 ⊕ s10
i−3 ⊕ s8

i−10 ⊕ s23
i−1023

= (h1(zi))0 ⊕ (h′1(zi−1024))0 ⊕ (h1(zi−3))10 ⊕
⊕ (h1(zi−10))8 ⊕ (h′1(zi−1023))23 (2)

Similarly, for 1024× α + 10 ≤ i, j < 1024× α + 511 and j 6= i, we obtain

s0
j ⊕ s0

j−1024 ⊕ s10
j−3 ⊕ s8

j−10 ⊕ s23
j−1023

= (h1(zj))0 ⊕ (h′1(zj−1024))0 ⊕ (h1(zj−3))10 ⊕
⊕ (h1(zj−10))8 ⊕ (h′1(zj−1023))23 (3)

5

For the left sides of (2) and (3) to be equal, i.e., for the following equation

s0
i ⊕ s0

i−1024 ⊕ s10
i−3 ⊕ s8

i−10 ⊕ s23
i−1023 =

s0
j ⊕ s0

j−1024 ⊕ s10
j−3 ⊕ s8

j−10 ⊕ s23
j−1023 (4)

to hold, we require that

(h1(zi))0 ⊕ (h′1(zi−1024))0 ⊕ (h1(zi−3))10

⊕ (h1(zi−10))8 ⊕ (h′1(zi−1023))23

= (h1(zj))0 ⊕ (h′1(zj−1024))0 ⊕ (h1(zj−3))10

⊕ (h1(zj−10))8 ⊕ (h′1(zj−1023))23 (5)

Approximate (5) as

H(x1) = H(x2) (6)

where H denotes a random secret 80-bit-to-1-bit S-box, x1 and x2 are two 80-
bit random inputs, x1 = zi ‖ zi−3 ‖ zi−10 ‖ zi−1023 ‖ zi−1024 and x2 = zj ‖
zj−3 ‖ zj−10 ‖ zj−1023 ‖ zj−1024, where z indicates the concatenation of the
least significant byte and the second most significant byte of z. The following
theorem gives the collision rate of the outputs of H(x).

Theorem 1. Let H be an m-bit-to-n-bit S-box and all those n-bit elements are
randomly generated, where m ≥ n. Let x1 and x2 be two m-bit random inputs to
H. Then H(x1) = H(x2) with probability 2−m + 2−n − 2−m−n.

Proof. If x1 = x2, then H(x1) = H(x2). If x1 6= x2, then H(x1) = H(x2) with
probability 2−n. x1 = x2 with probability 2−m and x1 6= x2 with probability
1− 2−m. The probability that H(x1) = H(x2) is 2−m + (1− 2−m)× 2−n.

According to Theorem 1, (6) holds with probability 1
2+2−81. So (4) holds with

probability 1
2 + 2−81. After testing the validity of 2164 equations (4), the output

of the cipher can be distinguished from random signal with success rate 0.9772
(with false negative rate and false positive rate as 0.0228). Note that only about
217 equations (4) can be obtained from every 512 outputs, this distinguishing
attack requires about 2156 outputs.

We note that the attack above only deals with the least significant bit in (1).
It may be possible to consider the rest of the 31 bits bit-by-bit. But due to the
effect of the two ‘+’ operations in the feedback function, the attack exploiting
those 31 bits is not as effective as that exploiting the least significant bit. Thus
more than 2151 outputs are needed in this distinguishing attack.

It may be possible that the distinguishing attack against HC-128 can be
improved in the future. However, it is very unlikely that our security goal can be
breached since the security margin is extremely large. We thus conjecture that it
is computationally impossible to distinguish 264 bits keystream of HC-128 from
random.

6

5 Implementation and Performance of HC-128

The optimized implementation of HC-128 is similar to that of HC-256. On the
Pentium M processor, the speed of HC-128 reaches 3.05 cycles/bye, while the
speed of HC-256 is about 4.4 cycles/byte.

5.1 The optimized implementation of HC-128

In the optimized code, loop unrolling is used and only one branch decision is
made for every 16 steps. The details of the implementation are given below. The
feedback function of P is given as

P [i mod 512] = P [i mod 512] + P [i ¯ 10] + g1(P [i ¯ 3], P [i ¯ 511])

A register X containing 16 elements is introduced for P . If (i mod 1024) < 512
and i mod 16 = 0, then at the begining of the ith step, X[j] = P [(i − 16 +
j) mod 512] for j = 0, 1, · · · 15, i.e. the X contains the values of P [i ¯ 16], P [i ¯
15], · · · , P [i ¯ 1]. In the 16 steps starting from the ith step, the P and X are
updated as

P [i] = P [i] + g1(X[13], X[6], P [i + 1]);
X[0] = P [i];

P [i + 1] = P [i + 1] + g1(X[14], X[7], P [i + 2]);
X[1] = P [i + 1];

P [i + 2] = P [i + 2] + g1(X[15], X[8], P [i + 3]);
X[2] = P [i + 2];

P [i + 3] = P [i + 3] + g1(X[0], X[9], P [i + 4]);
X[3] = P [i + 3];

· · ·
P [i + 14] = P [i + 14] + g1(X[11], X[4], P [i + 15]);

X[14] = P [i + 14];
P [i + 15] = P [i + 15] + g1(X[12], X[5], P [(i + 1) mod 512]);

X[15] = P [i + 15];

Note that at the ith step, two elements of P [i¯10] and P [i¯3] can be obtained
directly from X. Also for the output function si = h1(P [i¯12])⊕P [i mod 1024],
the P [i ¯ 12] can be obtained from X. In this implementation, there is no need
to compute i ¯ 3, i ¯ 10 and i ¯ 12.

A register Y with 16 elements is used in the implementation of the feedback
function of Q in the same way as that given above.

5.2 The performance of HC-128

Encryption Speed. We use the C codes submitted to the eStream to mea-
sure the encryption speed. The processor used in the measurement is the Intel
Pentium M (1.6 GHz, 32 KB Level 1 cache, 2 MB Level 2 cache).

7

Using the eStream performance testing framework, the highest encryption
speed of HC-128 is 3.05 cycles/byte with the compiler gcc (there are three opti-
mization options leading to this encryption speed: k8 O3-ual-ofp, prescott O2-ofp
and athon O3-ofp). Using the Intel C++ Compiler 9.1 in Windows XP (SP2),
the speed is 3.3 cycles/byte. Using the Microsoft Visual C++ 6.0 in Windows
XP (SP2), the speed is 3.6 cycles/byte.

Initialization Process. The key setup of HC-128 requires about 27,300 clock
cycles. There are two large S-boxes in HC-128. In order to eliminate the threat
of related key/IV attack, the tables should be updated with the key and IV
thoroughly and this process requires a lot of computations. It is thus undesirable
to use HC-128 in the applications where key (or IV) is updated very frequently.

6 Conclusion

In this report, a software-efficient stream cipher HC-128 is illustrated. Our anal-
ysis shows that HC-128 is very secure. However, the extensive security analysis
of any new cipher requires a lot of efforts from many researchers. We encourage
the readers to analyze the security of HC-128.

References

1. F. Armknecht, M. Krause, “Algebraic Attacks on Combiners with Memory”, in
Advances in Cryptology – Crypto 2003, LNCS 2729, pp. 162-75, Springer-Verlag,
2003.

2. S. Babbage, “A Space/Time Tradeoff in Exhaustive Search Attacks on Stream
Ciphers”, European Convention on Security and Detection, IEE Conference pub-
lication, No. 408, May 1995.

3. E. Biham, A. Shamir, “Differential Cryptanalysis of DES-like Cryptosystems”, in
Advances in Cryptology – Crypto’90, LNCS 537, pp. 2-21, Springer-Verlag, 1991.

4. A.Biryukov, A.Shamir, “Cryptanalytic Time/Memory/Data Tradeoffs for Stream
Ciphers”, in Advances in Cryptography – ASIACRYPT’2000, LNCS 1976, pp.1–13,
Springer-Verlag, 2000.

5. V.V. Chepyzhov, T. Johansson, and B. Smeets. “A Simple Algorithm for Fast
Correlation Attacks on Stream Ciphers”, in Fast Software Encryption (FSE’00),
LNCS 1978, pp. 181-195, Springer-Verlag, 2000.

6. N. Courtois, “Higher Order Correlation Attacks, XL algorithm and Cryptanalysis
of Toyocrypt”, in (ICISC 2002), LNCS 2587, pp. 182-199, Springer-Verlag, 2002.

7. N. Courtois, and W. Meier, “Algebraic Attacks on Stream Ciphers with Linear
Feedback”, in Advances in Cryptology – Eurocrypt 2003, LNCS 2656, pp. 345?59,
Springer-Verlag, 2003.

8. N. Courtois, “Fast Algebraic Attacks on Stream Ciphers with Linear Feedback”, in
Advances in Cryptology – Crypto 2003, LNCS 2729, pp. 176?94, Springer-Verlag,
2003.

9. J. D. Golić, “Towards Fast Correlation Attacks on Irregularly Clocked Shift Regis-
ters”, in Advances in Cryptography – Eurocrypt’95, pages 248-262, Springer-Verlag,
1995.

8

10. J. D. Golić, “Cryptanalysis of Alleged A5 Stream Cipher”, in Advances in Cryp-
tology – Eurocrypt’97, LNCS 1233, pp. 239 - 255, Springer-Verlag, 1997.

11. T. Johansson and F. Jönsson. “Fast Correlation Attacks through Reconstruction
of Linear Polynomials”, in Advances in Cryptology – CRYPTO 2000, LNCS 1880,
pp. 300-315, Springer-Verlag, 2000.

12. W. Meier and O. Staffelbach, “Fast Correlation Attacks on Certain Stream Ci-
phers”. Journal of Cryptography, 1(3):159-176, 1989.

13. M. Mihaljević, M.P.C. Fossorier, and H. Imai, “A Low-Complexity and High-
Performance Algorithm for Fast Correlation Attack”, in Fast Software Encryption
(FSE’00), pp. 196-212, Springer-Verlag, 2000.

14. National Institute of Standards and Technology, “Secure Hash Standard (SHS)”,
Federal Information Processing Standards Publication (FIPS) 180-2. Available at
http://csrc.nist.gov/publications/fips/

15. H. Wu, “A New Stream Cipher HC-256”, in Fast Software Encryp-
tion (FSE’04), LNCS 3017, pp. 226-244. The full version is available at
http://eprint.iacr.org/2004/092.pdf

A Test Vectors of HC-128

Let K = K0||K1||K2||K3 and IV = IV0||IV1||IV2||IV3. The first 512 bits of
keystream are given for different values of key and IV. Note that for each 32-bit
output given below, the least significant byte leads the most significant byte in
the keystream. For example, if S and T are 32-bit words, and S = s3||s2||s1||s0,
T = t3||t2||t1||t0, where each si and ti is one byte, and s0 and t0 denote the
least significant bytes, then the keystream S, T is related to the keystream
s0, s1, s2, s3, t0, t1, t2, t3.

1. The key and IV are set as 0.

73150082 3bfd03a0 fb2fd77f aa63af0e
de122fc6 a7dc29b6 62a68527 8b75ec68
9036db1e 81896005 00ade078 491fbf9a
1cdc3013 6c3d6e24 90f664b2 9cd57102

2. The key is set as 0, the IV is set as 0 except that IV0 = 1.

c01893d5 b7dbe958 8f65ec98 64176604
36fc6724 c82c6eec 1b1c38a7 c9b42a95
323ef123 0a6a908b ce757b68 9f14f7bb
e4cde011 aeb5173f 89608c94 b5cf46ca

3. The IV is set as 0, the key is set as 0 except that K0 = 0x55.

518251a4 04b4930a b02af931 0639f032
bcb4a47a 5722480b 2bf99f72 cdc0e566
310f0c56 d3cc83e8 663db8ef 62dfe07f
593e1790 c5ceaa9c ab03806f c9a6e5a0

9

Let Ai =
⊕0xfffff

j=0 s16j+i for i = 0, 1, · · · , 15, i.e. set a 512-bit buffer as 0 and
encrypt it repeatedly for 220 times. Set the key and IV as 0, the value of
A0||A1|| · · · ||A15 is given below:

a4eac026 7e491126 6a2a384f 5c4e1329
da407fa1 55e6b1ae 05c6fdf3 bbdc8a86
7a699aa0 1a4dc117 63658ccc d3e62474
9cf8236f 0131be21 c3a51de9 d12290de

10

